2 New
Real Ity

From Autoencoders and Adversarial
Networks to Deepfakes

Micheal Lanham

ApreSS®

Generating a New Reality

From Autoencoders and
Adversarial Networks to
Deepfakes

Micheal Lanham

Apress’

Generating a New Reality: From Autoencoders and Adversarial Networks to Deepfakes

Micheal Lanham
Calgary, AB, Canada

ISBN-13 (pbk): 978-1-4842-7091-2 ISBN-13 (electronic): 978-1-4842-7092-9
https://doi.org/10.1007/978-1-4842-7092-9

Copyright © 2021 by Micheal Lanham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7091-2. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7092-9

To my true loves: knowledge, my children, and Rhonda.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas ix
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss Xi
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xiii
1L LT (1 XV
Chapter 1: The Basics of Deep Learning.....cccuuussseesssssssssssssssssssssssssssssssssssssnssssssssssss 1
PrErBOUISITES . .etiirer et e 2

B (Lo =T (=] 0] SRS 4
The MURIlayer PEICEPIION.......ccverererserere e res s se s s s se s e s sse s e s s e s saesaese s e enesaesssnenaesnens 14
372 T 100 0= T P LT R 16
Stochastic Gradient DESCENT ... s 17
PyTorch and Deep LEArniNgccucevereriernersererierses e s ssesseessessessesssessessessessssssessessssssssasssessens 18
Understanding REGreSSiON.........cucveviiicinienese s s sr e 21
Over- and Underfittingcoccviriennsninisn s s 26
ClaSSITYING CIASSEScccrueerrrerererersesereeseressesessesessssesessesessesessssesesseessesessssesesssssssesssessssssssensenens 27
0Ne-HOt ENCOUING.......ceeriiiriiriene s st bbbt nne 29
Classifying MNIST DigitS......c.ccurriernnniriernsinsinsese s s s s e s ssssessessessessssessesnens 30

{0 e 11 0o TSRS 33
Chapter 2: Unleashing Generative Modeling.........cucccsmsssesmsssnsssssnsssssnsssssanssssanssssnnss 35
Unsupervised Learning With AUTOBNCOTETSccccrverererierierienesensese e sesse s e sresessessesnes 36
Extracting Features with CONVOIULIONcccccveveririere s sesere e se s s sre e e s enes 43
The Convolutional AUTOBNCOUENcccvureeeererereriseese e sr s 50
Generative Adversarial NEetWOrKS........c.coorerrerereserresere e 55
Deep Convolutional GAN ... e s r e e 63
(0] 0 e 11 o OSSR SP SRR 68

TABLE OF CONTENTS

Chapter 3: Exploring the Latent SpPacecccusemmnnssmnnnnnssnsnnmnsssssnssssssssnesssssssnns 69
Understanding What Deep Learning LEarns..........cccvevnnnsnennsnsensessssssessessessssessessesssssssessesnes 70
Deep Learning Function ApproXimation ... sessesse s 71

The Limitations 0f CAICUIUSccccoeerererieeseserrsssssse s sesssssssssssens 75
Deep Learning Hill ClIMDINGcooeveverierrerersserseresesessessessessssessessesssssssessessesssssssessesssssssessees 76
Over- and UNAerfittingccvovrerierensrieresssessese s sessesessessesessessessessssessessesssssssessesaesassensessens 80
Building a Variational AUTOENCOUETccccreriirine st 86
Learning Distributions With the VAE.............coecrrnrenerrscrsesenese e 90
Variability and Exploring the Latent SPaceccovevrncrnsennncsr s 99
[0 1 e [T SOOI 102

Chapter 4: GANs, GANs, and More GANScuccemeesnnmnsssssssssssssssnsssssssssssssssssssssssss 109

Feature Understanding and the DCGANccveerverererersessesesessessesessssessessesssssssessessesssssssessens 106
Unrolling the Math 0f GANS ... e e e 112
Resolving Distance With WGAN. ... 116
Discretizing Boundary-SeeKing GANS........c.ccocrerrenmrrnsmrensesesesesessesesesesese e sessesessssessesesessesenns 120
Relativity and the RelativiStic GAN........c.cucvvrereresern e e 124
Conditioning With CGANeiviriere e sa s s s a e p e e s s p e e e s nnes 129
0] T 111 (0] o 133
Chapter 5: Image to Image Content Generation............couscumssemsssnssssnsssassssnsssansssans 135
Segmenting Images With @ UNEL.........cooeorrcrrcrcrr e 136
Uncovering the Details of @ UNEL..........ccoriirncnrre s 142
Translating Images With PIX2PiXc.cccrirrrrererrersee e serressee s sersessee e sesseesaessesesssesnesaennes 145
Seeing Double With the DUAIGAN ..o 151
Riding the Latent Space on the BiCYCIEGAN..........ccoverrrereresere s 156
Discovering Domains with the DISCOGAN...........ccvrriererrrnienie s ss e ssesnens 161
0] T 11T (0] o 165

