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Preface

We are pleased to present the sixteenth volume of Progress in Ultrafast Intense
Laser Science. As the frontiers of ultrafast intense laser science rapidly expand ever
outward, there continues to be a growing demand for an introduction to this inter-
disciplinary research field that is at once widely accessible and capable of delivering
cutting-edge developments. Our series aims to respond to this call by providing a
compilation of concise review-style articles written by researchers at the forefront of
this research field, so that researchers with different backgrounds as well as graduate
students can easily grasp the essential aspects.

As in the previous volumes, each chapter of this book begins with an introduc-
tory part, in which a clear and concise overview of the topic and its significance
is given, and moves onto a description of the authors’ most recent research results.
All chapters are peer-reviewed. The articles of this sixteenth volume cover a diverse
range of the interdisciplinary research field, and the topics may be grouped into three
categories: atoms and molecules in intense laser fields (Chaps. 1– 5), applications of
circularly polarized laser pulses (Chaps. 6 and 7), and theoretical and technological
developments for intense laser field experiments (Chaps. 8– 10).

From the third volume, the PUILS series has been edited in liaison with the activi-
ties of theCenter forUltrafast IntenseLaser Science at theUniversity of Tokyo,which
has also been responsible for sponsoring the series and making the regular publica-
tion of its volumes possible. From the fifth volume, the Consortium on Education and
Research on Advanced Laser Science, the University of Tokyo, has joined this publi-
cation activity as one of the sponsoring programs. The series, designed to stimulate
interdisciplinary discussion at the forefront of ultrafast intense laser science, has also
collaborated since its inception with the annual symposium series of ISUILS (http://
www.isuils.jp/), sponsored by JILS (Japan Intense Light Field Science Society).

We would like to take this opportunity to thank all the authors who have kindly
contributed to the PUILS series by describing their most recent work at the frontiers
of ultrafast intense laser science. We also thank the reviewers who have read the
submitted manuscripts carefully. One of the co-editors (KY) thanks Ms. Mihoshi
Abe for her help with the editing processes.
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vi Preface

We hope this volume will convey the excitement of ultrafast intense laser science
to the readers and stimulate interdisciplinary interactions among researchers, thus
paving the way to explorations of new frontiers.

Tokyo, Japan
Saitama, Japan
Salamanca, Spain
January 2021

Kaoru Yamanouchi
Katsumi Midorikawa

Luis Roso
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Chapter 1
Robust Strategies for Affirming
Kramers-Henneberger Atoms

Pei-Lun He, Zhao-Han Zhang, and Feng He

Abstract Atoms exposed to high-frequency strong laser fields experience ionization
suppression due to the deformation of Kramers-Henneberger (KH) wave functions,
which has not been confirmed yet in any experiment. We propose a bichromatic
pump-probe strategy to affirm the existence of KH states, which are formed by the
pump pulse and ionized by the probe pulse. In the case of the single-photon ion-
ization triggered by a vacuum ultra-violet probe pulse, the double-slit character of
the KH atom is mapped to the photoelectron momentum distribution. In the case of
the tunneling ionization induced by an infrared probe pulse, streaking in anisotropic
Coulomb potential gives rise to the rotation of the photoelectronmomentum distribu-
tion in the laser polarization plane. Apart frombichromatic schemes, the non-Abelian
geometric phase provides an alternative route to affirm the existence of KH states.
Following specific loops in laser parameter space, a complete spin flipping transition
could be achieved. Our proposal has the advantages of being robust against focal-
intensity average as well as ionization depletion and is accessible with current laser
facilities.
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1.1 Introduction

Modern light-matter interaction researches date back to Einstein’s explanation of the
photoelectric effect, in which ionization happens only if the absorbed photon energy
is larger than the binding energy. The advent of laser technologies has boosted light-
matter interaction researches into a new era, where novel nonperturbative phenomena
are discovered, for example, strong-field tunneling ionization [1], above-threshold
ionization [2], high-harmonic generation [3–5], nonsequential double ionization [6],
low-energy structures [7, 8], and photoelectron holography [9]. Among these fasci-
nating scenarios, stabilization of atoms in intense laser fields, i.e., the counterintuitive
decrease of the ionization probability with the increase of driving laser intensities,
attracts the attention of the ultrafast community [10–12]. Twomechanisms are known
for ionization stabilization. One is interference stabilization [13, 14], in which the
released electron wave packets from populated Rydberg states interfere destruc-
tively. The other is adiabatic stabilization, in which the multiphoton ionization is
suppressed due to the deformation of Kramers-Henneberger (KH) wave functions
[15–18], which are defined to be the eigenstates of a time-averaged Hamiltonian
[19].

