

AI and IoT-Based Intelligent Automation in Robotics

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

AI and IoT-Based Intelligent Automation in Robotics

Ashutosh Kumar Dubey,
Abhishek Kumar, S. Rakesh Kumar,
N. Gayathri, Prasenjit Das

WILEY

This edition first published 2021 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2021 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-71120-9

Cover image: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pı	Preface				
1	Intr	roduction to Robotics	1		
	Srin	iivas Kumar Palvadi, Pooja Dixit and Vishal Dutt			
	1.1	Introduction	1		
	1.2	History and Evolution of Robots	3		
	1.3	Applications	6		
	1.4	Components Needed for a Robot	7		
	1.5	Robot Interaction and Navigation	10		
		1.5.1 Humanoid Robot	11		
		1.5.2 Control	11		
		1.5.3 Autonomy Levels	12		
	1.6	Conclusion	12		
		References	13		
2	Tecl	hniques in Robotics for Automation Using AI and IoT	15		
	San	deep Kr. Sharma, N. Gayathri, S. Rakesh Kumar			
	and	Rajiv Kumar Modanval			
	2.1	Introduction	16		
	2.2	Brief History of Robotics	16		
	2.3	Some General Terms	17		
	2.4	Requirements of AI and IoT for Robotic Automation	20		
	2.5	Role of AI and IoT in Robotics	21		
	2.6	Diagrammatic Representations of Some Robotic Systems	23		
	2.7	Algorithms Used in Robotics	25		
	2.8	Application of Robotics	27		
	2.9	Case Studies	30		
		2.9.1 Sophia	30		
		2.9.2 ASIMO	30		
		2.9.3 Cheetah Robot	30		
		2.9.4 IBM Watson	31		

vi Contents

	2.10	Concl Refere		31 31
3			AI and IoT in the Defense Sector ar Modanval, S. Rakesh Kumar, N. Gayathri	35
	and	Sande	ep Kr. Sharma	
	3.1	Introd	duction	36
	3.2 3.3		Robotics Plays an Important Role in the Defense Sector w of the World's Current Robotics Capabilities in the	36
		Defen	ase Sector	38
			China	38
		3.3.2	United State of America	39
		3.3.3	Russia	40
		3.3.4	India	41
	3.4	Appli	cation Areas of Robotics in Warfare	43
		3.4.1	Autonomous Drones	43
		3.4.2		44
			Autonomous Ships and Submarines	45
			Humanoid Robot Soldiers	47
		3.4.5	Armed Soldier Exoskeletons	48
	3.5	Concl	lusion	50
	3.6	Futur	e Work	50
		Refere	ences	50
4			AI and IoT in Medical and Healthcare Applications	53
	4.1		t, Manju Payal, Nidhi Goyal and Vishal Dutt luction	53
	4.1		Basics of AI	
		4.1.1	4.1.1.1 AI in Healthcare	53
			4.1.1.2 Current Trends of AI in Healthcare	54 55
			4.1.1.3 Limits of AI in Healthcare	
		4.1.2		56 57
		4.1.2	4.1.2.1 Robotics for Healthcare	57 57
		4.1.3	Basics of IoT	57 59
		4.1.3	4.1.3.1 IoT Scenarios in Healthcare	60
			4.1.3.1 Requirements of Security	61
	4.2	AT D.	- · · · · · · · · · · · · · · · · · · ·	62
	4.2		obotics and IoT: A Logical Combination	
		4.2.1 4.2.2	o	62 63
		4.2.2	4.2.2.1 Limitation of Robotics in Medical Healthcare	
		422		
		4.2.3	IoT with Robotics	66

