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Preface

This proceeding publishes the papers submitted, peer-reviewed, and presented
at the 2020 INFORMS Conference Service Science (ICSS 2020), held in the
all-live and virtual format on Dec. 19–21, 2020. This conference provided an
excellent opportunity for scholars and practitioners to present their service science
related research and practice work, to learn about the emerging technologies and
applications, and to network with each other for further collaborative opportunities.

2020 was a difficult and challenging year for the world. The COVID-19 pan-
demic was unprecedented. Containing the pandemic was and still is challenging to
humanity. Contributing to combating the unprecedented COVID-19 crisis, the ICSS
2020 conference theme was AI and Analytics for Public Health, aimed at promoting
and facilitating the development of healthy and strong communities where we live,
work, learn, and play, and uncovering solutions to protect the health of people and
the communities, nationally and internationally. This conference attracted scholars
and practitioners around the world to come together virtually to share what had been
found, helping each other by timely sharing solutions and stimulating new ideas,
which further helped enhance the needed solutions and extend them to uncharted
territories. We are confident that in the fight against any virus, humanity will and
must prevail.

This year we had over 120 submissions from around the world. All full/short
paper submissions were carefully peer reviewed. After the rigorous review and revi-
sion process, 37 papers were finally accepted to be included in this proceeding. The
major areas covered at the conference and included in this proceeding include:

• Public Health Service, Policy, Administration, Response, and Systems
• Service Management, Operations, Engineering, Design, Innovations, and Mar-

keting
• Smart Cities, Sustainable Systems, IT and Service System Analytics, and Self-

service Systems
• Smart and Intelligent Service, Healthcare Analytics, FinTech, Learning Analyt-

ics, and Others
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• Big Data, Machine Learning, Artificial Intelligence, and Data-Driven Decision
Making

• Systems Modeling, Management, and Simulation in Manufacturing, Supply
Chain, Logistics, and Others

• AI, Data Analytics, and Data-driven Applications in Health, Energy, Finance,
Transportation, Sport, and Governmental/Public Services

In addition to the accepted research papers, ICSS 2020 provided an opportunity
for scholar and practitioners to share their ongoing studies. We invited six well-
known service science experts to deliver plenary speeches:

• Dr. Jim Spohrer, director of IBM Cognitive Opentech Group, presented “Future
of AI and Post-Pandemic Society: A Service Science Perspective.”

• Prof. Paul Maglio, University of California at Merced, former EIC of INFORMS
Service Science, discussed “What is Service Science?”

• Prof. Weiwei Chen, Rutgers University, delivered “Improving Service Designs
and Operations Using Analytics.”

• Prof. Saif Benjaafar, Distinguished McKnight University Professor, University of
Minnesota, EIC of INFORMS Service Science, articulated “Dimensioning On-
Demand Vehicle Sharing Systems.”

• Prof. Dmitry Ivanov, Berlin School of Economics and Law, explained “Supply
Chain Resilience Theory and COVID-19 Pandemic: What We Know, Where We
Failed, and How to Progress.”

• Prof. Victor Chan, Tsinghua-Berkley Shenzhen Institute, reviewed “Recent
Mathematical and Computational Studies of COVID-19.”

The conference had 16 parallel sessions, including 77 presentations. ICSS 2020
also had successfully organized the best conference paper competition and the best
student paper competition. We would like to thank all authors, speakers, track chairs,
session chairs, reviewers, and participants.

Finally, we would like to thank all authors for submitting their high-quality works
in the field of service science, and the conference organizing and program committee
members, listed on the following pages, for their tireless efforts and time spent
on reviewing submissions. We are very grateful to Springer’s editors, Neil Levine
and Faith Su, and the production editor, Shobha Karuppiah, who have contributed
tremendously to the success of the ICSS 2020 conference proceedings. We would
also like to acknowledge the NSF I/UCRC Center for Healthcare Organization
Transformation (CHOT), NSF I/UCRC award IIP-1624727, for sponsoring the
conference.

Co-Editors – Proceedings of 2020 INFORMS Conference on Service Science

Malvern, PA, USA Robin Qiu

University Park, PA, USA Hui Yang

Piscataway, NJ, USA Weiwei Chen



ICSS 2020 Committees

Program Committee

• Ralph Badinelli, Virginia Tech, USA
• Victor Chan, Tsinghua University, China
• Ozgur Araz, University of Nebraska-Lincoln, USA
• Jenny Chen, Dalhousie University, Canada
• Weiwei Chen, Rutgers University, USA
• Hongyan Dai, Central University of Finance and Economics, China
• David Ding, Rutgers University, USA
• Qiang Duan, Penn State, USA
• Yucong Duan, Hainan University, China
• Tijun Fan, East China University of Science and Technology, China
• Siyang Gao, City University of Hong Kong, China
• Yan Gao, University of Shanghai for Science and Technology, China
• Dmitry Ivanov, Berlin School of Economics and Law, Germany
• Hai Jiang, Tsinghua University, China
• Zhibin Jiang, Shanghai Jiaotong University, China
• Haitao Li, University of Missouri–St. Louis, USA
• Zhenyuan Liu, Huazhong University of Science and Technology, China
• Kelly Lyons, University of Toronto, Canada
• Rym M’Hallah, Kuwait University, Kuwait
• Juan Ma, iHeartMedia, USA
• Xin Ma, Texas A&M University, USA
• Paul Maglio, UC Merced, USA
• Aly Megahed, IBM, USA
• Paul Messinger, University of Alberta, Canada
• Chuanmin Mi, Nanjing University of Aeronautics & Astronautics, China
• Ran Mo, Central China Normal University, China
• Ashkan Negahban, Penn State, USA
• Kai Pan, Hong Kong Polytechnic University, China

vii



viii ICSS 2020 Committees

• Patrick Qiang, Penn State, USA
• Robin Qiu, Penn State, USA
• Lun Ran, Beijing Institute of Technology, China
• Tina Wang, University of Oxford, UK
• Hui Xiao, Southwestern University of Finance and Economics, China
• Xiaolei Xie, Tsinghua University, China
• Hui Yang, Penn State, USA
• Ming Yu, Tsinghua University, China
• Canrong Zhang, Tsinghua University, China

Conference Organizing Committee

• Conference Co-chair(s): Prof. Robin Qiu and Prof. Hui Yang
• Program Co-chair(s): Prof. Weiwei Chen
• Invited Tracks:

– Special Sessions (Prof. Qiang Duan and Prof. Xiaolei Xie)
– Sharing Economy (Prof. Ashkan Negahban)
– Healthcare Service and Analytics (Prof. David Ding and Prof. Xiaolei Xie)
– Service Design, Operations, and Analytics (Prof. Victor Chan and Prof.