Though theoretically predicted for decades, the experimental confirmation of adi-
abatic stabilization is obscure due to ionization depletion and the focal-intensity
average of lasers. In real experiments, the fine structure related to the stabilization
may be smeared out after integrating all ionized fragments driven by different laser
intensities. Furthermore, while the field strength in the focused center reaches the
threshold of stabilization, the lower intensity around the focusing spot may com-
pletely ionize the target. The target might also be completely ionized before the laser
field reaches its peak intensity in the time domain [20]. Up to now, there is only
tantalizing indirect experimental evidence [21, 22] for the adiabatic stabilization.
For example, in [23], a large acceleration of neutral atoms was reported and regarded
as a signal of stabilization [18]. However, this evidence is not convincing enough
as frustrated ionization [24], in which the ionized electrons get recaptured by the
parent nuclei, has similar output. The ionization stabilization of Rydberg atoms [25]
is not convincing evidence since the nonadiabatic coupling [26, 27] in intense fields
populates a superposition of Rydberg states thus the ionization suppression might be
attributed to the interference stabilization [13].

There are vast researches on adiabatic stabilization [10–12]. However, only a few
attempted to directly identify KH states. Popov et al. [28] proposed to affirm the
existence of the KH states via the energy shift of the photoelectron [29–31]. Morales
et al. identified specific fine structures in photoelectron momentum distribution con-
tributed by excited KH states [32]. Jiang et al. suggested that the photoelectron
momentum distribution carrying dynamical interference structures provides infor-
mation on adiabatic stabilization [33]. However, these proposals are sensitive either
to the laser intensity or to the pulse envelope and are not robust against ionization
depletion. Thus, the experimental realization is still challenging.
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In one of our recent publications, we discussed the possibility of realizingYoung’s
double-slit experiment with a single atom via KH states [34]. Here, we proposed to
detect KH states using a bichromatic pump-probe strategy, in which the KH state is
formed by the pump pulse and ionized by the probe one. By detecting the photo-
electron momentum distribution, one is able to extract the dichotomic structure of
the target, and thereby affirm the existence of KH states. The spin flipping for atoms
following a loop in the laser parameter space provides an alternative route.

1.2 Models and Methods

1.2.1 Dipole Kramers-Henneberger Transformation

Our start point is the time-dependent Schrödinger equation (TDSE) (atomic units are
used throughout unless stated otherwise)

i
∂

∂t
ψ(x, t) = Hψ(x, t), (1.1)

where H = 1
2 (p + A(t))2 + V (x) for a dipole laser field. TheKramers-Henneberger

(KH) transformation [19] provides a comoving frame for a free electron interacting
with laser pulse field,which is implemented via a time-dependent translation operator

Ud = exp (ip · β(t)) exp

(
−i

∫ t

dτA2(τ )/2

)
. (1.2)

Define ψK H = Udψ, the Hamiltonian transforms into the form

HKH
d = 1

2
p2 + V (x + β(t)), (1.3)

here β(t) = ∫ t dτA(τ ) is the displacement of the photoelectron. For a linearly
monochromatic plane wave laser field with a frequency ω, the displacement is given
by

β = β0 sin(ωt), (1.4)

with β0 = β0ex and β0 = E0
ω2 . One can thus expand the potential into Fourier series

V (x + β(t)) =
∑

Vn(x;β0)e
−inωt . (1.5)

The harmonic component is given by Vn(x) = ∫ 2π
0 dφV (x + β(φ)) einφ/(2π). Ion-

ization induced by the nonzero component is suppressed with increasing ω [35].
These observations inspire the concept of KH atom, i.e., the atom in a series of
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nontrivial metastable states that exist only when in the laser field. KH atom is the
eigenstate of the Hamiltonian

HKH
0 = 1

2
p2 + V0(x;β0) (1.6)

and is closely related to the ionization stabilization, see Sect. 1.2.3 for more discus-
sions.

1.2.2 Nondipole Kramers-Henneberger Transformation

Before going into the detailed discussion of theKHstates, herewe study theKramers-
Henneberger transformation in its general form first. Førre et al. [36] generalized the
Kramers-Henneberger transformation to include the nondipole effect when the laser
pulse is monochromatic. For a complete discussion of the nondipole effect in the
nonrelativistic regime, we further consider the case when the laser vector potential
is given by the superpositions of propagating waves

A(t, x) =
∑
a

Aa(ta−), (1.7)

where ta− is the light-front time

ta− = t − x · na/c (1.8)

of the a-th pulse and na is the pulse’s propagating direction. We use axial gauge
na · Aa = 0. The field decomposition follows from E = −∂tA = ∑

a E
a(ta) and

B = ∇ × A = ∑
a B

a(ta).