		Contents	Vii
	4.2.3.1 Overview of IoMRT		67
			69
4.3	2 ,		70
			71
			72
	References		72
Tow	vards Analyzing Skill Transfer to Robots Based		
			75
Dev	ri.T, N. Deepa, S. Rakesh Kumar, R. Ganesan		
	<u> </u>		
5.1	Introduction		76
5.2	Related Work		77
5.3	Overview of Proposed System		78
	5.3.1 Visual Data Retrieval		79
	5.3.2 Data Processing to Attain User Objective	:	80
	5.3.3 Knowledge Base		82
	5.3.4 Robot Attaining User Goal		83
5.4	Results and Discussion		83
5.5	Conclusion		85
	References		85
		Intelligence	
	·		87
6.1			88
			88
	· · · · · · · · · · · · · · · · · · ·		88
	· ·		89
	<u> </u>	ervices	89
	· ·		90
6.3			
			90
6.4			
		allenges	98
	ē		98
6.5	Healthcare Management		99
0.5	e		
0.5	6.5.1 Internet of Things for Data Acquisition		99
0.3	6.5.1 Internet of Things for Data Acquisition6.5.2 Robotics for Healthcare Assistance and M	Medication	99
0.3	6.5.1 Internet of Things for Data Acquisition	Medication	
	4.4 4.5 Town on S Dev and 5.1 5.2 5.3 5.4 5.5 Heafor 1 S. P 6.1	Towards Analyzing Skill Transfer to Robots Based on Semantically Represented Activities of Humans Devi.T, N. Deepa, S. Rakesh Kumar, R. Ganesan and N. Gayathri 5.1 Introduction 5.2 Related Work 5.3 Overview of Proposed System 5.3.1 Visual Data Retrieval 5.3.2 Data Processing to Attain User Objective 5.3.3 Knowledge Base 5.3.4 Robot Attaining User Goal 5.4 Results and Discussion 5.5 Conclusion References Healthcare Robots Enabled with IoT and Artificial for Elderly Patients S. Porkodi and D. Kesavaraja 6.1 Introduction 6.1.1 Past, Present, and Future 6.1.2 Internet of Things 6.1.3 Artificial Intelligence 6.1.4 Using Robotics to Enhance Healthcare Scottal Challenges in Implementation and Providing Potential Solutions 6.4 Robotic Solutions for Problems Facing the Elde 6.4.1 Solutions for Physical and Functional Challenges	4.2.3.1 Overview of IoMRT 4.2.3.2 Challenges of IoT Deployment 4.3 Essence of AI, IoT, and Robotics in Healthcare 4.4 Future Applications of Robotics, AI, and IoT 4.5 Conclusion References Towards Analyzing Skill Transfer to Robots Based on Semantically Represented Activities of Humans Devi.T, N. Deepa, S. Rakesh Kumar, R. Ganesan and N. Gayathri 5.1 Introduction 5.2 Related Work 5.3 Overview of Proposed System 5.3.1 Visual Data Retrieval 5.3.2 Data Processing to Attain User Objective 5.3.3 Knowledge Base 5.3.4 Robot Attaining User Goal 5.4 Results and Discussion 5.5 Conclusion References Healthcare Robots Enabled with IoT and Artificial Intelligence for Elderly Patients S. Porkodi and D. Kesavaraja 6.1 Introduction 6.1.1 Past, Present, and Future 6.1.2 Internet of Things 6.1.3 Artificial Intelligence 6.1.4 Using Robotics to Enhance Healthcare Services 6.2 Existing Robots in Healthcare 6.3 Challenges in Implementation and Providing Potential Solutions 6.4 Robotic Solutions for Problems Facing the Elderly in Society 6.4.1 Solutions for Physical and Functional Challenges 6.4.2 Solutions for Cognitive Challenges

viii Contents

	6.6		clusion and Future Directions	103 104
7	Dak			
7			AI, and the IoT in Defense Systems	109
		,	yal, Pooja Dixit, T.V.M. Sairam and Nidhi Goyal Defense	110
	7.1			110
		7.1.1	67	110 111
		7.1.2	7 0 11	111
	7.2	7.1.3	Overview of AI in Defense Systems view of IoT in Defense Systems	114
	1.2		Role of IoT in Defense	114
			Ministry of Defense Initiatives	117
			IoT Defense Policy Challenges	117
	7.3		tics in Defense	117
	7.5	7.3.1	Technical Challenges of Defense Robots	120
	7.4		obotics, and IoT in Defense: A Logical Mix in Context	123
	7.4	7.4.1		123
			Combination of Robotics and AI in Defense	124
	7.5		lusion	126
	7.5		rences	127
8	Tacl	hniaua	es of Robotics for Automation Using AI and the IoT	129
o		_	uhan and Vishal Dutt	147
	8.1		duction	130
	8.2		net of Robotic Things Concept	131
	8.3		nitions of Commonly Used Terms	131
	8.4		edures Used in Making a Robot	133
	0.1	11000	dures osed in Making a Robot	
			Analyzing Tasks	133
		8.4.1	7 8	133 134
		8.4.1 8.4.2	Designing Robots	134
		8.4.1 8.4.2 8.4.3	Designing Robots Computerized Reasoning	134 134
		8.4.1 8.4.2 8.4.3 8.4.4	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot	134 134 134
		8.4.1 8.4.2 8.4.3 8.4.4 8.4.5	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot	134 134
		8.4.1 8.4.2 8.4.3 8.4.4	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot	134 134 134 134
	8.5	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots	134 134 134 134
	8.5 8.6	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots Technologies	134 134 134 134
		8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots Technologies ors and Actuators	134 134 134 134 135
	8.6	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots Technologies ors and Actuators ponent Selection and Designing Parts	134 134 134 134 135 137
	8.6	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 IORT Senso Comp 8.7.1	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots Technologies ors and Actuators ponent Selection and Designing Parts	134 134 134 134 135 137 138
	8.6 8.7	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 IORT Senso Comp 8.7.1	Designing Robots Computerized Reasoning Combining Ideas to Make a Robot Making a Robot Designing Interfaces with Different Frameworks or Robots Technologies ors and Actuators ponent Selection and Designing Parts Robot and Controller Structure ess Automation	134 134 134 134 135 137 138 140

