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Preface

This volume represents presentations given at the 85th annual meeting of the
Psychometric Society, that due to the pandemic of covid-19 was held virtually.
This is the first IMPS meeting held only over internet and it was given during
July 14-17, 2020. There were 230 abstracts submitted (154 oral presentations, 89
posters, and 3 symposia). The virtual meeting attracted 378 participants, 54 of
whom also participated in the virtual short course pre-conference workshop. There
were three keynote presentations, three invited presentations, eight spotlight speaker
presentations, and one dissertation award presentation.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society to allow presenters at
the annual meeting to spread their ideas quickly to the wider research community,
while still undergoing a thorough review process. This is especially important
now as meeting in person was difficult in 2020. The previous eight volumes of
the meetings were received successfully, and we expect these proceedings to be
successful as well.

The authors were asked to use their presentation at the meeting as the basis
of their chapters, possibly extended with new ideas or additional information.
The result is a selection of 42 stateof- the-art chapters addressing a diverse set
of psychometric topics, including but not limited to item response theory, factor
analysis, test equating, cognitive diagnostic models, response time, IRT as well as
psychometric applications within different fields.

Umeå, Västerbottens Län, Sweden Marie Wiberg

Amsterdam, The Netherlands Dylan Molenaar

Santiago, Chile Jorge González

Evanston, IL, USA Ulf Böckenholt

Madison, WI, USA Jee-Seon Kim
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A Rotation Criterion That Encourages
a Hierarchical Factor Structure

Chen Tian and Yang Liu

1 Introduction

In Yung, Thissen, and McLeod’s terminology (1999), a hierarchical factor model
may have several layers of factors: Each manifest variable loads on exactly one of
the factors in each layer. Hierarchical factor structures are common in educational
and psychological testing. For example, the big five personality traits can be divided
into many aspects, and each aspect can further be divided into facets (e.g., Allen &
DeYoung, 2017). These relationships between personality traits, aspects, facets, and
manifest variables can be represented and analyzed using the higher-order factor
model, a special case of hierarchical factor model with proportionality constraints.
Another example is the testlet effect: Both the construct and the testlet factors
contribute to the observed responses in a compensatory fashion. In addition to
explaining the correlated errors, testlets may also explicitly represent higher-order
facets within the hierarchy of interested constructs (Cooke et al., 2007).

Despite the wide-spread usage in theorizing constructs, it remains challenging to
directly obtain hierarchical structures in Exploratory Factor Analysis (EFA) since
there lacks a suitable rotation criterion. Rotation to a partially specified target
may be used, but it requires fully specifying the positions of zero loadings in the
target matrix (Browne, 1972, 2001). For circumstances where we have limited
prior knowledge on the exact pattern of factor-item dependencies, Jennrich and
Bentler (2011) discussed rotation criterions that encourage a bifactor structure
which is the simplest hierarchical model with one general factor and one layer
of specific factors. A rotation criterion function measures the discrepancy from an
exact bifactor structure, which requires each item to load on at most one specific

C. Tian (�) · Y. Liu
University of Maryland, College Park, MD, USA
e-mail: ctian1@terpmail.umd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 C. Tian and Y. Liu

Fig. 1 Generalizing the rotation cretirion from a bi-factor structure to a hierarchical structure

factor. One example from Jennrich and Bentler (2011) is to apply the quartimin
rotation criterion to the specific factors:

∑p

i=1

∑k
r=2

∑k
s=r+1 λ

2
irλ

2
is , where λir is

the loading of item i on factor r, p is the number of items, and k is the number of
factors.

Inspired by Jennrich and Bentler’s exploratory bifactor analysis using the
quartimin rotation criterion, the goal of this study is to propose a generalized rotation
criterion for a two-layer hierarchical structures in EFA. Fig. 1 displays an example
of such a structure: The corresponding factor loading matrix is expressed as eq. (1),
in which asterisks denote non-zero loading entries, and the columns from left to
right represent Fg and F1-F6. In the sequel, we say that a higher level factor is the
parent of an adjacent lower level factor if all the items loading on the lower level
factor also load on the higher level factor, and that two lower level factors having
the same parent are sibling factors. In Fig. 1, F1 is the parent of F3 and F4, and F2
is the parent of F5 and F6.
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2 Methods

2.1 Proposed Rotation Criterion Function

The proposed rotation criterion function should first be able to encourage a simple
structure within each layer, and this can be achieved by summing up the quartimin
criterion applied to different layers. In our case with F1 and F2 in the first level, there
is only one pair to constrain, so the corresponding term is

∑p

i=1 λ
2
i1λ

2
i2. Minimizing

this non-negative term encourages either λ2i1 or λ
2
i2 in the F1-F2 pair to be close to

0. With four factors in the second level, F3-F6, there are

(
4
2

)

