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Preface

Breeding crop plants in the current century is a daunting challenge. Plant breeders 
have already made much effort in developing new high yielding plant varieties. 
These efforts are further augmented with the advent of new stresses related to cli-
mate change. Any successful breeding programme solely depends on the availabil-
ity of genetic diversity. Genetic diversity and genetic variation are to be separately 
dealt with. While genetic diversity is the range of genetic characteristics in a crop, 
the genetic variation refers to the genetic differences among individuals in a specific 
trait, which are based on DNA sequence.

Staple or food crops like cereals, wheat, rice, and maize are absolutely essential 
for sustenance. However, there are other crops like coffee, tea, cocoa, cotton, oil-
seeds, sugar cane, oil palm, date palm, and rubber that are grown only for raising 
income to the farmers. A differentiation of food with cash crops suggests that most 
food crops are considered not to be traded much through markets. But this definition 
does not hold good for developing countries where most of the crops are grown for 
revenue. However, the debate on the differentiation between food crops and cash 
crops still continues.

A looming threat to the world in the current century is population explosion 
where food and nutrition security, climate change, and ever-growing human popula-
tion growth have become major global issues. Estimates suggest that the world 
population will reach close to 10 billion by 2050, with a food gap of 70% between 
the crop calories available in 2006 and projected calorie demand in 2050. A sus-
tained average annual growth in agricultural production of 44 million metric tons 
per year, for 30 years, is essential to meet this demand. Breeding activities have 
achieved a linear increase at an average rate of 32 million metric tons per year. 
Creating and utilizing new genetic diversity is the only option before the plant 
breeders to make the production of new varieties more sustainable. Breeding new 
cash crop varieties will ensure increased food and nutrition security. This challenge 
is further made intriguing since most cash crops are long term in nature.

Crop diversity around the world is declining, posing a challenge to both environ-
ment and food security. With the advent of Green Revolution, staple crops like 
wheat, rice, soybean, and corn have become dominant in arable lands worldwide. 
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The lack of genetic diversity and increasing uniformity of any crop may render the 
same unsustainable. Hence, the FAO in 2018 had set out a new set of conservation 
guidelines titled, “Voluntary Guidelines for the Conservation and Sustainable Use 
of Farmers’ Varieties.” This publication highlights how crop genetic diversity 
enables resistance to environmental and climatic shocks (https://reliefweb.int/sites/
reliefweb.int/files/resources/ca5601en.pdf) and functions as a tool for researchers 
and policymakers. The FAO notes that almost all countries report the “genetic ero-
sion” of crops, with maize, wheat, and rice accounting for 51% of all plant- 
based food.

The loss of crop genetic diversity poses a “particularly severe” threat to global 
food security and nutrition—one that risks the achievement of sustainable develop-
ment goals (SDG 2 by FAO = zero hunger) on eradicating hunger and malnutrition 
by 2030. It entails the necessity to provide the farmers and local communities with 
the information and support in relation to crop conservation and sustainable utiliza-
tion. Yet, almost 690 million people remain chronically undernourished, amid signs 
of diminishing momentum towards reaching Zero Hunger.

There are several upcoming innovative technologies that are being implemented 
in breeding new plants. The use of “CRISPR single base editors” is one such tool 
that brings much promise in deriving new genetic diversity. Single base editing can 
produce genotypes with broad-spectrum disease resistance that ensures higher yield 
under climatic stressful conditions. Speed breeding by creating artificial climatic 
conditions to breed plants through raising more generations per year is another 
innovative option. The applications of most promising futuristic technologies are 
breeding for C4 photosynthesis, high-throughput phenotyping, RNA-seq (whole 
transcriptome shotgun  sequencing), metabolomic profiling, phenomics, genomic 
selection, and climate resilient breeding with artificial intelligence. However, these 
technologies must go a long way before successfully being implemented in com-
mercial breeding programmes.

Beginning with a chapter on introduction to cash crops, this book contains 14 
other chapters on cardamom, cocoa, coconut, cashew nut, coffee, date palm, ground 
nut, jute, lentil, mustard, oil palm, rubber, sugar cane, and tomato authored by well- 
known scientists on their respective crops. This book is expected to assist students, 
researchers, scientists, and faculties as a guide to genetic diversity of cash crops.

We gratefully acknowledge the guidance and assistance rendered by all the 
reviewers who have done a meticulous job with respective chapters. Finally, we 
profusely thank Springer Nature for publishing this book.

Thiruvananthapuram, Kerala, India P. M. Priyadarshan 
Helsinki, Finland  S. Mohan Jain  

Preface

https://reliefweb.int/sites/reliefweb.int/files/resources/ca5601en.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/ca5601en.pdf
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Abstract Cash crops are grown for cash generation rather than for sustenance. The 
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jatropha, groundnut, and brassicas come under the umbrella of cash crops. Breeding 
activities have achieved a linear increase at an average rate of 32 million metric tons 
per year against an expected turnover of 44 million metric tons per year. The ensu-
ing climate change, low agricultural diversity, and high intensity of agricultural 
inputs can exacerbate food insecurity and instability. Conserving crop biodiversity 
is an urgent undertaking. The Inter-governmental Panel on Climate Change (IPCC) 
predicts that 25–30% of plant species will be extinct or endangered in the next cen-
tury. As such, cash crops are utilized by humans to earn money, and such crops are 
prone to climate changes. Hence, safe guarding the existing diversity and producing 
new diversity in cash crops are of utmost importance.