Canrong Zhang)
– Service Economy in the Emerging Market (Prof. Qiang Qiang)

Best Student Paper Award Committee

• Laura Anderson, IBM, USA
• Clara Bassano, University of Salerno, Italy
• Chiehyeon Lim, UNIST, South Korea
• Kelly Lyons, University of Toronto, Canada (Chair)
• Eleni Stroulia, University of Alberta, Canada

Best Conference Paper Award Committee

• Weiwei Chen, Rutgers University, USA
• Dmitry Ivanov, Berlin School of Economics and Law, Germany
• Yingdong Lu, IBM, USA (Chair)
• Ashkan Nagahban, Penn State, USA
• Jie Song, Peking University, China



Contents

Epidemic Informatics and Control: A Review from System
Informatics to Epidemic Response and Risk Management
in Public Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Hui Yang, Siqi Zhang, Runsang Liu, Alexander Krall, Yidan Wang,
Marta Ventura, and Chris Deflitch

Private vs. Pooled Transportation: Customer Preference and
Congestion Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Kashish Arora, Fanyin Zheng, and Karan Girotra

Optimal Dispatch in Emergency Service System via
Reinforcement Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Cheng Hua and Tauhid Zaman

Towards Understanding the Dynamics of COVID-19: An
Approach Based on Polynomial Regression with Adaptive Sliding
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Yuxuan Xiu and Wai Kin (Victor) Chan

Capturing the Deep Trend of Stock Market for a Big Profit . . . . . . . . . . . . . . . . 101
Robin Qiu, Jeffrey Gong, and Jason Qiu

Analysis on Competitiveness of Service Outsourcing Industry
in Yangtze River Delta Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Yanfeng Chu and Qunkai Peng

OPBFT: Optimized Practical Byzantine Fault Tolerant
Consensus Mechanism Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Hui Wang, Wenan Tan, Jiakai Wu, and Pan Liu

Entropy Weight-TOPSIS Method Considered Text Information
with an Application in E-Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Ailin Liang, Xueqin Huang, Tianyu Xie, Liangyan Tao, and Yeqing Guan

ix



x Contents

Optimal Resource Allocation for Coverage Control of City Crimes . . . . . . . 149
Rui Zhu, Faisal Aqlan, and Hui Yang

Application of Internet of Things (IoT) in Inventory Management
for Perishable Produce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Jing Huang and Hongrui Liu

Modified Risk Parity Portfolios to Limit Concentration on Low
Risk Assets in Multi-Asset Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Fatemeh Amini, Atefeh Rajabalizadeh, Sarah M. Ryan,
and Farshad Niayeshpour

A Data Analysis Method for Estimating Balking Behavior
in Bike-Sharing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Aditya Ahire and Ashkan Negahban

The Impact of Scalability on Advisory and Service Delivery
Efforts of Nonprofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Priyank Arora, Morvarid Rahmani, and Karthik Ramachandran

Green Location-Routing Problem with Delivery Options . . . . . . . . . . . . . . . . . . . 215
Mengtong Wang, Lixin Miao, and Canrong Zhang

Molecular Bioactivity Prediction of HDAC1: Based on Deep
Neural Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Miaomiao Chen, Shan Li, Yu Ding, Hongwei Jin, and Jie Xia

Risk Assessment Indicators for Technology Enterprises: From
the Perspective of Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Runjie Xu, Nan Ye, Qianru Tao, and Shuo Zhang

Subsidy Design for Personal Protective Equipments (PPEs) Adoption . . . . 255
Ailing Xu, Qiao-Chu He, and Ying-ju Chen

Early Detection of Rumors Based on BERT Model . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Li Yuechen, Qian Lingfei, and Ma Jing

Research on the Cause of Personal Accidents in Electric Power
Production Based on Capacity Load Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Penglei Li, Chuanmin Mi, and Jie Xu

A Simulation Optimization Approach for Precision Medicine . . . . . . . . . . . . . . 281
Jianzhong Du, Siyang Gao, and Chun-Hung Chen

Research on Patent Information Extraction Based on Deep Learning . . . . . 291
Xiaolei Cui and Lingfei Qian

Electric Power Personal Accident Characteristics Recognition
Based on HFACS and Latent Class Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Zhao Chufan, Mi Chuanmin, and Xu Jie



Contents xi

Sentiment Analysis Based on Bert and Transformer. . . . . . . . . . . . . . . . . . . . . . . . . 317
Tang Yue and Ma Jing

Collection and Analysis of Electricity Consumption Data: The
Case of POSTECH Campus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Do-Hyeon Ryu, Young Myoung Ko, Young-Jin Kim, Minseok Song,
and Kwang-Jae Kim

Balance Between Pricing and Service Level in a Fresh
Agricultural Products Supply Chain Considering Partial Integration . . . . 343
Peihan Wen and Jiaqi He

A Stacking-Based Classification Approach: Case Study
in Volatility Prediction of HIV-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Mohammad Fili, Guiping Hu, Changze Han, Alexa Kort, and Hillel Haim

Social Relations Under the Covid-19 Epidemic: Government
Policies, Media Statements and Public Moods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Wangzhe, Zhongxiao Zhang, Qianru Tao, Nan Ye, and Runjie Xu

AMachine Learning Approach to Understanding the Progression
of Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Vineeta Peddinti and Robin Qiu

Modelling the COVID-19 Epidemic Process of Shenzhen
and the Effect of Social Intervention Based on SEIR Model . . . . . . . . . . . . . . . . 393
Wenjie Zhang and Wai Kin (Victor) Chan

Artificial Intelligence – Extending the Automation Spectrum . . . . . . . . . . . . . . 405
Stephen K. Kwan and Maria Cristina Pietronudo

Robust Portfolio Optimization Models When Stock Returns Are
a Mixture of Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Polen Arabacı and Burak Kocuk

Two-Stage Chance-Constrained Telemedicine Assignment Model
with No-Show Behavior and Uncertain Service Duration . . . . . . . . . . . . . . . . . . . 431
Menglei Ji, Jinlin Li, and Chun Peng

Exploring Social Media Misinformation in the COVID-19
Pandemic Using a Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Alexander J. Little, Zhijie Sasha Dong, Andrew H. Little, and Guo Qiu