	8.9	Robots	and Robotic Automation	142
	8.10	Archite	ecture of the Internet of Robotic Things	142
		8.10.1	Concepts of Open Architecture Platforms	143
	8.11	Basic A	abilities	143
		8.11.1	Discernment Capacity	143
		8.11.2	Motion Capacity	144
		8.11.3	Manipulation Capacity	144
	8.12	More E	Elevated Level Capacities	145
		8.12.1	Decisional Self-Sufficiency	145
		8.12.2	Interaction Capacity	145
		8.12.3	Cognitive Capacity	146
	8.13	Conclu	sion	146
		Referei	nces	146
9	An A	rtificial l	Intelligence-Based Smart Task Responder:	
			ot for Human Instruction Using LSTM Technique	149
			eepa, SP. Chokkalingam, N. Gayathri	
			h Kumar	
	9.1	Introdu		150
	9.2		ure Review	152
	9.3		ed System	152
	9.4		and Discussion	157
	9.5			161
		Referen	nces	162
10	AI, Io	T and I	Robotics in the Medical and Healthcare Field	165
	-		N. Gayathri and S. Rakesh Kumar	100
	10.1	Introdu	,	165
	10.2		ey of Robots and AI Used in the Health Sector	167
	10.2		Surgical Robots	167
			Exoskeletons	168
			Prosthetics	170
			Artificial Organs	171
			Pharmacy and Hospital Automation Robots	172
			Social Robots	173
			Big Data Analytics	175
	10.3		echnical Considerations	176
		10.3.1		176
		10.3.2		177
		10.3.3	The Paradox of Evidence-Based Reasoning	178

x Contents

	10.4	Legal (Considerations	180
		10.4.1	Liability for Robotics, AI and IoT	180
		10.4.2	Liability for Physicians Using Robotics,	
			AI and IoT	181
		10.4.3	Liability for Institutions Using Robotics,	
			AI and IoT	182
	10.5	Regula	ting Robotics, AI and IoT as Medical Devices	183
	10.6	Conclu	asion	185
		Referen	nces	185
11	Real-	Time M	ild and Moderate COVID-19 Human Body	
			Detection Using Artificial Intelligence	189
	K. Lo	gu, T. D	evi, N. Deepa, S. Rakesh Kumar and N. Gayathri	
	11.1	Introdu	uction	190
	11.2	Contac	ctless Temperature	191
		11.2.1	Bolometers (IR-Based)	192
		11.2.2	Thermopile Radiation Sensors (IR-Based)	193
		11.2.3	Fiber-Optic Pyrometers	193
		11.2.4	RGB Photocell	194
		11.2.5	3D Sensor	195
	11.3	Fever I	Detection Camera	196
		11.3.1	Facial Recognition	197
		11.3.2	Geometric Approach	198
			Holistic Approach	198
			Model-Based	198
			Vascular Network	199
	11.4		tion and Analysis	200
	11.5			203
		Referei	nces	203
12	Dron	es in Sn	nart Cities	205
	Manj	u Payal,	, Pooja Dixit and Vishal Dutt	
	12.1	Introdu	uction	206
		12.1.1	Overview of the Literature	206
	12.2	Utilizat	tion of UAVs for Wireless Network	209
		12.2.1	Use Cases for WN Using UAVs	209
		12.2.2	Classifications and Types of UAVs	210
		12.2.3	Deployment of UAVS Using IoT Networks	213
		12.2.4	IoT and 5G Sensor Technologies for UAVs	214
	12.3	Introdu	uced Framework	217
		12.3.1	Architecture of UAV IoT	217