Molecular marker techniques like SSRs, DArTseq, and SNP genotyping assays 
in cash crops are on the progress. In many crops, data obtained through PCR analy-
sis of DNA fragments from ancient DNA samples have shown evolutionary changes 
within the gene pool over a long time. During the last three decades, under the aus-
pices of FAO, the international community has strived to developing and maintain-
ing a global system on plant genetic resources for food and agriculture. CGIAR 
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1  Introduction

Cash crops are grown for cash generation rather than for sustenance. The commodi-
ties are produced and consumed as fruits, flowers, foliage, stems, roots, latex, or any 
plant parts that are consumed directly or processed products as fiber, rubber, sugar, 
beverages, and biofuel. An array of crops like wheat, corn, oats, potatoes, cherries, 
apples, strawberries, soybean, bananas, cotton, jute, oranges, jojoba, jatropha, 
groundnut, and brassicas come under the umbrella of cash crops. However, some of 
the major crops are cocoa, coffee, oil palm, sugar cane, and rubber.

Current estimates are that nearly 690 million people are hungry (8.9% the world 
population) (FAO 2020). The world is not on track to achieve Zero Hunger by 2030. 
If recent trends continue, the number of people affected by hunger would surpass 
840 million by 2030. Hence, the world requires a dramatic increment in food pro-
duction in the next 30 years. The current human population of 7.7 billion is expected 
to reach 8.6 billion in 2030 and 10 billion by 2050 (Pourkheirandish et al. 2020). 
Concurrently, the effects of climate change pose a looming threat to agriculture via 
drought and salinity that limit agricultural land and water use (Godfray et al. 2010).

The history of agriculture shows that wild grains were collected and consumed 
starting from 20,000 BC onwards. The eight Neolithic founder crops viz. emmer 
wheat, einkorn wheat, hulled barley, peas, lentils, chickpeas, bitter vetch, and flax 
were cultivated from 9500 BC in the eastern Mediterranean area. Rice was domes-
ticated in China some 10,000 years ago (Gross and Zhao 2014). The Anthropocene 
epoch is believed to have made the man-made changes in Earth’s biodiversity and 
biogeography (Martin et al. 2019). Anthropocene epoch is an unofficial unit of geo-
logic time, used to describe the most recent period in Earth’s history when human 
activity started to have a significant impact on the planet’s climate and ecosystems. 
Such changes in the human-mediated spread of crops beyond their regions of 
domestication into other parts of the world are central to these arguments (Khoury 
et al. 2016). Analyses made after 1950s indicate that there have been major influxes 
(and subsequent domination) of crops into the food supplies, diets, agricultural 
economies, and farmlands in many parts of the world (Nelson et al. 2016).

Agricultural trade liberalization in the 1980s encouraged the production and 
export of a few select crops or genotypes at the regional- or country-level (Li 2015). 
Such programs only ensured that patterns of crop diversification over the past 
50 years have differed drastically among regions. At the same time, climatic limita-
tions to growing certain crops in higher latitudes also have likely led to less drastic 
or immediate shifts in agricultural diversity in these regions, as compared to lower 
latitudes (Ramankutty et al. 2002). Furthermore, existing global evaluations of crop 
diversity have primarily focused on taxonomic diversity measured as crop species 
richness across global scales (Khoury et al. 2016; Martin et al. 2019).

By the year 2050, the world population may reach nine billion and the demand 
for food may grow by 70% (Dhankher and Foyer 2018). Breeding activities have 
achieved a linear increase at an average rate of 32 million metric tons per year 
(Alston et al. 2009) against an expected turnover of 44 million metric tons per year 
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(Tester and Langridge 2010). The ensuing climate change, low agricultural diver-
sity, and high intensity of agricultural inputs can exacerbate food insecurity and 
instability (Dhankher and Foyer 2018). For instance, current estimates indicate that 
an increase of 1 °C might cause a 10–20% reduction in the world’s production of 
maize (Tito et al. 2018). In fact, meta-analyses of climate change and its impact 
suggest that by 2030 crop yields may be decreased by 50% (Campbell et al. 2018).

The livelihood of millions of smallholder farmers and the survival of several 
national economies in Africa, Latin America, and Asia depend on crops usually 
considered commodities, or minor or orphan crops like coffee (Coffea arabica L.) 
and cacao (Theobroma cacao L.) (Davis et al. 2019; Farrell et al. 2018; Schroth, 
et  al. 2016). For coffee, rapid deforestation and climate change may lead to the 
extinction of many wild African species (Davis et al. 2019). Such crops are at risk 
due to climate change (Davis et al. 2019; Schroth et al. 2016). For cacao, mostly 
grown in West Africa, the maximum temperature tolerated (38  °C) could be 
exceeded during hot and dry El Niño years (Schroth et al. 2016). The rising tem-
peratures, longer droughts, and excessive rainfall have reduced coffee yields by 
30% in Colombia since 2008 (Van der Vossen et al. 2015).