Personalized Predictions for Unplanned Urinary Tract Infection
Hospitalizations with Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Lingchao Mao, Kimia Vahdat, Sara Shashaani, and Julie L. Swann



xii Contents

Risks Brought by Competition: Investment and Merger
of Internet Enterprises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Ye Nan and Xu Runjie

Correction to: Artificial Intelligence – Extending the Automation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1



Epidemic Informatics and Control: A
Review from System Informatics
to Epidemic Response and Risk
Management in Public Health

Hui Yang, Siqi Zhang, Runsang Liu, Alexander Krall, Yidan Wang,
Marta Ventura, and Chris Deflitch

1 Introduction

Epidemic outbreaks impact the health of our society and bring significant disrup-
tions to the US and the world. For example, Coronavirus Disease 2019 (COVID-19)
is currently ravaging multiple countries and was declared as a global pandemic by
the World Health Organization (WHO) in March 2020. COVID-19 has caused a total
of approximately 7.82 million infected cases and 432 K deaths worldwide, as well
as 2.17 million infected cases and 118 K deaths in the US by June 16, 2020 (CDC,
2019). The abrupt increase of cases quickly exceeds the capacity of health systems
and highlights the shortages of workers, beds, medical supplies and equipment.
Many governments have taken a variety of actions (e.g., lockdown, large-scale
testing, stay-at-home) to flatten the curve and avoid overwhelming health systems,
but these reactionary policies have resulted in great economic losses. The US
unemployment rate has skyrocketed from 3.5% in February 2020 to 14.7% in April
2020 (The Bureau of Labor Statistics, n.d.). The number of unemployed persons
has increased to 23.1 million, which is even worse than the Great Depression in
1930s. The economic uncertainty has caused US stock markets to trigger the circuit
breakers to halt trading for a historical 4 times in the week of March 9–16, 2020
(Zhang et al., 2020). The US GDP shrunk 4.8% in the first quarter of 2020.
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When the COVID-19 epidemic emerged, it was not uncommon to encounter
a misperception or misinformation that coronavirus is like the seasonal influenza
(flu). Although there are similarities (e.g., causing respiratory illness) between
coronavirus and flu virus, they are significantly different. COVID-19 or severe acute
respiratory syndrome (SARS) is caused by the family of coronavirus, which is not
the same as the flu virus. There are three major types of flu viruses – Types A, B
and C. Type A flu virus caused many epidemics in the past 100 years (e.g., 1918
Spanish Flu (Trilla et al., 2008), 1968 H3N2 epidemic (Alling et al., 1981), and
2009 H1N1 epidemic (Sullivan et al., 2010)). It is worth mentioning that Type A
flu virus infects a wide variety of animals (e.g., poultry, swine, aquatic birds) and
easily evolves and mutates genes. Once transported and adapted to humans, it can
evolve into an epidemic. Types B and C flu viruses infect only humans as the typical
seasonal flu and has rarely been the cause of past epidemics (Taubenberger et al.,
2005). It is estimated by Center for Disease Control and Prevention (CDC) that
seasonal flu causes approximately 140,000–810,000 hospitalizations and 12,000–
61,000 deaths annually since 2010 (Disease Burden of Influenza, n.d.). However,
the death toll of 1918 Spanish Flu is about 50 million worldwide and 675,000 in the
US.

Historically, epidemics are inevitable and recur at more or less near-periodic
cycles. It is difficult to predict when a new virus will emerge and cause an epidemic.
The infection rate of a virus is commonly measured by the basic reproduction
number R0, which characterizes how many people on average can be infected by
one infected individual in a susceptible population. For COVID-19, R0 is estimated
to range from 1.4 to 6.49, with a mean of 3.28 (Liu et al., 2020). The potential
transmission pathway can be either through air droplets, which are generated when
infected individuals talk, cough, or sneeze, or through contact with an infected
person or surface that is contaminated with the virus. At the start of an outbreak,
antivirals and vaccines are often not available. People can only resort to non-
pharmaceutical interventions (NPIs) for the control and containment of virus spread
(Davies et al., 2020). Traditional NPI methods include the practice of good personal
hygiene, the use of disinfectants, the isolation and quarantine of infected individuals,
and the limitation of public gatherings. From 1918 Spanish flu epidemic to COVID-
19, this situation does not change much although health systems become more
advanced and medical resources are richer than before.

However, one thing that does change is the faster and augmented capability of
medical testing and diagnostics, thanks to rapid advances of gene/DNA, microbiol-
ogy, and imaging technologies (Ravi et al., 2020). As such, large amounts of data
are collected in the evolving process of epidemic outbreaks. The availability of data
calls upon the development of analytical methods and tools to gain a better under-
standing of virus spreading dynamics, optimize the design of healthcare policies for
epidemic control, and improve the resilience of health systems. Therefore, this paper
presents a review of the system informatics approach of Define, Measure, Analyze,
Improve, and Control (DMAIC) for epidemic management through the intensive
use of data, statistics and optimization. Despite the sustained successes of DMAIC
in a variety of established industries such as manufacturing, logistics, services and
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Define
Pandemic challenges

Measure
Sampling, clinical 

testing, and data cohorts

Analyze
Information extraction 

and predictive modeling

Improve
Risilience design and 
smart health systems

Control
Health policy, risk 

mitigation, intervention

Fig. 1 The flowchart of system informatics for epidemic response and risk management

beyond (Yang et al., 2021; Knowles et al., 2005; Kumar et al., 2007), there is a
dearth of concentrated review and application of the data-driven DMAIC approach
in the context of epidemic outbreaks. As shown in Fig. 1, The DMAIC methodology
consists of five phases: (1) Define: outline the societal challenges posed by the
epidemic; (2) Measure: collect data about key variables in the epidemic process;
(3) Analyze: extract useful information pertinent to the spread of epidemic; (4)
Improve: design solutions and methods to improve the resilience of health systems;
(5) Control: develop health policies, management plans, and intervention methods
to control the spread of infectious diseases. The goal of this paper is to catalyze
more in-depth investigations and multi-disciplinary research efforts to accelerate
the application of system informatics methods and tools in epidemic response and
risk management.