TABLE OF CONTENTS

Chapter 6: Residual Network GANSccccurrmsssssnnssssssnssssssssssssssssssnsssssssnnssssssnnnnss 167
Understanding Residual NETWOIKS..........cccviiiininnnnsne s s e sessesnens 168
Cycling Again With CYCIBGANccoeeerereeerererercre e 174
Creating Faces With STArGAN. ... s 180
Using the Best with Transfer LEarning.......c.ccccovvrrnsesnnenmnesessss s ssssessssssesssessssesenns 184
Increasing Resolution With SRGANcccvcrernrininiene s se s se s s s sessessesaens 189
0] T 111 (0] o 193

Chapter 7: Attention Is All We Need!cccernssmmmnmsssssnsnmssssssnssssssssnssssssssssssssssnnnss 195
What IS ALEENTIONT ..o se e nne e 196

Understanding the Types of AHeNtion...........ccccecvivnrnin s 199
D] 0T Lo A x =] o) o S 201
Augmenting Convolution with AHENtioN..........cccvivcncni e 205
Lipschitz Continuity in GANScccoererernsererererese s s senns 209
What IS LipSChitz CONtINUILY?c.ccceereeresernesesese s s s e sessesessssessenens 209
Building the Self-Atention GAN ... s 214
IMProving 0N the SAGAN. ... e sr s 218
0] T 11T (0] o R 222

Chapter 8: Advanced Generators..........ccouemmsmmsssssssasssssssssnsssasssssssssnsssassssnsssansssas 223
Progressively GrOWINgG GANS..........ccceccrrierrerireseres e ses e e es e se s e s s ses e sesaesesse e sessssens 224
Styling with Styl@GAN VEISION 2.........ccoeeeereerrcrereser e 230

MapPiNg NEIWOTKScccceriirrer e e 231
SEYIE MOUUIESeeeeeeeeeerer e s er e s st s e s s se e s s r e e e e s s s e e e e aesaesae e e e saesaenaeenesnenaennes 232
Frechet Inception DiStanCe..........cccvvririnnsns s 234
SEYIBGANZ.......cveeeereere e b b e ee e e e Rnnan 236
DeOldify and the NeW NOGAN ... e s s sessssenns 242
Colorizing and ENhancing VIdOc.cceeviirvneninnsnse s sss e s s 247
Being Artistic With ArTLINE........ccoveeerece e 249
[0 1 e [T OSSOSO 253

vii

TABLE OF CONTENTS

Chapter 9: Deepfakes and Face SWappingcccccrmmssnnnsmsssssnsssssssssssssssssssssssssnnnnss 255
Introducing the Tools for Face SWapPing.........ccceerrvrrierriesrnse s e sens 257
Gathering the Swapping Data ... ————————— 260

Downloading YouTube Videos for Deepfakes........cccccuvrirnnnnnnenennsnsensessses s sessessennes 263
Understanding the Deepfakes WOrkflow..........covocreennenrcscncsc e 267
EXIracting FACESccvvueereeerrerer s s 269
Sorting and TrimmMING FACES.........ccorerrrrerereserese e 271
Realigning the Alignments File ... s 274
Training a Face SWapping MOGE!ccoveeerermrencrnsesrsese e s 276
Creating @ Deepfake VIdO0........cuucevvcerenennrese e se e s ss e se s s 279
ENCOdING the VIHEO0ccvveerirerrrcserse e 282
0] T 11T (0] o N 284

Chapter 10: Cracking DeepfaKesccrussssessrsssssnnsssssssnnnssssssnnsssssssnnsssssssnnssssssnnnnss 287
Understanding Face Manipulation Methods ... 288
Techniques for Cracking FaKeS.........ccciiiinininnnncrene e s 291

Handcrafted FEALUIEScovccereer et 292
Learning-Based FEAtUIES ... s 294
L) T £ TSR 296
Identifying Fakes in DEEPTAKES........cccccrrrererererene s 299
[0 1 e 11 OSSR 300

Appendix A: Running Google Colab Locallycccrummmsmmnmmssssnsnmmsssssssssssssssnsssssnns 303

Appendix B: Opening a NotebooKccccusuemmmmnsssnnnmmssssnsnssssssssnssssssssssssssssnssssssnns 307

Appendix C: Connecting Google Drive and Saving.........cccssussssnsnssssssnsnssssssssssssssnns 309