2  Genetic Diversity Utilization and Exchange of Germplasm

Conserving crop biodiversity is an urgent undertaking. The Inter-governmental 
Panel on Climate Change (IPCC) predicts that 25–30% of plant species will be 
extinct or endangered in the next century (Foden et al. 2018; Sintayehu 2018). As 
such, cash crops are utilized by humans to earn money, and such crops are prone to 
climate changes. Hence, safe guarding the existing diversity and producing new 
diversity in cash crops are of utmost importance. Crop diversity around the world is 
declining posing a challenge to both environment and food security. With the advent 
of Green Revolution, staple crops like wheat, rice, soybean, and corn have become 
dominant in arable lands of the world. The option to keep the environment intact is 
to conserve and to produce newer genetic diversity of crops. Under these circum-
stances, cash crops ensure food, nutrition, and income to the farmers in addition to 
conserving genetic diversity.

Genetic diversity can be defined as any quantitative measure of the variability of 
a population, which reflects the equilibrium between mutation and the loss of 
genetic variation (Carvalho 2019). Molecular markers for plants were initially iso-
enzymes (Tanksley 1983). In due course, DNA markers could be used to detect 
allelic variation in the genes underlying the target characteristics (Collard and 
Mackill 2007). The popularization and modernization of genetic markers led to 
primers developed to detect variability in accessions (Camacho et al. 2017).

New technologies, like next-generation sequencing (NGS), have permitted the 
accumulation of large quantities of molecular data through the analysis of marker 
regions (Goodwin et  al. 2016). Such studies make estimates of genetic diversity 
extremely robust.

Cash Crops: An Introduction
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 Molecular Tools and Genome Editing

Molecular marker techniques are employed in the evaluation of genetic diversity 
and construction of genetic and physical maps. Physical mapping of linked markers 
helps in relating genetic distances to physical distances (see Nadeem et al. 2017 for 
a review). Large amounts of sequence data and genomic and cDNA libraries shall 
be made available over time. They could be used to draw genes coding for poten-
tially useful traits. SSR, DArTseq, and SNP genotyping assays in cash crops are on 
the progress (De Wever 2019; Spinoso-Castillo et  al. 2020; Ali et  al. 2019; 
Pootakham et al. 2020). In many crops, data obtained through PCR analysis of DNA 
fragments from ancient DNA samples have shown evolutionary changes within the 
gene pool over long time (Utge et al. 2020). However, it is very unlikely that such 
data can replace the germplasm conservation of whole organisms but can give defi-
nite leads to genetic diversity (Rasmussen 2020).

Genome editing is another new area that stems promise towards creating genetic 
variability at will (Xu et al. 2019). The clustered regularly interspaced short palin-
dromic repeats (CRISPR) is one such technique that is largely being used to manip-
ulate genomes as desired (Zhu et al. 2020).CRISPR-Cas genome editing technology 
has altered plant molecular biology beyond all expectations that allows precise 
genetic manipulation and provides the opportunity to create germplasm with benefi-
cial traits. CRISPR-Cas can be combined with double-haploid (DH) production 
(Dwivedi et al. 2015) and speed breeding (Watson et al. 2018) to create more desir-
able genetic variation. DH lines are derived by crossing a genotype with an inducer 
line whose haploid chromosome set is lost in the zygote. This is followed by dou-
bling the remaining haploid chromosome compliment to achieve a completely 
homozygous line. This is raised in a single generation (Wolter et  al. 2019). The 
genotype subjected to multiplex genome editing can be used for DH production for 
immediate homozygous fixation of the edited alleles. In this way, multiple genera-
tions of selfing can be avoided to fix homozygosity (Jacquier et al. 2020).

The base editing system enables precise C»T or A»G editing in a specified 
sequence range by fusion of Cas9 nickase with cytidine or adenine deaminase 
(Gaudelli et al. 2017). Zong et al. (2018) demonstrated the usefulness of base edit-
ing for generating new transcriptional alleles in wheat. Using enhanced base editor, 
three regulatory elements in the TaVRN1-A1 promoter in wheat protoplasts were 
targeted that are involved in the regulation of vernalization. A variety of mutations 
in all three targeted regulatory elements were identified through deep-sequencing. 
The EvolvR system is yet another elegant way by which site-specific genetic diver-
sity can be generated (Halperin et al. 2018). It relies on the fusion between an engi-
neered error-prone polymerase domain to a Cas9 nickase. It enables the diversification 
of all nucleotides at a specific site and within a tuneable window length of up to 
350 bp. In this window, the mutation rate can be elevated to more than seven million 
times (Wolter et al. 2019). If a large collection of random mutations is required at a 
specific locus, EvolvR has an advantage over base editing in terms of a larger diver-
sity of mutations.CRISPR enables exploitation of wild relatives of crops as a 
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valuable source of allele mining and expansion of crop germplasm. This should 
address issues related to genetic impoverishment of many crops and the resistance 
of wild plants against a broad range of stresses (Østerberg et al. 2017). Unfortunately, 
the development of new crop varieties by genome editing is hampered by strict 
GMO (genetically modified organism) regulation, like the European Union, where 
the authorization of new varieties developed by genome editing techniques is sub-
jected to time and cost-intensive admission procedures. But most other countries are 
not facing such an impediment. However, on a global scale, CRISPR-Cas will con-
tinue to revolutionize plant breeding through creation of new germplasm.