		Conten	rs xi
		12.3.2 Ground Control Station	218
		12.3.3 Data Links	218
	12.4		223
		12.4.1 UAV Traffic Management	223
		12.4.2 Situation Awareness	223
		12.4.3 Public Safety/Saving Lives	225
	12.5	Conclusion	227
		References	227
13	UAVs	s in Agriculture	229
	Deep	anshuSrivastava, S. RakeshKumar and N. Gayathri	
	13.1		230
	13.2	0	230
		13.2.1 Overview of Systems	230
	13.3	Introduction to UGV Systems and Planning	234
	13.4	71 1 0	236
	13.5	\mathcal{E}	239
	13.6	Automation in Agriculture	242
	13.7	Conclusion	245
		References	245
14		-Automated Parking System Using DSDV and RFID	247
	,	ank Agrawal, Abhishek Kumar Rawat, Archana,	
		hyaKatiyar and Sanjay Kumar	
	14.1		247
	14.2	Ad Hoc Network	248
		14.2.1 Destination-Sequenced Distance Vector (DSDV)	
		Routing Protocol	248
	14.3	1 /	249
	14.4	Problem Identification	250
	14.5	Survey of the Literature	250
	14.6	PANet Architecture	251
		14.6.1 Approach for Semi-Automated System	252
		Using DSDV	252
		14.6.2 Tables for Parking Available/Occupied	253
		14.6.3 Algorithm for Detecting the Empty Slots14.6.4 Pseudo Code	255 255
	14.7	Conclusion	255 256
	14./		256
		References	230

15		ey of Various Technologies Involved in Vehicle-to-Vehicle	
		munication	259
		Kamala K., Sini Anna Alex and Anita Kanavalli Introduction	250
		Survey of the Literature	259 260
	15.2	•	262
	13.3	15.3.1 ARM and Zigbee Technology	262
		č č.	262
		15.3.2 VANET-Based Prototype 15.3.2.1 Calculating Distance by Considering	202
		Parameters	263
		15.3.2.2 Calculating Speed by Considering	203
		Parameters	263
		15.3.3 Wi-Fi-Based Technology	263
		15.3.4 Li-Fi-Based Technique	264
		15.3.5 Real-Time Wireless System	266
	15.4	Various Technologies Involved in V2V Communication	267
		Results and Analysis	267
		Conclusion	268
		References	268
16	Smar	t Wheelchair	271
	Meka	la Ajay, Pusapally Srinivas and Lupthavisha Netam	
	16.1	Background	271
	16.2	System Overview	275
		Health-Monitoring System Using IoT	275
		Driver Circuit of Wheelchair Interfaced with Amazon Alexa	276
	16.5	MATLAB Simulations	277
		16.5.1 Obstacle Detection	277
		16.5.2 Implementing Path Planning Algorithms	278
		16.5.3 Differential Drive Robot for Path Following	280
		Conclusion	282
	16.7	Future Work	282
		Acknowledgment	283
		References	283
17		ulter List Using Facial Recognition	285
		tha Esther, Akilindin S.H., Aswin S. and Anand P.	
	17.1	Introduction	286
	17.2	System Analysis	287
		17.2.1 Problem Description	287
		17.2.2 Existing System	287

		Contents	xiii
		17.2.3 Proposed System	287
	17.3	1 /	289
		17.3.1 Image Pre-Processing	289
		17.3.2 Polygon Shape Family Pre-Processing	289
		17.3.3 Image Segmentation	289
		17.3.4 Threshold	289
		17.3.5 Edge Detection	291
		17.3.6 Region Growing Technique	291
		17.3.7 Background Subtraction	291
		17.3.8 Morphological Operations	291
		17.3.9 Object Detection	292
	17.4	Inputs and Outputs	292
	17.5	Conclusion	292
		References	293
18		or/Intruder Monitoring System Using Machine Learning	295
	-	nifa, S. Indu, C. Jeevitha and V. Kiruthika	
	18.1	Introduction	296
	18.2	Machine Learning	296
	10.2	18.2.1 Machine Learning in Home Security	297
		System Design	297
	18.4	Haar-Cascade Classifier Algorithm	298
		18.4.1 Creating the Dataset	298
		18.4.2 Training the Model	299 299
	18.5	18.4.3 Recognizing the Face Components	299
	10.5	18.5.1 Raspberry Pi	299
		18.5.2 Web Camera	300
	18.6	Experimental Results	300
	18.7	Conclusion	302
		Acknowledgment	302
		References	303
19	Com	parison of Machine Learning Algorithms for Air	
		tion Monitoring System	305
		ar Sethi and R. C. Thakur	
	19.1	Introduction	305
	19.2	System Design	306
	19.3	Model Description and Architecture	307
	19.4	Dataset	308
	19.5	Models	310