INO@X . ueeeiiinnsssnnnsssnnssssanssssanssssansssssnsnssansssssnnssssnnansnnnnnssnnnnsnnnnnssnnnnssnnnnssnnnnssnnnnsnnss 313

viii

About the Author

N | 'Y 7 Micheal Lanham is a proven software and tech innovator with

l

! 3 . 20+ years of experience. During that time, he has developed a
] broad range of software applications in areas such as games,

E graphics, web, desktop, engineering, artificial intelligence, GIS,
and machine learning applications for a variety of industries
as an R&D developer. At the turn of the millennium, Micheal
began working with neural networks and evolutionary

algorithms in game development. He is an avid educator, and

along with writing several books about game development,
extended reality, and AJ, he regularly teaches at meetups and other events. Micheal also
likes to cook for his large family in his hometown of Calgary, Canada.

ix

About the Technical Reviewer

Aneesh Chivukula is a technical expert and an analytics
executive. He has strong academic research capacities in
machine learning. He has developed innovative products
with artificial intelligence. He brings thought leadership of
technology trends in the enterprise solutions.

Aneesh has a doctorate of philosophy degree in data
analytics and machine learning from the University of
Technology Sydney, Australia. He holds a master of science
degree by research in computer science and artificial
intelligence from the International Institute of Information
Technology Hyderabad, India.

xi

Acknowledgments

This book, like many others, would not have been possible without the free exchange of
knowledge provided in the AI/ML community, from countless researchers who tirelessly
work on improving the field of artificial intelligence and generative modeling to the mass
of Al enthusiasts who regularly produce open code repositories featuring new tools and
a catalog of innovations.

I'would like to thank and acknowledge all the contributions of those in the Al/
ML field who work hard educating others. Many of the examples in this book have
been collated from the numerous open-source repositories featuring deep learning
and generative modeling. One such resource developed by Erik Linder-Norén, an ML
engineer at Apple, inspired and contributed to several examples in this book’s early
chapters.

I would also like to thank you, the reader, for taking the opportunity to review this
text and open your mind to new opportunities. It has always been a profound pleasure of
mine watching that light bulb moment students experience when they first meld with a
new concept. It's something I hope you will experience several times through the course
of this book.

Lastly, as always, special thanks to my large family and friends. While I may not see
all my nine children on a regular basis, they and their children always have a special
place in my heart. I feel fortunate that my family supports my writing and continues to
encourage new titles.

xiii

Introduction

We live in an era of fake news and uncertain reality. It’s a world where reality has become
blurred by digital wizardry artists and artificial intelligence practitioners. It’s a digital
reality now populated with fake news, images, and people. For many, the uncertainty
and confusion are overwhelming. Yet, others, like yourself, search to embrace this new
era of digital fakery to explore new opportunities.

This book takes an in-depth look at the technology that powers this new digital fake
reality. The broad name for this technology or form of AI/ML is generative modeling
(GM). It is a form of AI/ML modeling that looks to understand what something
represents, as opposed to other forms of modeling that look to classify or predict
something.

Generative modeling is not a new concept, but one that has emerged from the
application of deep learning. The introduction of deep learning has launched the
field into the mainstream. Unfortunately, not all mainstream use of GM is flattering or
showcases the power of this diverse technology.

There is a real and speculated fear for most outside and inside the field of GM on
what is possible. For many, the application of GM to produce fake anything is abhorrent
and nonessential, but the broad applications GM introduces can benefit many industries
across many tasks.

In this book, we begin with the assumption you have limited or little knowledge of
deep learning and generative modeling. You have a basic knowledge of programming
Python and applying data science, including the typical fundamental math knowledge in
calculus, linear algebra, and statistics used in data science.

We will cover a wide range of GM techniques and applications in this book, starting
with the fundamentals of building a deep learning network and then progressing to
GM. Here is a brief overview of the chapters we will explore:

1. The Basics of Deep Learning: We begin by introducing the basic
concepts of deep learning, autoencoders, and how to build simple
models with PyTorch. The examples in this chapter demonstrate
simple concepts we will apply throughout this book and should
not be missed by newcomers.

INTRODUCTION

2.

Unleashing Generative Adversarial Networks: This chapter
moves to the fundamentals of explaining the generative
adversarial network (GAN) and how it can be used to generate
new and novel content. Examples in this chapter explore the
applications of GANs from generating fashion to faces.

Exploring the Latent Space: Fundamental to generative
modeling is the concept of learning the latent or hidden
representation of something. In this chapter, we explore how the
latent space is defined and how we can better control it through
hyperparameters, loss function, and network configuration.

GANs, GANs, and More GANs: This book explores several
variations of GANs, and in this chapter we look at five forms
that attempt to learn the latent space differently. We build on
knowledge from previous chapters to explore key differences in
the way GANs learn and generate content.