The continuous deforestation and excessive utilization of fossil fuels has resulted 
in escalation of concentration of CO2 from 280 to 400μmol−1. CO2 concentration 
may further elevate to twofold, i.e., up to 800μmol−1 by the end this century. 
Emission of dangerous gases, especially CO2, is the main factor for the greenhouse 
effect and warmer average global temperatures (Vaughan et al. 2018). From 1990 to 
2016, the climatic events that occurred are manifold (Fig. 1). Derivation of new 
climate-smart crop varieties is the answer for guaranteed food security (Wheeler 
and Von Braun 2013; FAO 2015). Molecular markers are also used to assess plant 
response to climate change. The microgeographical genetic differences, and various 
molecular markers, indicated that although phenotypic plasticity buffers against 
environmental changes when the climate events become more extreme, such resis-
tance weakens (Jump and Peñuelas 2005). The use of molecular markers is crucial 
as it indicates adaptability to climate changes. There are a range of strategies avail-
able like high-throughput single-nucleotide polymorphism (SNP) genotyping, 
genomic selection, and trait mapping to enhance sustainable crop production and 
resilience to climate change (Pourkheirandish et  al. 2020). Various genomic 
approaches for the development of climate change resilient crops are given in 
Table 1. The “pyramid” approach to introducing favorable alleles and gene combi-
nations is also prime (Nutan et al. 2020).

Fig. 1 An increasing number of extreme climate-related events occurred during 1990–2016. 
(Source: Food and Agriculture Organization (FAO) based on data from the Emergency Events 
Database (EMDAT) (https://www.emdat.be/)

Cash Crops: An Introduction
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 CGIAR Gene Banks

During the last three decades, under the auspices of FAO, the international commu-
nity has strived to developing and maintaining a global system on plant genetic 
resources for food and agriculture. This system owes international bodies that moni-
tor the status of the conservation and use of plant genetic resources for food and 
agriculture (PGRFA), develop, support, and implement instruments that are respon-
sible for conservation and utilization of germplasm. During 2015, the Sustainable 
Development Goals were adopted, including Target 2.5 concerning the sustainable 
management of genetic diversity (Halewood 2020).

CGIAR centers make significant contributions to both the global system and 
SDG Target 2.5 through international PGRFA collections. Their contributions are:

• Assembling and conserving PGRFA,
• Adding value to those materials through extensive characterization, evaluation, 

and documentation,
• Health testing, and,

Table 1 Summary of different approaches, which can be used to improve crop diversity and 
resilience

Approach Desired outcome

Using genomics to improve crop plant diversity and resilience

Accessing genetic diversity of crop 
wild relatives (CWRs)
De novo crop domestication
Engineering polyploidy
Harnessing plant-microbe 
interactions
The challenge of climate change 
and plant diseases
Genome editing for nutritionally 
enhanced crops

Diversification of the existing breeding resources
Domestication of completely new crops using wild species
Controlled genome duplication or bridging the genomes of 
two related species
Optimal choice of suitable crops for the specific soil type 
and geographic location
Prediction of pathogen evolution and prevalence and 
deployment of suitable protective measures ahead of time
Editing of target genes to improve crop nutritional value

Accessing new breeding targets using genomic technologies

Third-generation sequencing
Accurate gene prediction and 
functional annotation
Analysis of the non-coding part of 
genome
Pangenome as a reference 
sequence

Use of long sequencing reads for higher quality reference 
genome construction
Precise candidate gene identification
Identification of new functional genomic sequences and 
breeding targets
Inclusion of species-wide genomic variation in the analysis

Pairing genomics with other emerging technologies

Machine learning and crop plant 
genomics
Speed breeding
High-throughput phenotyping

Use of artificial intelligence for crop genotype and 
phenotype prediction
Shortening the breeding cycle
Increased resolution, accuracy and speed of plant 
phenotyping

Adopted from: Pourkheirandish M. et al. 2020; courtesy: Frontiers in Plant Science
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• Supplying samples that are free of pests and diseases to researchers, plant breed-
ers, farmers, national and community gene banks, and seed companies around 
the world.

CGIAR collections include over 760,000 accessions of crops, forages, and trees, 
originally from 207 countries, as well as pre-bred materials. Over the last 10 years, 
the CGIAR Centers’ gene banks have distributed more than 1.1 million PGRFA 
samples to recipients in 163 countries (Halewood 2020). Such transfers amount to 
nearly 23% of all PGRFA following the norms of multilateral system of access and 
benefit sharing created by the International Treaty on Plant Genetic Resources for 
Food and Agriculture. Even though CGIAR never addresses the diversity of cash 
crops directly, many genetic resources are scattered in several of its institutions and 
other academic universities and bodies like USDA. A common platform to coordi-
nate the conservation and use of genetic resources of cash crops is an urgent need. 
As case examples, cocoa, coffee, sugar cane, and rubber are explained in a little 
detail here.

 Cacao

Cacao (Theobroma cacao L.), “the food of Gods” is next to tea and coffee as a bev-
erage. Native to Amazon basin, cocoa was domesticated and distributed to different 
regions by the natives Mayas, Aztecs, and Pipil-Nicaraos (Bartley 2005; Malhotra 
and Apshara 2017). There has been a phenomenal increase in the geographical 
expansion of cocoa genetic resources over the last 30 years (Bartley 2005). Currently, 
40–50 million people depend on cocoa for their livelihood, and the production is 
3.97 mt contributed by Africa (71%), Latin America (14%), and Asia and Oceania 
(14%) (Anga 2013). Cóte d’Ivoire is the major cocoa producer followed by Ghana, 
Cameroon, Nigeria, and Brazil (Pipitone 2016; Malhotra and Apshara 2017).