The rest of the paper is organized as follows: Section 2 discusses specific societal
challenges arising from large-scale outbreaks of infectious diseases. Section 3
reviews the sampling and testing strategies to increase information visibility for
epidemic management. Then, we present a review of analytical methods and tools
for the extraction of useful information in Sect. 4. Continuous improvements and
re-design to improve the resilience of health systems are discussed in Sects. 5 and 6
presents the health policies and intervention strategies for the control of virus spread.
Section 7 discusses the system informatics approach for epidemic management and
concludes this paper.
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2 Epidemic Challenges to Our Society

2.1 Health System Challenges

Epidemic outreak calls upon the execution of large amounts of clinical testing to
examine the prevalence of a virus in the population. No doubt, such a large demand
poses significant challenges on the manufacturing and supply chain systems.
Fortunately, advanced medical technology (e.g., gene/DNA, microbiology) enables
the provision of viral and/or antibody testing kits to the US population. For example,
as of June 19, 2020, there are a total of 26,781,666 viral tests performed to
determine whether an individual is currently infected by the coronavirus (CDC,
2019). Approximately 10% of the test results are positive. Among a sample of
1,934,566 individuals with COVID-19, most of them are within 18–44 and 45–
64 age groups (41.4% and 32.8%, respectively). For the rest, 5.1% and 9.5% are
aged 0–17 and 65–74, respectively, and 11% of them are above 75 (CDC, 2019).
In general, when the age of patients increases, the hospitalization rate also becomes
higher. Hospitalization rate is the ratio between the number of individuals who are
hospitalized within 14 days after a positive viral test and the total population in
a spatial region. As shown in Table 1, the overall cumulative hospitalization rate
is 94.5 per million (CDC, 2019). For people aged 50–64 and above 65, the rates
increase to 143 and 286.9 per million, respectively. However, for people aged 0–4
and 5–17, the rates declined to 7.4 and 3.5, respectively.

The upsurge of positive cases poses significant challenges on the hospital
capacity. As shown in Table 2, as of June 18, 2020, 70% of inpatient beds are
occupied, in which 5% is used for COVID-19 patients. Also, nearly 63% of intensive
care units (ICU) beds are occupied (CDC, 2019). In addition, the shortages of
medical supplies (e.g., personal protection equipment (PPE)) become more and
more prevalent in the health systems with a rising number of coronavirus cases
and hospitalizations. In the era of globalization, US medical supplies are heavily
dependent on importation, nearly 72% of active pharmaceutical ingredients (APIs)
are imported from other countries. Specifically, approximately 13% of medical
products are from China, and 18% of pharmaceutical imports are provided by
India (COVID-19: Impact on Global Pharmaceutical and Medical Product Supply
Chain Constraints U.S. Production, 2019). Also, generic drugs imported from these
two countries account for about 90% of medicine supplies in the US. However,

Table 1 A summary of
cumulative hospitalization
rate for each age group

Age Group Hospitalization rate per million

Overall 94.5
0–4 years 7.4
5–17 years 3.5
18–49 years 56.5
50–64 years 143.0
65+ years 286.9
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Table 2 National estimates of hospital bed occupancy in the COVID-19 in the US

Estimates for June 18 Number (95% CI) Percentage (95% CI)

Inpatient Beds Occupied (all Patients) 524,610 (500,844–548,376) 65% (64–66%)
Inpatient Beds Occupied (COVID-19) 40,112 (37,682–42,541) 5% (5–5%)
ICU Beds Occupied (all Patients) 77,029 (72,135–81,922) 63% (61–64%)

the COVID-19 outbreak in January shuts down almost all manufacturing facilities
and non-essential businesses in China. Even though manufacturing activities were
resumed in late February, the average capacity utilization at top 500 manufacturing
enterprises in China was only 58.98% (Fernandes, 2020; ISM Report on Business,
2019). As such, a disrupted supply chain causes serious shortages of medical
products in the US, which endangers the healthcare workers in the front line.

Indeed, healthcare workers are among the most vulnerable group of people who
face a higher probability to get infected during the epidemic outbreak. The higher
risk is due to their closer contact with patients, the shortage of PPEs, the delay of
testing program in the early stage, and the high infection rate in the hospital. As
the COVID-19 proliferates, healthcare workers suffer from occupational burnout
and fatigue. The key factors include occupational hazards, emergence responses,
process inefficiencies, and financial instability (Sasangohar et al., 2020; Shechter
et al., 2020; Greenberg et al., 2020). During the period of February 12–April 9,
2020, approximately 19% of COVID-19 patients are healthcare workers. Therefore,
this fact further exacerbates the shortage of staffing in the hospital. To avoid
secondary infection in the hospital, screening and masks are required for all people
upon entry into the hospital (Bartoszko et al., 2020). Patients with suspected or
confirmed COVID-19 are placed in a single-occupancy room with a closed door
and a separated bathroom. Also, all healthcare workers should wear PPE, isolation
gowns and non-sterile gloves upon entering these patients’ room. When transporting
patients out of the room, both patients and healthcare workers should wear
PPE. Moreover, hospitals conduct routine cleaning and disinfection procedures.
Enhanced environmental cleaning and disinfection are preferred for rooms used by
patients with suspected or confirmed COVID-19, and for areas used by healthcare
workers who care for such patients (Chirico et al., 2020).

2.2 Economic Challenges

The COVID-19 epidemic made the nation shut down non-essential businesses,
schools and instituted travel bans, which have greatly impacted the U.S. economy.
The shocks to supply chain bring significant disruptions to manufacturing. Small
and medium manufacturing enterprises faced unprecedented challenges, while some
have to shut down entirely to mitigate the virus spread. With social distancing
measures in place, many workers can only work from home. The production
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Fig. 2 The variations of Purchasing Manager’s Index (PMI) from January to May 2020

lead time has doubled due to shortages of workers and materials (ISM Report on
Business, 2019). Also, a limited number of products can be distributed worldwide
by air or ocean because of trade wars, hiking tariffs, and importation restrictions.
All these impacts of COVID-19 make companies question the just-in-time strategy
and reconsider the design of supply chain. In March 2020, there was a 6.3% drop
in manufacturing production, which was the largest 1-month drop since 1946 (ISM
Report on Business, 2019; Bonaccorsi et al., 2020). The drop was even larger for
April 2020. Note that the Purchasing Manager’s Index (PMI) shows the impacts
of COVID-19 on the economy. PMI is a composite index, ranging from 0 to 100,
of economic activities including new orders, inventory levels, production, supplier
deliveries, and employment. If the PMI is above 50, the manufacturing sector is
generally expanding. If PMI is below 50, it is generally contracting. As shown
in Fig. 2, US economic growth is strong in January 2020 with PMI 50.9, but
decreases from January to April 2020 (ISM Report on Business, 2019; Bonaccorsi
et al., 2020). When the COVID-19 outbreak occurred in March 2020, the PMI fell
below 50, further dropped to 41.7 in April 2020, and then remained low through
May 2020. From March to May 2020, COVID-19 poses significant challenges
on the US economic activities due to unexpected outbreaks, lockdowns, and non-
pharmaceutical interventions. After June 2020, the US economical activities recover
with the rollout of stimulus plans, increasing manufacturing productions, and new
modes for businesses such as teleconferencing, e-commerce and online learning.