Image to Image Content Generation: This chapter covers
the advanced application of GANs to enhance the generation
of content by learning through understanding translations.
The examples in this chapter focus on showcasing paired and
unpaired image translation using a variety of powerful GANs.

Residual Network GANs: Throughout this book we will constantly
struggle with the generative ability to produce diverse and realistic
features. The GANs in this chapter all use residual networks to
help identify and learn more realistic feature generation.

Attention Is All We Need: This chapter explores the attention
mechanism introduced into deep learning through the
application of natural language processing. Attention provides a
unique capability to identify and map relevant features with other
features. The examples in this chapter demonstrate the power of
using an attention mechanism with a GAN.

INTRODUCTION

8. Advanced Generators: This chapter dives into the deep end and
explores the current class of best-performing GANs. The examples
in this chapter work from several open-source repositories that
showcase how far the field of GM has come in a short time.

9. Deepfakes and Face Swapping: In this chapter, we switch gears
and explore the application of GM for producing deepfakes.
Where this whole chapter is dedicated to showcasing the ease of
which you can produce a deepfake freely available open-source
desktop software.

10. Cracking Deepfakes: From creating deepfakes and fake content
for most of the book, we move on to understanding how generated
content can be detected. This chapter looks at the techniques
and research currently being done to expose fake content. In the
future, these tools will be critical to controlling the digital reality
we embrace and understanding what is real.

This book covers a wide range of complex subjects presented in a practical hands-
on and technically friendly manner. To get the most out of this book, it is recommended
that you engage and work with several of the 40+ examples. All the examples in this book
have been tested and run to completion using Google Colab, the recommended platform
for this book. While some examples in this book may take up to days to train, most can
be run in under an hour.

Thank you for taking your precious time to read this book and ideally expand your
opportunities and understanding in the field of AI/ML. The journey you have chosen is
nontrivial and will be filled with frustration and anguish. It is one that will also be filled
with awe and wonder the first time you generate your first fake face.

xvii

CHAPTER 1

The Basics of Deep
Learning

Throughout history mankind has often struggled with making sense of what is real

and what reality means. From hunter gatherers to Greek philosophers and then to

the Renaissance, our interpretation of reality has matured over time. What we once
perceived as mysticism is now understood and regulated by much of science. Not more
than 10 years ago we were on track to understanding the reality of the universe, or so

we thought. Now, with the inception of Al, we are seeing new forms of reality spring up
around us daily. New realities being manifested by this new wave of Al are made possible
by neural networks and deep learning.

Deep learning and neural networks have been on the fringe of computer science
for more than 50 years, and they have their own mystique associated with them. For
many, the abstract concepts and mathematics of deep learning make them inaccessible.
Mainstream science shunned deep learning and neural networks for years, and in
many industries they are still off-limits. Yet, among all those hurdles, deep learning has
become the brave new leader in Al and machine learning for the 21st century.

In this book, we look at how deep learning and neural networks work at a
fundamental level. We will learn the inner workings of networks and what makes
them tick. Then we will quickly move on to understanding how neural networks can
be configured to generate their own content and reality. From there, we will progress
through many other versions of deep learning content generation including swapping
faces, enhancing old videos, and creating new realities.

For this chapter, we will start at the basics of deep learning and how to build neural
networks for several typical machine learning tasks. We will look at how deep learning
can perform regression and classification of data as well as understand internally the
process of learning. Then we will move on to understanding how networks can be

© Micheal Lanham 2021
M. Lanham, Generating a New Reality, https://doi.org/10.1007/978-1-4842-7092-9_1

https://doi.org/10.1007/978-1-4842-7092-9_1#DOI

CHAPTER 1 THE BASICS OF DEEP LEARNING

specialized to extract features in data with convolution. We will finish with building a full
working image classifier using supervised deep learning.

As this is the first chapter, we will also cover several prerequisites and other helpful
content to better guide your success through this book. Here is a summary of what we
will cover in this chapter:

o Prerequisites

o Perceptrons

e Multilayer perceptrons

e PyTorch for deep learning
o Regression

o C(lassifying classes

This book will begin at the basics of data science, machine learning, and deep
learning, but to be successful, be sure you meet most of the requirements in the next
section.