The first introduction of cacao was by Alonso Pinzón in 1510 in southern Yucatan 
(Bartley 2005). In the sixteenth century, the Europeans started to cultivate cacao in 
Asia and Africa where the Criollo, Amelonado, and the Trinitario hybrids started 
their route of dispersal from the Americas to the old world. Cacao was domesticated 
to southeast Asia (to Indonesia) in 1560 by the Dutch (Van Hall 1932). Around 
1770, the Dutch introduced cacao to Peninsular Malaysia (Thong et al. 1992). In 
1798, the British took cacao to Madras, India, from the island of Amboina, and it 
was introduced into Ceylon (now Sri Lanka) from Trinidad at about the same time 
(Ratnam 1961; Wood 1991). Remnants of the ancient Criollo, Amelonado, and 
Trinitario populations can still be found in Asia and Pacific regions, such as 
Indonesia and South Pacific (Fiji and Samoa) (Susilo et al. 2011).

The “Upper Amazon” stretching from Marañón River in Peru to the frontier of 
Brazil is the location of cacao’s primary gene pool. Here, a series of major river 
systems in Peru, Ecuador, Colombia, and Brazil flow into the Marañón and Amazon 
rivers. Wild cacao populations are found in these river basins in both spontaneous 
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(without human interference) and subspontaneous forms (wild cacao trees exploited 
by man) prior to European occupation (Almeida 2001; Bartley 2005). It is hypoth-
esized that gene flow in cacao is limited, and mating is likely confined within 
patches (Chapman and Soria 1983).

During late 1920s, there was an outbreak of “witches’ broom” disease (WBD) in 
Trinidad. This necessitated a search for genetic resistance in the Upper Amazonian. 
During the 1930s and 1940s, wild germplasm was collected from the Upper Amazon 
basin of Ecuador and Peru (Pound 1945; Wood and Lass 2008). The Pound collec-
tion (named after the collector F. J. Pound) is the foundation to the modern cacao 
breeding programs. The tributaries of Rio Ucayali, Rio Morona, and Rio Marañón 
contributed to the pound collection (Pound 1945; Bartley 2005; Zhang et al. 2009). 
Thus “Pound collection” was established in Iquitos, Peru. Approximately 80% of 
the world’s chocolate production comes from the Forastero type of cacao. This is a 
variety favored over the Criollo for its disease resistance and high yield (Rusconi 
and Conti 2010). The third genetic group, Trinitario, is a hybrid of Criollo and 
Forastero derived in Trinidad. Trinitario is cultivated in many parts of South and 
Central America, Africa, South-East Asia, and Oceania for its aroma, productivity, 
and disease-resistance property (Wickramasuriya and Dunwell 2018).

A considerable portion of the global cacao diversity is in situ. This includes two 
international collections maintained at the Cocoa Research Centre of the University 
of the West Indies (CRC/UWI), Trinidad and Tobago, and at the Centro Agronómico 
Tropical de Investigación y Enseñanza (CATIE), Costa Rica (Laliberté et al. 2018). 
Laliberté et al. (2018) further enumerated the following strategies for cacao genetic 
conservation:

• Cacao gene pool is conserved in situ and ex situ for the long term by a global 
network of partners.

• Global system for the safe exchange of cacao germplasm is strengthened.
• Use of cacao genetic diversity is optimized.
• Effectiveness of global efforts to conserve and use cacao.
• genetic resources is assured.

CATIE (Centro Agronómico Tropical de Investigación y Enseñanza, Cost Rica) has 
international collection of cocoa, coffee, and other cash crops. The collections were 
initiated in the decade 1940 and were put in 2004 under the article 15 of the 
International Treaty for Plant Genetic Resources for Food and Agriculture 
(ITPGRFA) and thus in the public domain, which means that every accession is 
available for everyone for investigation, experimentation, or training.

The International Cacao Collection at CATIE (IC3) is one of the two most diverse 
and important gene banks worldwide, in particular, the ten currently defined genetic 
groups are represented by accessions. IC3 was founded in Turrialba, Costa Rica, in 
1944 and declared as an international gene bank by IPGRI (now The Alliance 
Biodiversity International) in 1978. Currently, the collection preserves 1235 wild 
and cultivated genotypes from countries of origin of cacao, but also from producing 
countries in America, Africa, and Asia. Genetic resources are conserved in the field 
in the form of six trees per accession, over 10 ha at two replications located in La 
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Montaña Farm in Turrialba 602 m.a.s.l. and in La Lola Farm in Matina, the Atlantic 
Coast at 40 m.a.s.l. The conservation in two places assures the accurate and safety 
preservation in case of lose any accessions and the better evaluation of the acces-
sions for production, resistance against pests and diseases, and quality (see: https://
www.catie.ac.cr/en/products- and- services/collections- and- germplasm- banks/
international- cocoa- collection) (Dominique Dessauw and William Solano, CATIE, 
personal communication).

Global Network for Cacao Genetic Resources (CacaoNet) could finalize the 
Global Strategy in 2012 (Laliberté 2012). The Global Strategy provides a clear 
framework to secure funding to ensure conservation of cacao diversity to directly 
benefit millions of small-scale cacao farmers. The International Cocoa Organization, 
Côte d’Ivoire and International Cocoa Germplasm Database (ICGD), University of 
Reading, are the two other active genetic resources.