xiv Contents

	19.6	Line of Best Fit for the Dataset	312
	19.7	Feature Importance	313
	19.8	Comparisons	315
	19.9	Results	318
	19.10	Conclusion	318
		References	321
20		vel Approach Towards Audio Watermarking Using FFT	
		CORDIC-Based QR Decomposition	323
	Ankit	Kumar, Astha Singh, Shiv Prakash and Vrijendra Singh	
	20.1	Introduction and Related Work	324
	20.2	Proposed Methodology	326
		20.2.1 Fast Fourier Transform	328
		20.2.2 CORDIC-Based QR Decomposition	329
		20.2.3 Concept of Cyclic Codes	331
		20.2.4 Concept of Arnold's Cat Map	331
		Algorithm Design	331
		Experiment Results	334
	20.5	Conclusion	337
		References	338
21	Perfo	rmance of DC-Biased Optical Orthogonal Frequency	
	Divis	ion Multiplexing in Visible Light Communication	339
	S. Por	nmalar and Shiny J.J.	
	21.1	Introduction	340
	21.2	System Model	341
		21.2.1 Transmitter Block	341
		21.2.2 Receiver Block	342
	21.3	Proposed Method	342
		21.3.1 Simulation Parameters for OptSim	343
		21.3.2 Block Diagram of DCO-OFDM in OptSim	343
		Results and Discussion	344
	21.5	Conclusion	352
		References	353
22	Micro	ocontroller-Based Variable Rate Syringe Pump	
	for M	icrofluidic Application	355
	<i>G. B.</i>	Tejashree, S. Swarnalatha, S. Pavithra,	
	<i>M. C.</i>	Jobin Christ and N. Ashwin Kumar	
	22.1	Introduction	356
	22.2	Related Work	357

Contents	XV

	22.3	Methodology	358
		22.3.1 Hardware Design	359
		22.3.2 Hardware Interface with Software	360
		22.3.3 Programming and Debugging	361
	22.4	Result	362
	22.5	Inference	363
		22.5.1 Viscosity (η)	365
		22.5.2 Time Taken	365
		22.5.3 Syringe Diameter	366
		22.5.4 Deviation	366
	22.6	Conclusion and Future Works	366
		References	368
23	Analy	ysis of Emotion in Speech Signal Processing	
	•	Rejection of Noise Using HMM	371
		lasubramanian	
		Introduction	372
		Existing Method	373
	23.3	1	374
		23.3.1 Proposed Module Description	375
		23.3.2 MFCC	376
		23.3.3 Hidden Markov Models	379
	23.4	Conclusion	382
		References	383
24	Secur	ring Cloud Data by Using Blend Cryptography	
	with AWS Services 385		
	Vancl	nchhana Srivastava, Rohit Kumar Pathak and Arun Kumar	
	24.1	Introduction	385
		24.1.1 AWS	387
		24.1.2 Quantum Cryptography	388
		24.1.3 ECDSA	389
	24.2	Background	389
	24.3	Proposed Technique	392
		24.3.1 How the System Works	393
	24.4		394
	24.5	Conclusion	396
		References	396
Inc	dex		399

It is widely believed that the current technologies are not the only factors that limits the building of an efficient human-machine intelligent processing engine. The emotions and the cognitive abilities are also playing an important role in understanding the various aspects through various intelligent technologies.

Artificial Intelligence (AI) is one of the trending technologies in the recent era. The emergence of the robotics and application of AI in it brings out a significant change in the domain. Various algorithms that emerge in AI and the computational efficiency of the systems has made it possible to address a number of applications through robotics. The Internet of Things (IoT) is the important domain that plays a major role in robotics. With the aid of IoT and AI, robotics an exponential development in providing solutions to complex technical problems have been explored.

This book aims at providing an overview of robotics and the application of AI and IoT in robotics. It contains the deep exploration of AI and IoT based intelligent automation in robotics. The various algorithms and frameworks for robotics based on AI and IoT have been presented analyzed and discussed. This book also provides insights on application of robotics in education, healthcare, defense and many other fields with the utilization of IoT and AI. It also includes the idea of smart cities using robotics.

This book contains twenty-four chapters. Chapter 1 reports the introduction about the robotics. Chapter 2 explores the techniques of robotics for automation using AI and IoT. Chapter 3 descriptively investigates the role of the defense in the same technological aspects. Chapter 4 examines the role of AI and IoT based intelligent automation of robotics in case of healthcare. Chapter 5 explores the skill transfer to robots based on semantically represented the activities of humans. Chapter 6 illustrates the healthcare robots enabled with IoT and artificial intelligence for old