= 6 pairs of factors,

and the corresponding quartimin term is
∑p

i=1 λ
2
i3λ

2
i4 + λ2i3λ

2
i5 + λ2i3λ

2
i6 + λ2i4λ

2
i5 +

λ2i4λ
2
i6 + λ2i5λ

2
i6. Summing up those terms from two layers allows us to simplify the

within-layer structure simultaneously for the two layers.
The rotation criterion should also be able to constrain the between-layer rela-

tionship to avoid items being loaded on the same second-level factor but different
first-level factors. Ideally, this constraint on the parent-child relationship can be
achieved using indicator functions. In the hierarchical structure shown in eq. (1),
we consider the product of two sums for each child factor. If F3 is a child of F1, as
shown in Fig. 1 and Eq. (1), for all the items loading on F1, the sum of their squared
loadings on F3,

∑p

i=1 I
(
λ2i1 �= 0

) ·λ2i3, should be non-zero; for all the items loading
on F2, the sum of their squared loadings on F3,

∑p

i=1 I
(
λ2i2 �= 0

) · λ2i3, should be
zero. Taking the product of these two sums encourages F3 to be the child of either
F1 or F2: In other words, it penalizes the case when F3 is the child of both F1 and
F2. Similarly, we can encourage that F1 is the only parent of F4, and F2 is the only
parent of F5 and F6.

The proposed rotation criterion function designed for a two-layer binary-split
hierarchical structure can be written in the following equation:

P (Λ) =
p∑

i=1

(
λ2i1λ

2
i2 + λ2i3λ

2
i4 + λ2i3λ

2
i5 + λ2i3λ

2
i6 + λ2i4λ

2
i5 + λ2i4λ

2
i6 + λ2i5λ

2
i6

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i3

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i3

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i4

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i4

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i5

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i5

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i6

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i6

)

(2)
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The first seven terms constrain the within-layer relationship between factors
in the same level, and the others consider the parent-child relationship between
two layers of factors. As indicated by the notation, the proposed rotation criterion
assumes the position of parent and children factors in the loading matrix: The
second and third columns should be the parent factors F1 and F2, and the fourth
to seventh columns should be the child factors F3 to F6. This rotation criterion can
be generalized to cases where one parent has more than two children by adding more
terms that control the relationship between a low-level factor and all other high-level
factors. For example, if we have three first-level factors, the between-layer term
for F3 can be generalized to

(∑p

i=1 I
(
λ2i1 = 0

) · λ2i3
)× (∑p

i=1 I
(
λ2i2 = 0

) · λ2i3
)+

(∑p

i=1 I
(
λ2i1 = 0

) · λ2i3
) × (∑p

i=1 I
(
λ2i3 = 0

) · λ2i3
) + (∑p

i=1 I
(
λ2i2 = 0

) · λ2i3
) ×

(∑p

i=1 I
(
λ2i3 = 0

) · λ2i3
)
, which ensures that F3 has only one parent. It can also

be generalized beyond two layers of factors by adding another collection of terms
constraining the children-grandchildren relationship.

2.2 Computational Techniques

The non-continuous indicator function was approximated by the smooth exponential
function such that the criterion function is differentiable as required by the optimiza-
tion algorithm. The exponential function used in this simulation is y = e−αx, with
α = 1,000,000.

The Riemannian trust-region algorithm (Liu, 2020) was used to perform the
orthogonal rotation, a second-order optimization algorithm for numerical search on
the orthogonal group, i.e., the space of rotation matrices. It converges much faster
than the gradient projection algorithm (Jennrich, 2001) with fewer iterations.

As the criterion function is sensitive to starting values and may converge to local
minima, we used multiple random starts and chose the best as the final solution. It
is a common practice for rotation criterions that are sensitive to starting values (e.g.,
Kiers, 1994; Rozeboom, 1992). In this study, we used 30 random starts and pick the
solution with the minimum resulted function value from all 30 solutions.

2.3 Simulation Design

To understand the tolerance of the criterion function to the non-perfect and diverse
EFA practices, three design factors were manipulated in the simulation study:
loading matrices having (a) different numbers of rows/items; (b) magnitude of
small errors replacing zeros; and (c) equal/unequal numbers of manifest variables
among sibling factors. This study considers hierarchical structures with binary split:
The numbers of items are 16, 32, and 64. To generate a scenario that is more
realistic than the condition with exact hierarchical patterns, slight departures from
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the exact structure were generated by substituting exact zero loadings with random
variates independently sampled from Uniform [−0.05, 0.05] or Uniform [−0.1,
0.1]. The non-zero loadings were simulated from Uniform [0.3, 1]. For the third
factor involving the balancing condition of items loading on sibling factors, we
considered three levels: balanced loading matrices with 50:50 items loading on
sibling factors (balanced), unbalanced loading matrices with 35:65 items loading on
sibling factors (unbalanced 1), and unbalanced loading matrices with 20:80 items
loading on sibling factors (unbalanced 2). Note that F3 and F4 are siblings because
their parent is F1, and F3 and F5 are not siblings because they do not have the
same parent. For the unbalanced conditions, we may have non-integer numbers of
items per factor (e.g. 16×0.2=3.4), and those numbers were rounded to the closest
integers.