 Coffee

Coffee is an important agricultural export commodity in many Asian, African, and 
Latin American countries, providing a livelihood to more than 125 million people 
worldwide. The genus Coffea comprises more than 124 species of which only two 
species (Coffea arabica—arabica coffee and C. canephora—robusta coffee) are 
commercially cultivated for beverage production (Misra 2019). These 124 species 
are distributed in Africa, Madagascar, the Comoros Islands, the Mascarene Islands 
(La Réunion and Mauritius), tropical Asia, and Australia (Krishnan et  al. 2015). 
Climate change poses unprecedented challenges to sustainable coffee cultivation. 
World coffee production is estimated at 169.34 million bags (one bag with 60 kg) in 
2019/2020 (International Coffee Organization).

Possibly around the sixth century, from its center of origin in Ethiopia, coffee 
made its way to Yemen, with the first record of consumption as a beverage by prac-
titioners of Sufism around 1450 (Weinberg and Bealer 2001). From there, coffee 
spread to Cairo, Damascus, and Istanbul, leading to the birth of the coffeehouse. 
Following this, coffeehouses opened in Europe, the first one in Venice in 1645 and 
in Oxford in 1650. Dutch East India Company commenced coffee cultivation in 
Java using seeds obtained from Mocha in Yemen in the 1690s (Vega et al. 2008).

In the 1960s, FAO took the initiative to prevent loss of genetic resources and 
enlarge the genetic base through collecting mainly C. arabica germplasm along 
with noncultivated species (Engelmann et  al. 2007; Krishnan 2013; Vega et  al. 
2008). In addition to these international collecting missions, local researchers within 
origin countries have performed their own collecting missions, such as in Ethiopia, 
Madagascar, and Cote d’Ivoire (Labouisse et al. 2008). The FAO report, State of the 
World’s Plant Genetic Resources, released in 1998, documented 21,087 coffee 
accessions conserved worldwide (Anthony et al. 2007). The FAO World Information 
and Early Warning System (WIEWS) Coffea Germplasm Report (2009–2011) is the 
most comprehensive inventory of coffee germplasm held in living collections. In 
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2016, the Global Crop Diversity Trust, in partnership with World Coffee Research, 
led the development of the Global Conservation Strategy for Coffee Genetic 
Resources, which was scheduled for completion in early 2017 (Engelmann et al. 
2017; Bramel et al. 2017: https://cdn.croptrust.org/wp/wp- content/uploads/2017/07/
Coffee- Strategy_Mid_Res.pdf).

CATIE has one of the most important coffee collections in the world, with nearly 
2000 introductions. The collection began in 1949 with materials introduced from 
Brazil, Guatemala, and El Salvador, and later, in the 1960s, it was strengthened with 
wild Coffea arabica materials from Ethiopia and Yemen, including the original 
materials collected by FAO, ORSTOM (now IRD), and IPGRI. This is considered 
the fourth largest collection of Coffea spp. in the world and the most important col-
lection of C. arabica in the American continent, due to the number of introductions 
and the genetic diversity conserved. It is considered one of the four Origin collec-
tions in the world, the only one outside the African continent, according to the 
Global Strategy for the Conservation of Coffee Genetic Resources developed by the 
Global Crop Diversity Trust and World Coffee Research (WCR). The agreement 
signed with the International Treaty on Plant Genetic Resources for Food and 
Agriculture (FAO) defines it as the most important “International Collection” of 
C. arabica under public domain.

The collection has different types of genetic material such as:

• Wild Arabica coffee genotypes collected by FAO and ORSTOM in Ethiopia, 
IPGRI in Yemen, as well as diploid species;

• Varieties, mutants, and selections with resistance to coffee rust;
• Inter- and intraspecific hybrids; and,
• Research material.

These genetic resources are considered as the genetic heritage of the region, in 
relation to their potential to be able to respond quickly to current and future prob-
lems of Latin American coffee growing. For more than 60 years, this collection has 
contributed to genetic improvement programs around the world. The accessions with 
resistance to rust allowed the generation of some F1 hybrids. CATIE plays a leading 
role in asexual reproduction via somatic embryogenesis and by micro-cuttings 
(William Solano, CATIE, personal communication; Mata-Quirós et al. 2017).

 Sugar Cane

As a perennial C4 grass crop, sugarcane is cultivated worldwide in tropical and sub-
tropical regions as a major source of sucrose (Park et al. 2015), with a global crop 
value of $61 billion a year (FAOSTAT 2016). Sugarcane accounts for 75% of global 
sucrose production (Kandel et al. 2018). In addition to its importance as a food crop, 
it has one of the highest solar energy conversion efficiency and highest biomass 
yield among the known crops (Lam et al. 2009; Henry 2010; Byrt et al. 2011).
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Modern sugarcane cultivars are derived from interspecific hybridizations between 
the domestic and wild species Saccharum officinarum (2n = 80) and Saccharum 
spontaneum (2n = 40–128). Both species are highly polyploid (Aitken et al. 2005), 
with a basic chromosome number of x = 10 for S. officinarum and x = 8 for S. spon-
taneum (D’Hont et al. 1998). The genome of current sugarcane cultivars is com-
posed of approximately 70–80% S. officinarum and 10–20% S. spontaneum, with 
only 10% from the recombination of these two species (D’Hont et al. 1996).