aged patients. Chapter 7 explores the robotics, AI and IoT in defense system. Chapter 8 describes the techniques of robotics for automation using AI and IoT. Chapter 9 discusses an artificial intelligence based smart task responder that is android robot for human instruction using LSTM technique. Chapter 10 explores the robotics, AI and IoT in medical and healthcare. Chapter 11 scrutinizes real time mild and moderate Covid'19 human body temperature detection using AI. Chapter 12 shows the role of drones in smart cities. Chapter 13 presents UAV's in terms of agriculture prospective. Chapter 14 discussed the semi-automated parking system by using DSDV and RFID. Chapter 15 reviews on the various technologies involved in vehicle to vehicle communication. Chapter 16 explores about the smart wheelchair. Chapter 17 explores defaulters list using facial recognition. Chapter 18 introduces visitor/intruder monitoring system using machine learning. Chapter 19 provides a comparison of machine learning algorithms for air pollution monitoring system. Chapter 20 discusses a novel approach towards audio watermarking using FFT and Cordic Q-R decomposition. Chapter 21 explores the performance of DC biased optical orthogonal frequency division multiplexing in visible light communication. Chapter 22 illustrates the microcontroller based variable rate syringe pump for microfluidic application. Chapter 23 illustrates the analysis of emotion in speech signal processing and rejection of noise. Chapter 24 discusses regarding securing cloud data by using blend cryptography with AWS services.

Overall, this book is designed for exploring global technological information about the AI and IoT based intelligent automation in robotics. Armed with specific usage practices, applicability, framework and challenges readers can make informed choices about the adoption of AI and IoT based intelligent automation. It may be helpful in the development of efficient framework and models in the adoption of these techniques in different domains.

It is a great pleasure for us to acknowledge the contributions and assistance of many individuals. We would like to thank all the authors who submitted chapters for their contributions and fruitful discussion that made this book a great success. We hope the readers find value and future insights into the contributions made by the authors. This book also opens up further avenues and opportunities for the future research. We are very thankful to the team of Scrivener publishing specially to Martin Scrivener for providing the meticulous service for timely publication of this book.

We would like to express our deep sense of gratitude for the encouragement and support offered by our Institutions/Universities and colleagues. Last but not least, we gratefully acknowledge the support, encouragement and patience of our families.

Ashutosh Kumar Dubey Abhishek Kumar S. Rakesh Kumar N. Gayathri Prasenjit Das February 2021

1

Introduction to Robotics

Srinivas Kumar Palvadi¹, Pooja Dixit² and Vishal Dutt^{3*}

¹Department of Computer Science Engineering, University of Madras, Chennai, Tamil Nadu, India ²Sophia Girls' College (Autonomous), Ajmer, Rajasthan, India ³Department of Computer Science, Aryabhatta College, Ajmer, Rajasthan, India

Abstract

These days, automation plays a major role in all sectors of society and the technology of robotic automation is very much in demand along with other significantly trending concepts such as the Internet of Things (IoT), Machine Learning (ML), Artificial Intelligence (AI) and Cloud Computing. Many people are showing interest in purchasing things which have process automation; for example, do not increase speed once they reach a certain point and automatically turn off the water tank when it is about to overfill. Robotics is also the technology where when an instruction is given to the device it acts accordingly based on the user instruction. When we want the robot to perform based on the user instruction, we first have to train the device or robot with the instructions for the particular task we want to do. For example, if we give a data set to the robot for creation of coffee and we give an instruction to the robot to "Prepare Tea," the robot doesn't respond to the request because the request doesn't match the available datasets in the robot. In this chapter, I will focus on a basic introduction to robots, their architecture and the equipment needed for designing robots.

Keywords: Machine learning, IoT, AI, energy, drones, nano tubes, energy, actuation

1.1 Introduction

"Robotics" or "robots" is a very popular term which we are increasingly hearing day by day. The word "robotics" was derived from the word "robot,"

^{*}Corresponding author: vishaldutt53@gmail.com

Ashutosh Kumar Dubey, Abhishek Kumar, S. Rakesh Kumar, N. Gayathri, Prasenjit Das (eds.) AI and IoT-Based Intelligent Automation in Robotics, (1–14) © 2021 Scrivener Publishing LLC

which comes from the Slavic word "robota," meaning slave/servant. Robots were introduced to society by George C. Devol, who generally referred to them as artificial people. Generally, robots consist of different components such as sensors, controlling devices, manipulators, power supply as well as software to perform the defined action. A combination of these characteristics forms the robot. For preparing the perfect robot we have to proceed with designing, building, programming as well as testing the robot using a combination of physics, mathematics, computational techniques, mechanical engineering, electrical engineering and structural engineering. In some of the particular scenarios the concepts of biology, chemistry and medicine are also involved based on the requirements. Generally, robot technology is used [1] in environments where a human cannot perform the action.

Many people treat robots as machines but in many of the real-time applications robots replace the person and also act as a person, such as the androids in the movies *Star Wars*, *Terminator* and *Star Trek: The Next Generation*. The robots capture human faces and activities and perform tasks as a person does. Even though developers are implementing many advancements in robots and using them in many applications, they are not able to develop enough common sense in them because robots perform the task based on the user's instructions but can't predict future actions by doing tasks in a dynamic manner. So, regarding this topic, many of the researchers are working in this domain under the research domain named "humanoid robots."