As the time dependent displacement β(t, x) = ∑
a

∫ ta

−∞ dτ−Aa(τ a−) is spatially
dependent, we need to properly order the operator when defining the nonuniform
KH transformation as

U =: exp (iβ(t, x) · p) :
= 1 + iβi pi + i2

2!β
iβ j pi p j + i3

3!β
iβ jβk pi p j pk . . . ,

(1.9)

where the Einstein summation rule is adopted for repeated indices in (1.9).
The commutators between the KH transformation operatorU andmomentum and

position operators are summarized as follows

[U, x] = β(t, x)U
[
U, pμ

] =
∑
a

nμa

c
(Aa · p)U

(1.10)
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here nμa = (1,na) and pμ = (i ∂
c∂t ,−i ∂

∂x ). μ = 0 gives time component and μ =
1, 2, 3 gives the spatial component. Aa is defined via series,

Aa(t, x) = Aa(ta−) +
∑
b

Aa(ta−) · nbAb(tb−)/c

+
∑
b,d

Aa(ta−) · nbAb(tb−) · ndAd(td−)/c2

+
∑
b,d, f

Aa(ta−) · nbAb(tb−) · ndAd(td−) · n fA f (t f−)/c3 + · · ·

(1.11)

When all fields propagate collinearly, Aa equals Aa . Let ψK H = Uψ, the equation
of motion for ψK H is given by

i
∂

∂t
ψK H = HKHψK H

= HψK H +
[
i

∂

∂t
− H,U

]
U †ψK H .

(1.12)

HKH can be calculated by the commutating relations (1.10). Define

xK H = x + β(t, x), (1.13)

the transformed Hamiltonian is

HKH ≈1

2
(p2 + A(xK H , t)2) + V (xK H )

+
∑
a

1

c

[
(p + A(t)) · na(Aa(t) · p) + β(t) · naEa(t) · p]

,
(1.14)

here we expand HKH to the order of 1/c,
When the laser field is monochromatic, (1.14) is identical to the results obtained

in [36]. New interacting termsA(t) · naAa(t) · p and β(t) · naEa(t) · p appear when
there are multi-color non-collinearly propagating lasers. The nice feature of HKH

in (1.14) is that there are no coupling between momentum operators and spatial-
dependent functions, thus one can use a fast Fourier transformation (fft) based split-
operator algorithm to solve the TDSE.

Unfortunately, (1.14) is not suitable for studying nondipole effects when β(t) ·
naEa(t) · p �= 0, asβ(t) is not always a small quantity. However, this difficulty could
be avoided in the electric field gauge [39].

With the gauge transformation ψL = exp (ix · A(t, x)) ψ, the Hamiltonian in the
electric field gauge reads

HL = 1
2p

2 + VC(r) + x · E − ∑
a x · Eap · na/c (1.15)
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Define the time dependent displacement

UL
KH = exp

(∑
a

x · Aa(t)p · na/c
)

, (1.16)

and
ψL
K H = UL

KHψL , (1.17)

we have the transformed Hamiltonian

HL = 1

2
p2 + VC

(
r + 1/c

∑
a

na(x · Aa(t))

)
+ x · E(t, x)

+ 1

c

∑
a

[
(E(t) · na)(x · Aa(t)) − (p · na)(p · Aa(t))

]
.

(1.18)

1.2.3 The Kramers-Henneberger States

The KH states are defined to be the eigenstates of the KH Hamiltonian. Generally
speaking, they are metastable states in the laser field while their stability increase
when the laser frequency increases [35]. Thus, we expect the KH states could play an
important role in the high frequency laser field. The dynamical informationmanifests
itself already in (1.5). The adiabatic potential V0 gets deformed by the laser field,
which in turn deforms the bound state, and the nonzero order harmonic terms ionize
the KH states. As we will see in Sect. 1.2.4, the above picture is extremely useful
when the laser frequencies are high.

If the laser pulse is linearly polarized, V0 has a dichotomic structure [17, 40].
Figure 1.1a plots V0 when β0 = 10 a.u., from which we see two local minimum
located at ±β0. Compared with the laser free case, V0 is no longer isotropic and has
only axial symmetries. As a consequence, the orbital angular momentum number
is not conserved and the KH states could be labeled in the same manner as the
homonuclear diatomic molecules. Due to the spin-orbital coupling, only the total
magnetic moment is conserved. We will discuss the role of the spin-orbital coupling
in Sect. 1.3.4 when we deal with the geometric phase.

The potential V0 depends on the parameter β0, which means the KH states and
their eigenenergies depend also on β0. We plot the eigenenergies of the ground state
KH states in Fig. 1.1b. The eigenenergies increase when β0 increases [29–31].

The adiabatic potential V0 is dichotomic, so is the wave packet [16], see Fig. 1.1c.
The wave function is localized at ±β0 and has similar properties as homonuclear
diatomic molecules. Thus, we could have charge resonance enhanced ionization [34,
37, 38] in atoms.
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Fig. 1.1 The laser field is linearly polarized along the x-axis. a The plot of V0 when β0 = 10 a.u.
b The eigenenergies of the ground state KH hydrogen atoms as a function of β0. c The probability
distribution of the ground state KH atom when β0 = 10 a.u.

1.2.4 Dynamics of Kramers-Hennerberger States

In practice, we need to consider the effect of the pulse envelope. Thus, the expression
for the displacement in (1.4) is replaced by

β0 = β0 f (t)ex . (1.19)

The corresponding laser field is given byE(t) = − ∂2

∂t2 β.We use the envelope f (t) =
cos2(πt/L) (−L/2 < t < L/2) throughout this paper, where L stands for the pulse
duration. The ground state of (1.1) is obtained using the imaginary time method [41],