Modern cultivars have limited genetic variation (Fickett et  al. 2020). Almost 
20 S. officinarum clones are involved in the genealogy of sugarcane cultivars with 
only a few being used extensively (Raboin et al. 2008). Basic crosses are made with 
clones of S. spontaneum, S. robustum, and species of other genera within the 
Saccharum complex to broaden the genetic base (Moore et  al. 2013; Ming 
et al. 2010).

A “World Collection of Sugarcane and Related Grasses” (WCSRG) is main-
tained at the National Germplasm Repository of the USDA-ARS Subtropical 
Horticulture Research Station, Miami, FL, USA.  A total of 342  S. spontaneum 
clones were assessed using stratified random sampling over geographical origins 
and principal component cluster groups to select a 75-clone core collection (Tai and 
Miller 2001). By and large, this is one of the largest sugarcane germplasm collec-
tions in the world. There is yet another base broadening (basic breeding) program at 
the USDA-ARS Sugarcane Research Unit in Houma, Louisiana (Fickett et al. 2020).

 Rubber

Rubber is an industrial raw material indispensable to humans with more than 55,000 
vivid products made from it. The para rubber tree, the Hevea brasiliensis (Willd. ex 
A. Juss.) Müll. Arg., (Euphorbiaceae), is the chief contributor to natural rubber pro-
duction worldwide. Hevea rubber is native of Amazon basin (Priyadarshan and 
Clément-Demange 2004). Hevea has eleven species, all native to Amazon that are 
inter-crossable (Priyadarshan and Goncalves 2003). All Hevea species have 2n = 36 
chromosomes, with the exception of one triploid clone of H. guianensis (2n = 54) 
and the existence of one genotype of H. pauciflora with 2n = 18 (Baldwin 1947; 
Majumder 1964). Although Hevea behaves as a diploid, it is believed to be an 
amphidiploid (2n = 36; x = 9) that stabilized during the course of evolution (Clément- 
Demange et al. 2000).

It is difficult to evaluate how narrow the genetic base initially was for what has 
now become the “Wickham” domesticated population (Dean 1987; Baulkwill 
1989). Much importance was conferred to a small number of 22 seedlings dissemi-
nated from Singapore to Malaysia after 1876. A significant part of the Wickham 
seedlings which germinated in Kew Gardens was then sent to Ceylon (now Sri 
Lanka), raised, and disseminated to different countries, especially India. However, 
it is significant that the original Wickham stock was collected in only one Brazilian 
site, Boïm, on the Western banks of the Tapajoz river, not far from Santarém. All 
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these contentions are debatable (Thomas 2001). Directional selection applied to 
such populations for more than a century, and the low fruit-set in Hevea probably 
further contributed to the narrow genetic base (Priyadarshan 2016). Genetic diver-
sity can now be compared to that of the available wild Amazonian populations by 
use of molecular genetic markers (Priyadarshan 2017a, b).

Since the introduction of rubber to southeast Asian countries by Wickham and 
Cross in 1877 through Kew Botanic Gardens, there have been attempts to enrich the 
germplasm with new genetic diversity (Simmonds 1989). Hevea rubber was evolved 
because of evolution spanning over thousands of years. Today, the cultivation of 
Hevea rubber spans to several continents and new environments that are both opti-
mal and suboptimal (Priyadarshan 2003). With the initiatives taken up by the 
IRRDB (International Rubber Research and Development Board), 64,734 seeds, 
1413 m of budwood from 194 high yielding trees and 1160 seedlings were collected 
during 1981 from Acre, Rondonia, and Mato-Grosso states of Brazil, from 60 dif-
ferent locations spread to 16 districts (Nouy 1982; Tan 1987; Simmonds 1989). Of 
this, 37.5% of the seeds went to Malaysia and 12.5% to Côte d’Ivoire while half of 
the collections were retained in Brazil. The clonal selections were brought to 
Malaysia and Côte d’Ivoire after quarantine measures (of 1 year in Guadalupe 
Island) for South American Leaf Blight (SALB—Microcyclus ulei). After the estab-
lishment of two IRRDB Germplasm Centers in Malaysia and Côte d’Ivoire, other 
IRRDB member countries were supplied with budwood from this material accord-
ing to their request. Malaysia alone established 8900 seedlings and 109 clones from 
this exploration (Pushparajah 2001). Crosses between Wickham and Amazonian 
accessions could introduce more variation. Breeding at IRCA (Institut de Recherches 
sur le Caoutchouc en Afrique), Côte d’Ivoire, under the auspices of CIRAD (Centre 
de coopération internationale en recherche agronomique pour le développement), 
involve utilization of Amazonian accessions (Clement-Demange et al. 1998).

Identification of all Wickham clones could be done with 13 probes associated 
with restriction enzyme EcoRI (Besse et al. 1993). The cultivated clones are geneti-
cally close to the Mato-Grosso genotypes. A comprehensive map of genomic varia-
tion across rubber tree plastomes (plastid genomes) exhibited higher genomic 
variants in wild rubber than that of cultivated ones (Feng et al. 2020). mtDNA of 
Wickham clones has lesser variation because their female progenitors are all pri-
mary clones (Supriya and Priyadarshan, 2019). The cytoplasmic donors of most of 
the improved clones are either PB 56 or Tjir 1. While the cytoplasm of PB 56 was 
transferred through PB 5/51, the cytoplasm of Tjir 1 was through RRII 105, RRIM 
600, and RRIM 605 (Priyadarshan 2017a, b).