A worse impact on the manufacturing industry during the epidemic would
be caused by decreased spending because of job loss or reduced incomes. The
disruption in the manufacturing industry and the tremendous drop in demand led to
the layoff of workers. As of May 2020, the unemployment rate in the manufacturing
industry increased to 11.6%. Table 3 summarizes the number of employees in the
manufacturing sector as issued by the U.S. Bureau of Labor Statistics, for both
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the non-seasonally adjusted case and the seasonally adjusted case (Manufacturing:
NAICS 31-33, n.d.). As shown in Table 3, when it is not seasonally adjusted, the
number of employees in the manufacturing sector decreased by 1.32 million from
March 2020 to April 2020, with about 0.90 million in durable goods manufacturing
and 0.42 million in non-durable goods manufacturing. Meanwhile, there were about
1.13 million fewer jobs in May 2020, compared to May 2019. When it is seasonally
adjusted, the U.S. manufacturing lost about 1.29 million jobs from March 2020
to April 2020. About 69% (0.91 million) of the job loss was in the durable good
manufacturing, while the rest 31% (0.38 million) was in the non-durable good
manufacturing. Compared to May 2019, there were 1.12 million fewer jobs in May
2020 (Manufacturing: NAICS 31-33, n.d.).

Schools and universities across the country have also been disrupted. In March
2020, most schools started to switch from in-person instruction to online-only
instruction, which gave rise to the concerns about instruction quality (Crawford et
al., 2020). Meanwhile, it is not uncommon that many universities faced financial
challenges. As students moved out of on-campus housing, universities issued pro-
rated refunds to them, which was a substantial amount of unexpected expenses.
Also, universities needed to allocate additional funds for dorm cleaning and
technology essentials for online classes. Moreover, due to the cancellation of college
entrance exams worldwide and limitation on travel, the enrollment for the fall 2021
semester is likely to drop, which will also cause financial issues to universities.

These paramount challenges posed by epidemics call upon multiple scientific
disciplines to design and develop new enabling methods and technological inno-
vations for rapid response and management. For example, a complete picture of
the new virus is urgently needed from the community of medical scientists. The
manufacturing community should be agile to innovate the design and increase the
production of personal protective equipment (PPE). In this paper, we propose a
system informatics approach for data-driven epidemic response and operational
management, thereby mitigating the risks and controlling the virus spread. In the
following sections, “Measure” provides statistical methods for optimal sampling
and testing of the population for the presence of virus, as well as a review of data
management and data visualization methods. “Analyze” focuses on the handling
and analysis of heterogeneous and interconnected datasets (e.g., from CDC, Census
Bureau, Food and Drug Administration, state and federal health departments)
that are collected during the epidemic lifecycle. “Improve” exploits data-driven
knowledge to improve the resilience design of health systems, including healthcare
capacity, resources, workflows, and operations. Further, “Control” focuses on the
learning and optimization of health policies and action strategies for controlling the
spread of virus. The system informatics methods and tools will complement med-
ical, clinical and pharmaceutical research efforts, helping safeguard the population
from infectious diseases and make health systems more resilient to overwhelming
epidemic events.
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3 Measure the Epidemic Dynamics

The “measure” step is directly aimed at testing the population for the prevalence
of virus, which is critical to monitoring the temporal evolution of an epidemic in
a spatial region. Rapid advances of gene, microbiology and imaging technologies
have greatly improved the design and development of testing methods (e.g., speed
and accuracy) of coronavirus and influenza. As discussed in Sect. 2, an epidemic
poses paramount challenges on the health and economy of our society. The
prevalence of a virus in a large population often incurs large amounts of testing,
which leads to spatially-temporally big data. This provides an opportunity for
the “analyze” step to develop an in-depth understanding of dynamically evolving
statuses of an epidemic. Here, data could be collected in disparate efforts by private
companies, research centers, universities, and government agencies, thereby leading
to the formation of data cohorts to address issues of data management. Epidemic
data can then be visualized in various ways to provide comprehensible information
about the spatiotemporal variations of an epidemic. An effective visualization
further helps the “analyze” step to estimate and extract salient features for the
prediction of future trajectory or the monitoring of transmission risks.

3.1 Testing and Sampling

Clinical testing is a critical first step to stopping the spread, which consists of viral
testing (i.e., examine whether an individual is currently infected or not) (Esbin et al.,
2020) and antibody testing (i.e., check whether an individual was infected before
and currently has the presence of antibodies in the blood) (Lipsitch et al., 2020). In
the case of COVID-19, specimens are often collected through swabs in the nose or
throat for the viral testing. If specimens show the existence of a virus’s ribonucleic
acid (RNA) or proteins, the test will be positive. The antibody testing is typically
done by collecting a sample of blood serum and then examining the presence of
antibodies. In order to monitor the prevalence of virus, testing can be performed in
three different ways as follows:

• 100% testing: Population is the entire collection of individuals of interests in
a region of interest (e.g., university, city, county, or state). If the cost is not a
concern, 100% testing makes sure everyone is tested and then all the infected
individuals can be isolated and quarantined. This is an effective approach to stop
the spread, but often encounters practical limitations such as inadequate supply
of testing kits, prohibitive cost, and population instability due to mobility and
immigration.

• Acceptance sampling: Sample is a representative subset of the population that
can be tested for statistical inference. Acceptance sampling, also called Lot
Quality Assurance Sampling (LQAS) (Hedt et al., 2012), is a middle ground
between 0% and 100% testing and requires a small sample size for population
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x1: symp. vs asymptomatic
x2: workplace setting
x3: age
x4: medical conditions 
x5: work/school mode
x6: residential/commute setting
x7: protective measures
x8: travel history (to/from)
x9: contact tracing w/ infections
x10: public gathering
x11: test history

Individuals

Data Collection
Predictive Analytics

Frequency – data update

Point-based scoring

Regression modeling

AI modeling
Region of interests

Testing Results, Quarantine & Isolation

Risk Stratification

Fig. 3 Data-driven risk scoring systems for categorized sampling and testing

surveys. The population can be stratified into sub-groups (or lots), and each lot
can be sampled for clinical testing so as to “accept” or “reject” the lot according
to the risk tolerance levels. Also, these samples can be aggregated to establish
the confidence interval of infected proportion for testing the hypothesis on the
prevalence of an epidemic virus.