Prerequisites

While many of the concepts regarding machine learning and deep learning should be
taught at the high school level, in this book we will go way beyond the basic introduction
of deep learning. Generating content with deep learning networks is an advanced
endeavor that can be learned, but to be successful, it will be helpful if you meet most of
the following prerequisites:

o Interest in mathematics: You don’t need a degree in math, but you
should have an interest in learning math concepts. Thankfully, most
of the hard math is handled by the coding libraries we will use, but
you still need to understand some key differences in math concepts.
Deep learning and generative modeling use the following areas of
mathematics:

o Linear algebra, working with matrices and systems of equations

CHAPTER 1 THE BASICS OF DEEP LEARNING

o Statistics and probability, understanding how descriptive
statistics work and basic probability theory

e Calculus, understanding the basics of differentiation and how it
can be used to understand the rate of change

e Programming knowledge: Ideally you have used and programmed
with Python or another programming language. If you have no
programming knowledge at all, you will want to pick up a course or
textbook on Python. As part of your knowledge of programming, you
may also want to take a closer look at the following libraries:

¢ NumPy': NumPy (pronounced “numb pie”) is a library for
manipulating arrays or tensors of numbers. It and the concepts it
applies are fundamental to machine learning and deep learning.
We will cover various uses of NumPy in this book, but it is
suggested you study it further on your own as needed.

e PyTorch? This will be the basis for the deep learning projects in
this book. It will be assumed you have little to no knowledge of
PyTorch, but you may still want to learn more on your own what
this impressive library has to offer.

e MatPlotLib* This module will be the foundation for much of the
output we display in this book. There will be plenty of examples
showing how it is used, but additional homework may be helpful.

o Datascience and/or machine learning: It will be helpful if you have
previously taken a data science course, one that covers the statistical
methods used in machine learning and what aspects to be aware of
when working with data.

"NumPy is an open source project at http://numpy.org.
*PyTorch is an open source project at http://pytorch.org.

3Matplotlib is an open source package heavily used with Python, available at
https://matplotlib.org/.

http://numpy.org
http://pytorch.org
https://matplotlib.org/
https://matplotlib.org/

CHAPTER 1 THE BASICS OF DEEP LEARNING

o Computer: All the examples in this book are developed on the cloud,
and while it is possible to use them with a mobile computing device,
for best results it is suggested you use a computer.

o Instructions have been provided in Appendix A for setting up and
using the code examples on your local computer. This may be a
consideration if you have a machine with an advanced GPU or
need to run an example for more than 12 hours.

o Time: Generative modeling can be time-consuming. Some of the
examples in this book may take hours and possibly days to run if you
are up for it. In most cases, you will benefit more from running the
example to completion, so please be patient.

e Open tolearn: We will do our best to cover most of the material you
need to use the exercises in this book. However, to fully understand
some of these concepts, you may need to extend your learning
outside this text. If your career is data science and machine learning
or you want it to be, you likely already realize your path to learning

will be continuous.

While it is highly recommended that you have some background in the prerequisites
mentioned, you may still get by if you are willing to extend your knowledge as you read
this book. There are many sources of text, blogs, and videos that you may find useful to
help you fill in gaps in your knowledge. The primary prerequisites I ask you bring are an
open mind and a willingness to learn.

In the next section, we jump into the foundation of neural networks, the perceptron.

The Perceptron

There is some debate, but most people recognize that the inspiration for neural networks
was the brain, or, more specifically, the brain cell or neuron. Figure 1-1 shows the
biological neuron over the top of a mathematical model called the perceptron. Frank
Rosenblatt developed the basic perceptron model as far back as 1957. The model

was later improved on to what is shown in the figure by Marvin Minsky in his book
called Perceptrons. Unfortunately, the book was overly critical of the application of the

CHAPTER 1 THE BASICS OF DEEP LEARNING

perceptron for anything other than simple Boolean logic problems like XOR. Much of
this criticism was unfounded as we later discovered, but the fallout of this critique is
often blamed for the first Al winter.

An Al winter is when all research and development using Al is stopped or placed in
storage. These winters are often brought on by some major roadblock that stops progress
in the field. The first winter was brought on by Minsky’s critique of the perceptron and
his belief that it could solve the XOR problem only. There have been two Al winters thus
far. The dates of these winters are up for debate and may vary by exact discipline.

Apmm—)1 rite

Terminals

Axon

Nucleus

INPUT - OUTPUT

Summation Function

Activation Function

Bias

Figure 1-1. A comparison of a biological neuron and the perceptron

It is perhaps this association with the brain that causes some of the criticism with the
perceptron and deep learning. This association also drives the mystique and uncertainty
of neural networks. However, the perceptron itself is just a model of connectivity, and
we may often refer to this type of learning as connectionism. If anything, the model of
the perceptron only relates to a neuron in the way it connects and really nothing more.
Actual neural brain function is far more complex and works nothing like a perceptron.

If we return to Figure 1-1 and the perceptron model, you can see how the system can
take several inputs denoted by the boxes. These inputs are multiplied by a value we call a
weight to weigh or adjust the strength of the input to the next stage. Before that, though,

CHAPTER 1 THE BASICS OF DEEP LEARNING

we have another input called a bias, with a value of 1.0, that we multiply by another
weight. The bias allows the perceptron to offset the results. After the inputs and bias are
all weighed/scaled, they are then collectively summed in the summation function.