Most of the robots which were created till now are very dangerous, boring, onerous and just plain nasty. We can find these types of robots in the medical, automobile, manufacturing, and industrial industries among others, as well as the space industry. Robots, such as the Mars rover Sojourner and the upcoming Mars Exploration rover or the underwater robotic vehicle Caribou, were designed and sent to places where humans cannot go, such as volcanoes, mars, etc., for the purpose of helping to conduct research in those particular places. On the other hand, other types of robots were designed for the purpose of entertaining small children and others. A few of them are Techno, Polly and AIBO ERS-220, which often arrive at the stores around Christmas time.

Robots are very efficient, fun and easy to design. In his book *Being Digital*, Nicholas Negroponte relates an excellent story that took place about eight years ago at the time of the televised premier of the Media Lab's LEGO/Logo work at the Hennigan School. When the robot was first introduced to the children in school, they didn't show interest in adopting it. However, in a third attempt, the children talked, played and had fun with the robot. The children asked the robot questions and the robot started

giving responses to the children. The children in the class felt very excited and had fun with the robot.

Finally, what exactly does robot mean?

Many authors gave definitions based on their understanding. There is really no standard definition of robotics. When designing the robot, every designer needs to have the following properties and features, if not it is not considered a robot [2].

The robot should have following characteristics:

Sensing

First, robots have to recognize the surroundings and respond according to them. The robots will not behave in all the environments. We have to imbue robots with sensitivity to light (eyes), touch, pressure (like hands), chemicals (nose), sound (ears) and taste (tongue) among others. By combining all these we will get the correct working robot for the environment.

- Movement
 - The robot should be capable of identifying surroundings/ environment in order to perform actions such as moving its body all around the surroundings.
- Energy Robots should be capable of identifying the power in their battery and should charge by themselves.
- Intelligence Robots need to become smarter than humans. Those who make robots smart are called programmers. Robots should require a minimum amount of knowledge to understand and perform the task that the user instructed.

So, the definition of the term robot encompasses a sensor, controlling device, physical device, manipulator, and a programming testing device, with mechanical engineering, electrical engineering, mathematics, and a small portion of chemistry also being involved.

1.2 **History and Evolution of Robots**

Table 1.1 shows the origins of robotics along with detailed information of when the robots came into existence, the developer's name, etc. Presently, there are various types of robots which are used for various environments

4 AI AND IOT-BASED INTELLIGENT AUTOMATION IN ROBOTICS

Table 1.1 History of the earliest robots.

Date	Significance	Robot name	Inventor
3rd century BC and earlier	First humanoid automata based on an earlier description		Yan Shi
1st century AD and earlier	Descriptions of more than 100 machines and automata which include a fire engine, a wind organ, a coin- operated machine, and a steam-powered engine		Ctesibius, Philo of Byzantium, Heron of Alexandria, and others
c. 420 BC	Robot designed like a bird, which will fly	Flying Pigeon	Archytas of Tarentum
1206	First humanoid robot with automata mechanism	Robot band, hand-washing automaton [11], automated moving peacocks [12]	Al-Jazari
1495	Humanoid robot	Mechanical Knight	Leonardo da Vinci
1738	Mechanical duck which can eat, flap its wings, and excrete	Digesting Duck	Jacques de Vaucanson
1898	First radio-controlled device	Teleautomaton	Nikola Tesla
1921	First fictional automatons called robots	Rossum's Universal Robots	Karel Čapek
1930s	Humanoid robot exhibited at the 1939 and 1940 New York World's Fair	Elektro	Westinghouse Electric Corporation
1946	First general-purpose digital computer	Whirlwind	Multiple people

(Continued)

 Table 1.1 History of the earliest robots. (Continued)

Date	Significance	Robot name	Inventor
1948	Simple robots exhibiting biological behaviors	Elsie and Elmer	William Grey Walter
1956	First commercial robot from the Unimation company	Unimate	George Devol
1961	First installed industrial robot	Unimate	George Devol
1967 to 1972	First full-scale humanoid intelligent robot	WABOT-1	Waseda University
1973	First industrial robot with six electromechanically driven axes	Famulus	KUKA Robot Group
1974	First microcomputer controlled electric industrial robot, IRB 6 from ASEA, which was already patented in 1972.	IRB 6	ABB Robotics
1975	Programmable universal manipulation arm, a Unimation product	PUMA	Victor Scheinman
1978	First object-level robot programming language, which allows robots to handle variations in object position, shape, and sensor noise	Freddy I and II, RAPT robot programming language	Patricia Ambler and Robin Popplestone
1983	First multitasking, parallel programming language used for a robot control	ADRIEL I	Stevo Bozinovski and Mihail Sestakov

for various users. Moreover, the robots were classified into mechanical construction, electrical components and computer programming mechanism.