• 0% testing: This means that no testing will be done for the individuals in a
specific region. In the onset of an epidemic, few tests are performed because the
new virus is just emerging and has not caught enough attention from the public.
Once the epidemic virus is captured (e.g., genome sequenced and shared), testing
kits can then be designed and developed.

Figure 3 shows that mobile or web-based applications can be used for data
collection from individuals in a spatial region of interests, if the testing capacity
is constrained and 100% testing cannot be implemented. Examples of the predictors
may include x1: symp. vs asymptomatic; x2: workplace setting; x3: age; x4:
medical/comorbidity conditions; x5: work/school mode; x6: residential/commute
setting; x7: protective measures; x8: travel history (to/from); x9: contact tracing with
infections; x10: public gathering; x11: test history; The response variable will be the
risk probability of infection (range from 0 to 1). The data-driven decision support
system helps stratify the individuals into groups (or lots) and then optimize the
testing decisions. The risk scoring system categorizes the population into different
groups with various levels of risk probability. For example, four groups can be
stratified based on the risk probability, which helps further optimize the allocation of
testing resources and identify the infected individuals for isolation and quarantine.

As shown in Fig. 3, risk scoring systems can be established in three different
ways, namely point-based systems, regression modeling, or AI-based modeling.
Such scoring systems help categorize the acuity levels of patients and then improve
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the quality of healthcare services (e.g., surgical procedures, medication usages, care
guidelines, treatment plans, and resource allocations) (Chen & Yang, 2014; Imani
et al., 2019). Point-based scoring systems use the simple points or weights, and can
be easily implemented in questionnaire form. The points or weights can be adjusted
for different predictors (or factors). For example, if the symptom is weighted more
than other predictors, it may be assigned with a larger point (or weight). In clinical
practice, point-based scoring systems are widely used to stratify the patients, e.g.,
Acute Physiology and Chronic Health Evaluation (APACHE) (Zimmerman et al.,
2006), Sequential Organ Failure Assessment (SOFA) (Raith et al., 2017), Simplified
Acute Physiology Score (SAPS) (Metnitz et al., 2005; Moreno et al., 2005), and
Mini-mental state examination (MMSE) (Galasko et al., 1990). Figure 3 shows
an example of risk factors for the design of point-based scoring systems, which
also helps reduce the number of variables to compile into a short survey. An
increasing score indicates a higher risk of infection. In addition, the infection risk

can be derived using a multivariate logistic regression model as: log
(

risk
1−risk

)
=

a +∑
ibixi , where Risk is the risk of death,

(
risk

1−risk
)

is the odds ratio, a is the

intercept, bi is the coefficients and xi
′
s are independent predictors. Here, training

data or medical domain knowledge can be used to adjust the regression coefficients
for different predictors (or factors). Finally, it is not uncommon that AI modeling
(e.g., neural networks) are utilized to learn from complex-structured data for risk
stratification. AI models, however, need large amounts of data for training and
learning the weights, and are difficult to implement for testing and sampling in an
epidemic.

Statistical sampling is a cost-effective approach to survey the groups (or lots)
of individuals when the testing capacity and supply chain are constrained. First,
the confidence interval for the proportion of infections p can be estimated from
testing data. If there are c infected individuals for a random sample of size n, then
an approximate 100(1 − α)% confidence interval for p is

p̂ − zα/2

√
p̂
(
1− p̂

)

n
< p < p̂ + zα/2

√
p̂
(
1− p̂

)

n
(1)

where p̂ is c/n, and zα/2 is the z value with an upper tail area of α/2. This estimation
tends to be more reliable when the number of confirmed individuals c is greater than
6 in the sample, and is also applicable in the case of hypergeometric distribution
when the sample size n is small. Here, the choice of sample size is dependent on

the significant level α and the margin of error (MOE), i.e., zα/2
√
p̂
(
1− p̂

)
/n.

If a specific MOE value e is desired, then the sample size n is approximately
z2
α/2p̂

(
1− p̂

)
/e2. Note that the function p̂

(
1− p̂

)
reaches the maximum 1/4 when

p̂ = 1/2. Hence, the MOE is guaranteed not to exceed e if the sample size is chosen
to be z2

α/2/4e
2. For example, it is 95% confident that the MOE will not exceed 0.02

when the sample size is 1.962/(4 × 0.022) = 2401.
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Acceptance sampling is useful to help the decision-making process on whether
or not to lockdown or reopen a region (or “lot”) for regular businesses. As shown in
Fig. 4a, the operating characteristic (OC) curve describes an acceptance sampling
plan in terms of the probability of reopening versus the proportion infected. For
example, the probability of reopening is 1 − α if the region meets the acceptance
risk level (ARL) pARL. The probability of reopening is β if the region is on the
rejection risk level (RRL) pRRL. Assuming a binomial distribution, the sample size
n and acceptable number a can be obtained as:

1− α =
a∑
c=0

n!
c! (n− c)!p

c
ARL(1− pARL)

n−c (2)

β =
a∑
c=0

n!
c! (n− c)!p

c
RRL(1− pRRL)

n−c (3)

Then, for this acceptance sampling plan, if there are more than a infections in the
random sample of size n from the region, lockdown will be implemented. If there
are less than or equal to a infections, the risk is below the ARL level and the region
can be reopened. For example, Fig. 4b shows the acceptance sampling plans with
n = 2000 and a is ranging from 15 to 95. When the acceptance number a increases,
this does not significantly change the slope, but rather move the OC curves to the
right. If the acceptance number a is small, the risk tolerance levels tend to be low.
For larger values of a, both ARL and RRL levels are higher. If a region is above
the RRL, NPIs such as lockdown and stay-at-home should be implemented. On
the other hand, rectification testing programs can further screen individuals in the
rejected region. Often, 100% testing can be performed to identify all the infected
individuals, then isolate and quarantine them.