The results of the summation function are then passed to an activation function. The
purpose of the activation function may be to further scale, squish, or cut off the value
to be output. Let’s take a look at how a simple perceptron can be modeled in code in
Exercise 1-1.

EXERCISE 1-1. CODING A PERCEPTRON

1. Openthe GEN_1 XOR_perceptron.ipynb notebook from the project’s
GitHub site. If you are unsure on how to access the source, check Appendix B.

2. Inthe first code block of the notebook, we can see some imports for NumPy
and Matplotlib. Matplotlib is used to display plots.

import numpy as np
import matplotlib.pyplot as plt

3. Scroll to the XOR problem code block, as shown here. This is where the data
is set up; the data consists of the X and Y values that we want to train the
perceptron on. The X values represent the inputs, and the Y values denote the
desired output. We will often refer to Y as the label or the expected output. We
use the numpy np module to create the lists of inputs to a tensor using np.
array. At the bottom of this block, we output the shape of these tensors.

X
Y

np.array([[0,0],[0,1],[1,0],[1,1]])
np.array([0,1,1,0])

print(X.shape)
print(Y.shape)

CHAPTER 1 THE BASICS OF DEEP LEARNING

4. The values we are using for this initial test problem are from the XOR truth table
shown here:

Inputs Outputs
X1 X2 Y
0 0 0
0 1 1
1 0 1
1 1 0

5. Scroll down and execute the following code block. This block uses the
matplotlib plt module to output a 3D representation of the same truth
table. We use array index slicing to display the first column of X, then Y, and
finally the last column of X as the third dimension.

fig = plt.figure()
ax = fig.add subplot(111, projection='3d")
ax.scatter(X[:,0], Y, X[:,1], c="r', marker="o0")

6. Our first step in coding a perceptron is determining the number of inputs and
creating the weights for those inputs. We will do that with the following code.
In this code, you can see we get the number of inputs by taking the first value
of the X.shape[1], which is 2. Then we randomly initialize the weights using
np.random.rand and adding one input for the bias. Recall, the bias is a way
the perceptron can offset a function.

no_of inputs = X.shape[1]
weights = np.random.rand(no_of_inputs + 1)
print(weights.shape)

CHAPTER 1 THE BASICS OF DEEP LEARNING

7. With the weights initialized to random values, we have a working perceptron.
We can test this by running the next code block. In this block, we loop through
the inputs called X and apply multiplication and addition using the dot
product with the np.dot function. The output from this calculation yields the
summation of the perceptron. The output of this code block will not mean
anything yet since we still need to train the weights.

for i in range(len(X)):
inputs = X[1i]
print(inputs)
summation = np.dot(inputs, weights[1:]) + weights[0]
print(summation)

8. Inthe next code block is the training code to train the weights in the perceptron.
We always train a perceptron or neural network iteratively over the data called
in a cycle called an epoch. During each epoch or iteration, we will feed each
sample of our data into the perceptron or network either singly or in batches.
As each sample is fed, we compare the output of the summation function to the
label or expected value, Y. The difference between the prediction and label is
called the /oss. Based on this loss, we can then adjust the weights based on a
formula we will review in detail later. The entire training code is shown here:

learning_rate = .1

epochs = 100

history = []

for _ in range(epochs):

for inputs, label in zip(X, Y):

prediction = summation = np.dot(inputs, weights[1:]) + weights[0]
loss = label - prediction
history.append(loss*loss)
print(f"loss = {loss*loss}")
weights[1:] += learning rate * loss * inputs
weights[0] += learning rate * loss

9. After the last code cell is run, run the last code cell, shown here, that generates
a plot of the loss, as shown in Figure 1-2.

plt.plot(history)

CHAPTER 1 THE BASICS OF DEEP LEARNING

[<matplotlib.lines.Line2D at ©x7f597dcb9ba8>]

25 1

20 1 Loss minimizes to .25

L5 1

10 1

0.5 1

0.0 1

0 50 100 150 200 250 300 350 400
Figure 1-2. Output of loss on XOR training of perceptron

The results from this exercise are not so impressive. We were only able to obtain a minimized
loss of .25. Feel free to continue running the example with more epochs or training cycles;
however, the results won’t get much better. This is the point Dr. Minsky was making in

his book Perceptrons. A single perceptron or single layer of perceptrons is unable to solve
the simple XOR problem. However, a single perceptron is able to solve some much harder
problems.