The original 22 seedlings of Wickham collection from which the day-to-day 
Hevea clones were evolved had been genetically narrowed to enrich the Hevea gene 
pool. Also, these populations were subjected to several rounds of controlled cross-
ing that further narrowed the diversity. Moreover, the strategy followed by the 
breeders to select only the desirable genotypes and to reject the unwanted ones 
(without precisely assessing yield and other secondary attributes) is the main reason 
that reduced diversity. Concerted efforts to infuse the Amazonian germplasm 
through controlled crossings never met with enriching the diversity as desired and 
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as expected. This is because selection was and is always been in favor of higher 
yield.  Of late, it is noteworthy that effrots are being incurred to breed Hevea 
at molecular level.  

3  Future Perspectives

The conservation of crop genetic resources, including their wild relatives, is of 
utmost importance for the future of mankind. Most crops be stored in seed gene 
banks. But for crops that produce recalcitrant (non-storable) seeds such as cacao, 
coffee, and coconut, in vitro and cryopreserved collections provide an alternative 
(Panis et al. 2020). International gene banks have a collection of over 760,000 con-
served accessions of various plants, most of these accessions are within the multi-
lateral system governed by the International Treaty on Plant Genetic Resources for 
Food and Agriculture (ITPGRFA) (Lee et al. 2020). However, in spite of the success 
in collection and conservation, only a small portion of the genetic diversity has been 
used in crop breeding programs. Genetically diverse plant germplasms stored in ex 
situ gene banks are excellent resources for breeding new high yielding and sustain-
able crop varieties. Some gene banks do follow cost-effective genotyping technolo-
gies. However, the adoption of modern phenotyping is lagging. These phenotyping 
tools and high-throughput genotyping must accelerate the derivation of more resil-
ient food crops for the future (Nguyen and Norton 2020).

Li et al. (2018) pointed out two major limitations preventing the exploitation of 
gene bank genetic resources for breeding programs:

• Time and available resources for thorough characterization of accessions at a 
large scale.

• Identifying and introducing the allelic variance into elite breeding materials.

This missing characterization data makes searching of an accession with specific 
desirable agronomic trait a daunting task (Wambugu et al. 2018). The gene banks 
are increasingly required to move beyond providing basic passport data that defines 
only the identity and origin to thoroughly catalogue agronomic, physiological, and 
genetic traits (Anglin et al. 2018). A three-step strategy that combines genomics and 
phenomics to effectively mine gene bank genetic resources has been proposed 
(McCouch et al. 2013):

• Obtain a sample of sequence information from the genomes of all non-duplicate 
plant samples in the world’s gene banks that are available under the terms and 
conditions of the ITPGRFA. This may perhaps come up to two million. This 
“fingerprint” for each plant will serve as the basis for assessing genetic 
 relationships which can be used to systematically select subsets of material for 
in-depth investigations.

• Analyze the phenotypes of gene bank accessions to evaluate their traits and over-
all performance. This is rather costly, intellectually challenging, complex, and 
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time-consuming process. All gene bank accessions cannot be evaluated under all 
relevant environments, even with high-throughput phenotyping technologies. 
The genetics of high-performing offspring can be traced back to DNA inherited 
from wild or landrace donors. Such donors must be quite often less productive.

• Create an internationally accessible informatics infrastructure to catalogue the 
world’s seed/genetic diversity. Details of passport, genomic, and phenotypic 
information can be directly linked to seeds and genetic stocks. This can augment 
plant improvement programs. This is a task that requires unprecedented effort. 
Currently, seed data are recorded and managed by different people like gene 
bank curators, agronomists, and breeders following database systems. This calls 
for a coordinated system of data management and benefit sharing.

When we consider coffee as an example, C. arabica is an allotetraploid 
(2n = 4x = 44) originating from a hybridization event of the two diploid species 
C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor spe-
cies harbor a greater level of genetic variability and are an important source of genes 
to broaden the narrow Arabica genetic base. Merot-L’anthoene et al. (2019) selected 
8580 unique and informative SNPs from C. canephora and C. arabica sequencing 
data, with 40% of the SNP located in annotated genes. A panel of C. canephora 
accessions was successfully discriminated, and over 70% of the SNP markers were 
transferable across the three species. Furthermore, the canephora-derived sub- 
genome of C. arabica was shown to be more closely related to C. canephora acces-
sions from northern Uganda. This study is a clear indication of the wide range of 
variability available in cash crops.Gene bank phenomics still lag in evaluating avail-
able plant genetic resources despite the development of DNA technology (Philipp 
et al. 2018). High-throughput phenotyping (HTP) using sensors and imagers is a 
promising, efficient, and cost-effective approach to collect phenotypic data for mul-
tiple traits across large-scale trials that can then be used together with genomic data 
for accurate selection in breeding (Araus and Kefauver 2018). With a comprehen-
sive phenomics approach combining pedigree, genomic, and phenotyping data 
(McCouch et al. 2013), the true value of gene bank genetic resources is evident. 
Such strategic efforts are prime to double our current rate of genetic gain to feed the 
growing world population under the anticipated dynamic climate changes.
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