In the practice of clinical testing, acceptance sampling may have the following
limitations. First, if the sample size is finite, then the distribution tends to be hyper-
geometric instead of binomial. However, binomial approximation of hypergeometric
is valid if the ratio between sample size and lot size is less than 1/10. Second,
acceptance sampling assumes the selection of samples at random from each region.
Although clinical testing is prioritized for symptomatic cases or traced contacts of
infected individuals, it can however assume that the infection of an individual is at
random. Then, clinical testing can be assumed to be implemented on individuals
who are infected at random, albeit with the introduction of bias to some extent.
Third, individuals are assumed to be homogeneous in a region. In other words,
homogeneity refers to the fact that the probability to get infected is approximately
the same if in contact with pathogens. This is a reasonable assumption for a
susceptible population, although there may be slight differences in the infection
probabilities for uncontrollable factors such as age groups and blood types. These
limitations and assumptions should be considered during the practice of acceptance
sampling for clinical testing.
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Fig. 4 (a) An illustration of operating characteristic (OC) curve, (b) OC curves of acceptance
sampling plans with the sample size n = 2000 and the acceptance number a is ranging from 15 to
95

3.2 Spatiotemporal Surveillance of Epidemic Processes

Clinical testing brings significant amount of data pertinent to the evolution of an
epidemic. The epidemic data may include total cumulative cases (or per capita),
daily new cases, total deaths for multiple spatial regions (or lots) of interest
and are dynamically changing over time. Therefore, the epidemic evolution is a
spatiotemporal process, i.e., varying in both space and time. The availability of data
provides a great opportunity to design monitoring charts and develop epidemiology
surveillance programs. Statistical monitoring methods help health systems leverage
sequentially observed data to trigger the alarms and identify the outbreak region.
However, raw data are often not normalized and cannot be directly used to develop
monitoring charts. For example, spatial regions often have different population
sizes. Total cases should be adjusted for the population in a region. As such, features
need to be extracted from the data to describe the epidemic characteristics in a
region. Examples of features may include cases per million, the incidence rate, or
transmission risk index that are characterized with data-driven models.

If the monitoring objective is to detect abnormal changes of incidence rates x1,
x2, . . . , xk over k regions, then the feature vector will be x = [x1, x2, . . . , xk]T .
The statistical test is aimed at setting up the null and alternative hypotheses, then
seeking data-driven evidence to determine whether an anomaly is present in any
dimension (i.e., a region) of the feature vector or not. Under the null hypothesis H0,
the incidence rates over k regions do not change over time. As such, the feature
vector x is assumed to follow a multivariate normal distribution with population
mean μ and covariance matrix Σ , i.e.,

f (x) = 1

(2π)p/2|�|1/2 exp

[
−1

2
(x − μ)′�−1 (x − μ)

]
(4)
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Monitor each region separately
Regions are independent

(a) (b)

Joint monitoring of multiple regions
Regions are dependent

Fig. 5 Multivariate monitoring schemes for epidemic surveillance: (a) Monitor each region
separately and regions are independent, (b) Joint monitoring of multiple regions and regions are
dependent

If an outbreak occurs in one region or multiple adjacent regions, then the assumption
of multivariate normal distribution is no longer valid. The alternative hypothesis H1
that the joint distribution of multivariate features is non-normal will tend to hold.
The hypothesis test accepts or rejects the null hypothesis H0 at a significance level α.
Although the assumption of multivariate normality is required to formally establish
confidence limits in the statistical test, a slight deviation will not severely impact the
results (Chen & Yang, 2016a). Here, multivariate normal probability plotting can be
used to evaluate whether the extracted features of incidence rates are approximately
normally distributed for multiple regions of interests.

As shown in Fig. 5a, most of traditional monitoring schemes assume that k
regions are independent. Therefore, a common approach is to monitor each feature
independently in the literature. In the bivariate case, control limits will form a
rectangular region. If the pair of observations fall within this rectangular region, then
the null hypothesis H0 holds. If the pair of observations reside outside this region,
then the null hypothesis H0 is rejected. However, this monitoring scheme has limited
applications due to the “curse of dimensionality”. For example, if the probability
of Type I error is α for each feature, then Type I error for monitoring k features
independently is 1 − (1 − α)k. The probability that all k observations fall within
the confidence limits is (1 − α)k if all the k regions are in control (Yang & Chen,
2014; Chen & Yang, 2015). Hence, the error is significant when the dimensionality
of the feature vector increases. It may also be noted that k features are oftentimes
not independent because adjacent regions tend to be correlated with each other in
an epidemic situation.

Therefore, multivariate statistical methods that consider spatial correlations and
jointly monitor these regions (or features) are urgently needed. As shown in Fig.
5b, due to the correlation among adjacent regions, the pair of observations now
resides in the elliptical region for the bivariate case. Under the null hypothesis
H0, k regions will follow the multivariate normal distribution with the population
covariance matrix Σ . As such, the test statistic χ2 = (x − μ)

′
�−1(x − μ) follows
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a chi-square distribution with k degrees of freedom. The joint distribution changes
in the presence of regional anomalies. If there are shifts in at least one out of k
regions, then χ2 values will be above the upper control limit UCL = χ2

α,p, where α

is the significance level. If χ2 values are below the upper control limit, then the null
hypothesis H0 holds and there will be no significant evidence of anomalies. The
control ellipse of bivariate case in Fig. 5b is due to region-to-region correlations.
Because off-diagonal elements are no longer zero in covariance matrix Σ , the
principal axes of the ellipse are not parallel to the x1, x2 axes any more.

In the real world, population mean μ and covariance matrix Σ are often unknown
and need to be estimated from the data. If the sample mean x and covariance matrix
S are used instead, then the test statistic becomes T 2 = (x − x)′S−1 (x − x), which
is commonly called as the Hotelling T2 statistic (Mason et al., 1997; Li et al., 2008).
The new UCL for the Hotelling T2 statistic is:

UCL = p (N + 1) (N − 1)

N2 −Nk
Fα,k,N−k (5)

where x1,x2,· · · ,xN are N sequentially observed samples of epidemic data from
k regions, Fα, k, N − k is the upper 100α% critical point of F distribution with k
and N − k degrees of freedom. Note that control limits are established in Phase
I with in-control datasets (i.e., without the presence of anomalies). For Phase II
monitoring, the control chart plots control limits and the test statistic T2(i), i = 1,
2, · · ·N for each sample. When a new sample arrives, we will then compute the test
statistic and check the conformance in the control chart. Note that it is not feasible
to graphically construct the control ellipse for more than two regions as shown in
Fig. 5b. The composite index (i.e., Hotelling T2 statistic) helps characterize the
multivariate distribution of k features (or regions), and further establish the control
chart to effectively detect whether there are shifts in at least one out of k regions
(i.e., multivariate epidemic monitoring and surveillance).