Before we explore using the perceptron on a harder problem, let’s revisit the learning lines of
code from the previous example and understand how they work. For review, the learning lines
of code are summarized here:

prediction = summation = np.dot(inputs, weights[1:]) + weights[0]

loss = label - prediction

weights[1:] += learning rate * loss * inputs
weights[0] += learning rate * loss

CHAPTER 1 THE BASICS OF DEEP LEARNING

We already covered the summation/prediction function that uses np.dot to calculate. The
loss is calculated by taking the difference from label — prediction. Then the weights are
updated using the update function shown here:

W, =W, +a *loss *input

where:

W; = the weight that matches the input slot

a (alpha) = learning rate

loss = the difference from label — prediction

input = the input value for the input slot in the perceptron

This simple equation is what we use to update the weights during each pass of an input into
the perceptron. The learning rate is used to scale the amount of update and is typically a value
of .01, or 1 percent, or less. We want the learning rate to scale each update to a small amount;
otherwise, each pass could cause the perceptron to over- and under-learn. The learning rate is
the first in a class of variables we call hyperparameters.

Hyperparameters are a class of variables that we often need to tune manually. They are
differentiated as hyperparameters since we refer to the internal weights as parameters.

The problem with a single perceptron or single layer of perceptrons is that they can
solve a linear function only. The XOR problem is not a linear function. To solve XOR, we
will need to introduce more than one layer of perceptron called a multilayer perceptron.
Before we do that, though, let’s revisit the perceptron and see what it is able to solve.

For the next exercise, we are going to look at a harder problem that can be solved
with a linear method like the perceptron. The problem we will look at is solving a two-
dimensional linear regression problem. Just 15 years ago, this class of problem would
have been difficult to solve with typical regression methods. We will cover more about
regression in a later section; for now let’s jump into Exercise 1-2.

10

CHAPTER 1 THE BASICS OF DEEP LEARNING

EXERCISE 1-2. LINEAR REGRESSION WITH A PERCEPTRON

1. Openthe GEN_1 perceptron class.ipynb notebook from the project’s
GitHub site. If you are unsure on how to access the source, check Appendix B.

2. This time we will run the linear regression problem code block to set the data,
as shown here:

X = np.array([[1,2,3]1,[3,4,5],[5,6,7],[7,8,91,[9,8,711)
Y = np.array([1,2,3,4,5])

print(X.shape)
print(Y.shape)

3. The next code block renders the input points on a graph:

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d")
ax.scatter(X[:,0], X[:,1], X[:,2], c="r', marker="o0")

4. Inthis case, we display just the input points in 3D on the plot shown in
Figure 1-3. Our goal in this problem is to train the perceptron so that it can
learn how to map those points to our output labels, Y.

<mpl toolkits.mplot3d.art3d.Path3DCollection at @x7f597e2abboeo>

12
3
4567

8 o

Figure 1-3. Input points plotted on 3D graph

11

CHAPTER 1 THE BASICS OF DEEP LEARNING

5. We next move to the code section where we set up the parameters and
hyperparameters. In this exercise, we have adjusted the hyperparameters,
epochs and learning_rate.We decreased learning_rate to.01. Doing
this effectively makes each update training pass or epoch less effective.
However, in this case, the perceptron can learn to map those values much
quicker than the XOR problem, so we will also reduce the number of epochs.

no_of inputs = X.shape[1]

epochs = 50

learning rate = .01

weights = np.random.rand(no_of inputs + 1)
print(weights.shape)

6. For this exercise, we will introduce an activation function. An activation function
scales the output for better input or prediction. In this example, we use a rectified
linear function (ReLU). This function effectively negates output that is 0 or less
and otherwise just passes the output linearly.

def relu activation(sum):
if sum > 0: return sum
else: return o

7. Next, we will embed the entire functionality of our perceptron into a Python
class for better encapsulation and reuse. The following code is the combination
of all our previous perceptron and setup code:

class Perceptron(object):
def _init (self, no_of inputs, activation):
self.learning rate = learning rate
self.weights = np.zeros(no_of inputs + 1)
self.activation = activation

def predict(self, inputs):
summation = np.dot(inputs, self.weights[1:]) + self.weights[O]
return self.activation(summation)

def train(self, training inputs, training labels, epochs=100,
learning rate=0.01):

history = []

for _ in range(epochs):

12

CHAPTER 1 THE BASICS OF DEEP LEARNING

for inputs, label in zip(training_inputs, training labels):

prediction = self.predict(inputs)
loss = (label - prediction)
loss2 = loss*loss
history.append(loss2)
print(f"loss = {loss2}")
self.weights[1:] += self.learning rate * loss * inputs
self.weights[0] += self.learning rate * loss

return history

8. We can instantiate and train this class with the following:

perceptron = Perceptron(no_of inputs, relu activation)
history = perceptron.train(X,Y, epochs=epochs)

9. Figure 1-4 shows the history output from the training function call and is a
result of running the last group of cells. We can clearly see the loss is reduced
to almost 0. This means our perceptron is able to predict and map the results
given our inputs.