The mechanical part of the robot is designed for mechanical purposes such as designing the particular shape and processing of the particular task. With the mechanical components it also follows the physics friction mechanism for processing of the task.

The robots have the electrical power capable of handling the mechanical products because the electricity is capable of handling the machine [3]. Even though there are petrol-based robots, they still require electrical energy in order to function, just as a car works with a battery.

1.3 Applications

Because the lives of people were becoming busier, robots were designed to help meet the needs of their users. Initially we assigned the task or multiple tasks as per the instructions of humans and the robots performed the task if the particular task was programmed and vice versa. Later on, the robots were designed in such a way that specific robots or customized robots were designed for specific tasks. The main theme in designing customized robots was to make them work more efficiently. Generally, the robots were designed in an assembly manner for making them more adaptive as well as making the tasks speedier. Such types of robots were categorized as "assembly robots." Now robots were also used in the automobile industry for procedures such as welding, tightening, etc., and the robots were the products called "integrated units" because they were designed in such a way that they were integrated with different fields like mechanical and electrical engineering and computers. For example, robots that performed welding tasks were called "welding robots." Any type of robot had the capability of performing various types of tasks [4]. Some robots were exclusively designed for making the heavy load changes and such type of robots were treated as "heavy duty robots." Finally, "humanoid robots" were designed for addressing all the emergencies that a human does.

The robots described above are just some of the various robots and their applications in specific fields. Some of the various types of robots and various places where they are being used include:

- Military robots
- Industrial robots
- Collaborative robots

- Construction robots
- Agricultural robots
- Medical robots
- Robots for kitchen automation
- Spot robot for combat
- Robots for cleaning up contaminated areas
- such as toxic sites or nuclear facilities
- Domestic robots
- Nanorobots
- Swarm robots
- Autonomous drones
- Robots for sports field line marking

1.4 Components Needed for a Robot

Electricity, mechanical power and programming are the main things needed to successfully design a robot. First, when designing the robot, the planning and outlook of how it should be viewed after implementation are the main things to keep in mind [5]. Below are the requirements for designing a full-fledged robot:

1) Power Source

For the power source the main thing which we use is batteries. The power taken from electricity will convert to the thermal energy stored in the batteries. All robots need a battery in order to work. The robot will work up to a certain number of hours when it is fully charged. The batteries, such as silicon batteries and acid batteries, are used because batteries, such as silver-cadmium batteries, are too expensive. While designing the required battery for a particular robot, initially we only have to think about the power consumption of the robot based on its working capacity. If the robot work capacity is less and if we give more power the electricity inside the robot may short circuit and total loss or damage to the robot may ensue. We also have to consider the weight of the robot while designing because if the robot is heavier it will consume more power when performing the user requests [6]. If the robot is heavier there are many disadvantages such as not cost-effective, difficult to manage the tasks, higher power consumption, inefficient, etc. Apart

from electric power there are a few other alternatives which are beneficial, such as

- Pneumatic power
- Solar power
- Hydraulic power
- Flywheel energy storage
- Anaerobic digestion
- Nuclear power

2) Actuation

In human terminology, the actuator is like muscles for the robot. Here the overall thing depends on the momentum of the device. Most of the devices work in an electrical and mechanical manner. These robots help in controlling, managing and monitoring the works. After designing the particular robot for a particular manner in the customized way, many of the alterations were performed on the robot and many of the software updates and alterations were made either in terms of hardware or software or battery or capacity, etc., based on the load and capacity of the robot.

3) Electric Motors

A large number of robots use electrical and mechanical power for performing tasks. The robots use mechanical power as well as electrical power for performing tasks. The robots use DC motors and AC motors for industrial purposes for performing the heavy loaded type of tasks. There will be motors which perform the heavy loaded as well as light loaded tasks. Here, when performing the heavy loaded and light loaded tasks the capacity of battery as well as the usage of the battery varies from time to time.

4) Linear Actuators

There are various types of actuators which have faster speed as well as direction. Here, when the speed changes the direction also changes and vice versa. There are various types of robots which have more pneumatic and hydraulic actuators. There is an actuator called a "linear actuator" which has a motor as well as a lead screw. Another type of actuator which is powered by hand is the rack and pinion actuator commonly found in cars.

5) Series Elastic Actuator

This part is designed in a flexible and elastic manner and works in a more robust manner in controlling things like