3.3 Data Management and Visualization

As the epidemic progresses, large amounts of data are organized in the form of
data cohorts or lakes. Medical scientists collect pertinent data about the clinical
picture of a new virus for the development of effective intervention methods, such
as antivirals and vaccines. Epidemiologists and engineers leverage the public health
data to develop analytical models for the prediction of virus spread dynamics.
Real-time data of epidemic situations is critical to understand the spread, trace
the contacts, and control the propagation. Data management is indispensable to
integrate disparate data efforts from government agencies, universities, and private
companies. Here, data cohort connects various organizations to manage the data
using the defining characteristics, which help researchers save tremendous amount
of time in finding, analyzing, evaluating and validating relevant data for useful
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information and insights to stop the epidemic. Nonetheless, data lake is a repository
of unorganized data in the raw format. Data cohort may include necessary data from
on-going and completed research, as well as contact tracing data. This type of data
could contain the patient location, sociodemographic information, and the list of
contacts during the elicitation window and where the patient has visited. When
the number of infections become prevalent, data management gets increasingly
complex. This is partly due to the large number of cases, as well as the long list
of traced contacts of each positive case. Data management depends on the use of
database systems to support such many-to-many relational tables and provide a
higher level of flexibility of routine data storage, update, security, reporting, and
On-Line Analytical Processing (OLAP).

Note that the epidemic data is varying in both space and time. Table 4 provides
examples of data repositories and cohorts developed by government agencies,
institutions, and private companies. These data cohorts are open access to the public
or limited access by applications. The UN data lab, US CDC and European Centers
for Diseases Control (ECDC) organize and publish the real-time position data of
virus spread in either country level or county level. Such information can be used to
study and track the spread of the disease. US National Science Foundation (NSF)
supported a research project to develop the COVID Information Commons, which
is an open website to promote data and knowledge sharing across different COVID
research efforts. National Institute of Health (NIH) initiated an National COVID
Cohort Collaborative (N3C) project for collaboration on data collection, sharing,
and analytics, which also provides the open access to research literature about
COVID-19 genomics, virus structures, and clinical studies.

Also, academic institutions such as John Hopkins University (JHU) and the
University of Washington provides the organized COVID-19 data and popular
dashboards for data visualization. This, in turn, greatly facilitates the general
public in visualizing the spread and trend of epidemic, thereby promoting sit-
uational awareness. In addition, there are data cohorts from private companies
and foundations that provide targeted information about the disease. For example,
the COVID-19 tracking project assembles the testing data, hospitalization rates,
treatment outcomes, race and ethnicity data for researchers to investigate the
outbreak scale, the mortality rate, and regional effects of the disease. COVID-19
Open Research Dataset (CORD19) provides an application programming interface
(API) to retrieve the infection data, research feed, and COVID related texts. This
API can help researchers query data in a fast manner. Surgo Foundation provides
the community vulnerability index, social distance tracking, and nurse sentiment
data to help develop analytical methods and tools for epidemic response.

Large amounts of data are readily available from different sources. The next
step is to visualize and represent the data so that useful information and salient
features can be easily comprehensible by the audience. Data visualization focuses
on compact representations of trends and patterns in the data with graphical methods
and tools such as time series charts, density graphs, and heat maps. The human
brain can perceive information in graphics and images better than pale texts or data
tables. An effective visualization helps condense a thousand words in one picture.
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Table 4 Examples of COVID-19 data repository/cohort and features

Data cohorts and repositories Descriptions and features

Center for Disease Control and Prevention
(CDC)
https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/

US infection data with cases, race,
ethnicity, testing, hospital capacity and
other data streams at local, state, and
national levels

World Health Organization
https://www.who.int/

Global case updates with total confirmed
cases and deaths, new cases and deaths,
and transmission classifications

European CDC
https://www.ecdc.europa.eu/en/covid-19-
Epidemic

COVID-19 situation updates, case counts
and distributions for the EU/EEA, UK,
and worldwide.

National Institutes of Health
https://datascience.nih.gov/covid-19-open-
access-resources

COVID-19 data and resources such as
official data, related studies, and
high-performance computing consortium

National COVID Cohort Collaborative (N3C)
https://cd2h.org/

A very large patient-level COVID-19
clinical dataset shared by CTSA, CD2H
and other distributed clinical data
networks

Clinicaltrials.gov
https://clinicaltrials.gov/ct2/results?cond=
COVID-19

Detailed information about active and
recruiting clinical trials such as
intervention and phase

Johns Hopkins University
https://github.com/CSSEGISandData/COVID-
19

Global and US daily situation update at
country and state level, along with
time-series summary

NSF COVID Information Commons
https://covid-info-commons.site.drupaldisttest.
cc.columbia.edu/

Open website to facilitate knowledge
sharing and collaboration focused on NSF
funded COVID rapid response research
projects

New York Times
https://github.com/nytimes/covid-19-data

US state level and county level situation
updates, with historical and live data

Twitter Dataset
https://github.com/thepanacealab/COVID-
19_twitter

Tweets and retweets data acquired from
Twitter stream related to COVID-19
chatter with all languages

The COVID Tracking Project
https://covidtracking.com/data

US infection data with cases, tests,
hospitalized, severity (in ICU, on
ventilator, etc.), and outcomes

CORD-19
https://www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge

A dataset of over 167,000 scholarly
articles about COVID-19, SARS-CoV-2
and related coronavirus

Ding Xiang Yuan
https://ncov.dxy.cn/

Global case updates with active,
confirmed, recovered. China regional case
updates with city level native/imported
counts

OPENICPSR
https://www.openicpsr.org/openicpsr/search/
COVID-19/studies

Data cohort which contains links to US
state policy database, government
response dataset, and COVID-19 impact
survey

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.ecdc.europa.eu/en/covid-19-Epidemic/
https://datascience.nih.gov/covid-19-open-access-resources
https://datascience.nih.gov/covid-19-open-access-resources
https://cd2h.org/
https://clinicaltrials.gov/ct2/results?cond=COVID-19
https://clinicaltrials.gov/ct2/results?cond=COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://covid-info-commons.site.drupaldisttest.cc.columbia.edu/
https://covid-info-commons.site.drupaldisttest.cc.columbia.edu/
https://github.com/nytimes/covid-19-data
https://github.com/thepanacealab/covid19_twitter
https://covidtracking.com/data
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://ncov.dxy.cn/
https://www.openicpsr.org/openicpsr/search/covid19/studies