[<matplotlib.lines.Line2D at 0x7f4b66189128>]

30 1

25 1

20 1

s B

10 1

05 1

0.0 1

L L] L]

0 50 100 150 200 250
Figure 1-4. Output loss of perceptron on linear regression problem

13

CHAPTER 1 THE BASICS OF DEEP LEARNING

You can see a noticeable wobble in the loss of the network in Figure 1-4. This wobble is
caused in part by the learning rate, which is likely too high, and the way we are feeding the
data into the network. We will look at how to resolve issues like this as we proceed through
the book.

The results from this exercise were far more successful at mapping the inputs to expected
outputs, even with a typically harder mathematical problem. Results like those we just
witnessed are what kept the perceptron alive during the first cold Al winter. It wasn’t until
after this winter that we found the ability to stack perceptrons into layers could do far more
and eventually solve the XOR problem. We will jump into the multilayer perceptron in the next
section.

The Multilayer Perceptron

Fundamentally, the notion of stacking perceptrons into layers is not a difficult concept.
Figure 1-5 demonstrates a three-layer multilayer perceptron (MLP). The top layer is
called the input layer, the last layer the output layer, and the in-between layers the
middle or hidden layers.

CAT

(LAB :l.ev] DOG

PHOTaS

DOG

Figure 1-5. Example of MLP network

14

CHAPTER 1 THE BASICS OF DEEP LEARNING

Figure 1-5 shows how we may feed images of cats and dogs to a network and have
it classify the output. We will talk about how we can classify outputs later. Each node or
circle in the figure represents a single perceptron, and each perceptron is fully connected
to the successive layers in the network. The term we use for these types of networks is a
fully connected sequential network.

The prediction of forward pass through the network runs the same as our
perceptron, with the only difference that the output from the first layer becomes the
input to the next, and so on. Calculating the output by passing an input into the network
is called the forward pass or prediction. Computationally, through the use of the dot
product function, the forward pass in DL is very efficient and one of the great strengths
of neural networks.

If you recall from the previous section, the np.dot function we used did the
summation of weights with the inputs. This function is optimized on a GPU to perform
very quickly. So even if we had 1 million inputs (and yes, that is possible), the calculation
could be done in one operation on a GPU.

The reason the np.dot function is optimized on a GPU is due to the advancement
of computer 3D graphics. The dot product operation is quite common in graphics
processing. In a sense, the development of games and graphics engines has been a big
help for Al and deep learning.

While the forward pass or prediction step can run quickly, it is not exceedingly
difficult to compute. Unfortunately, the opposite of training the updates or what we call
the backward pass is not so easy. The problem we face when we stack perceptrons is that
the simple update equation we applied before won’t work across network layers.

The problem we encounter when updating the multiple layer networks is
determining how much of the loss needs to be applied to not only which layer, but which
perceptron in that layer. We can no longer just subtract the loss from the prediction and
apply that value to a single weight. Instead, we need to calculate the impact of each
weight applied to the resulting output or prediction.

To calculate how we can apply the loss to each weight, in each perceptron, and in
each layer, we use calculus. Calculus allows us to determine the amount of loss to apply
using differentiation. We use calculus to differentiate the forward or predict function
along with the activation function. By differentiating these functions with respect to the
weights, we can determine the amount of impact each weight contributes to the result.

15

CHAPTER 1 THE BASICS OF DEEP LEARNING

Backpropagation

We call the update process or backward pass through network backpropagation
since we are backpropagating the errors or loss to each weight. Figure 1-6 shows the
backpropagation of error or loss back through the network. The figure also shows the
equations to calculate this amount of error.

Calculation of forward pass

- S S il +H

m n

Rewritten as a function

":.j = f("’:,;)

Applying the chain rule

, _ OE
i a’“{,j

‘ DOG

105 Differentiate with respect to input x

Ry —1kp—1

=2 X it uihr (k)

‘ g m=0 n=0

Differentiate with respect to weight

H—ky W—ky

Y et

m'n/ i=0 3=0

Figure 1-6. Backpropagation explained

The first equation in Figure 1-6 shows the calculation of the forward pass through
the network. Moving to the next equation, we write this as a parameterized function.
Following that, we apply the chain rule from calculus to differentiate the forward
equation with respect to the input. By understanding how much each input affects
the change, we can differentiate again this time with respect to the weights. The last
equation shows how we calculate the change for each weight in the network.

Now, we don’t have to worry about managing the mathematics or sorting out
the equations to make this work. All deep learning libraries provide an automatic
differentiation mechanism that does this for us. The critical bit to understand is how the
last equation is used to push the loss back to each weight in the network. Output from
this equation is a gradient describing the direction and amount of change. To perform
the update, we reverse this gradient and scale it with the learning rate hyperparameter.

16