An initial loading matrix with an unrecognizable structure, which mimics the
result of EFA, was the matrix to be rotated using the proposed rotation criterion.
We need to make sure the initially unrecognizable matrix is finally recognizable.
Therefore, the initial matrix was created by randomly rotating the true loading
matrix. Thirty replications were done for each of the 3×3×3 conditions. The
convergence tolerance was set to 10−5. To evaluate the results, we calculate the
scaled Frobenius-norm error between the true matrix and the rotated loading matrix
averaged across 30 replications:

1√
pk

∥
∥
∥Λ̂−Λ

∥
∥
∥
F

=

√
√
√
√

∑p

i=1

∑k
j=1

(
λ̂ij − λij

)2

pk
,

(3)

where k is the total number of factors or columns in the complete loading matrix �
and p is the number of items.

3 Results

For the 30 replications of each of the 3×3×3 conditions, all the final solutions
converged, and the mean of minimized criterion function values over 30 replications
are summarized in Table 1. The results show that when the true loading matrix has
some errors, the function value will be greater than 0 because the true value itself is
greater than 0. Holding the error range and the extent of balance constant, the more
items we have, the larger the minimized function value; holding the number of items
and the error range constant, the more balanced the true loading matrix, the larger
the minimized function value.

The scaled Frobenius-norm error was summarized in Table 2 and depicted in
Fig. 2. The values in Table 2 reflect the estimated error per entry and can be seen as
the “averaged distance” between true and estimated loading matrices, considering
the size of the matrices. Table 2 shows that holding the error range and the number
of items constant, the more unbalanced the true matrix is, the larger the distances
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Table 1 The mean of minimized criterion function values over 30 replications for all conditions

Balanced (50%) Unbalanced 1 (35%) Unbalanced 2 (20%)

16 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.007 0.006 0.005
Unif (−0.1, 0.1) 0.023 0.018 0.008

32 items 0 errors 0 0 0.001
Unif (−0.05, 0.05) 0.019 0.019 0.016
Unif (−0.1, 0.1) 0.071 0.069 0.033

64 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.043 0.043 0.043
Unif (−0.1, 0.1) 0.174 0.163 0.11

Table 2 The scaled Frobenius-norm error averaged across 30 replications for all conditions

Balanced (50%) Unbalanced 1 (35%) Unbalanced 2 (20%)

16 items 0 errors 0 0 0.042
Unif (−0.05, 0.05) 0.057 0.081 0.258
Unif (−0.1, 0.1) 0.180 0.241 0.327

32 items 0 errors 0 0 0.017
Unif (−0.05, 0.05) 0.035 0.044 0.172
Unif (−0.1, 0.1) 0.114 0.223 0.335

64 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.034 0.035 0.047
Unif (−0.1, 0.1) 0.079 0.123 0.328

Fig. 2 The scaled Frobenius-norm error averaged across 30 replications for all conditions

between true and estimated loading matrix. Holding the balance extent and the
number of items constant, the larger the errors, the larger the distances. Holding
the balance extent and the error range constant, the more items we have, which
means more pieces of information, the smaller the distances are.
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4 Discussions

This proposed function is a generalization of Jennrich and Bentler’s exploratory
bifactor analysis to a two-layer hierarchical structure, which facilitates recovering
and testing of a more complicated hierarchical structure in EFA with limited prior
knowledge about item-factor dependency. Starting from an initial matrix with an
unrecognizable structure, we can find a rotation matrix such that the rotated matrix
is as close to a matrix with the hierarchical structure as possible. Our simulation
results suggest that the proposed criterion function is generally robust to realistic
scenarios when slight to moderate departures from a perfect hierarchical structure
are present and when the matrix is moderately unbalanced. We also observe that
parameter recovery is worsened by the magnitude of imperfect factor structure and
the unbalancedness while improved as the number of items increases (Fig. 2). When
the error ranges from −0.1 to 0.1, given that the meaningful loading value ranges
from 0.3 to 1, we may have a too-small signal-to-noise ratio to recover the true
hierarchical loading matrix. The negative effect of errors was intensified when we
also have a severely unbalanced true matrix.

There are some limitations of the current study. First, the proposed rotation
criterion requires us to know exactly how many factors we have at each layer
and locks the positions of factors of a specific layer. In other words, the criterion
function implicitly assumes that the general factor lies in the first column, the two
first-level factors lie in the second and third columns, and the four second-level
factors lie in the fourth to seventh columns. The problem is that, if we reorder the
columns of a loading matrix with a perfect hierarchical structure in some ways, say,
let the general factor lie in the fourth column and a second-level factor lie in the
first column, then the function value is not zero, even though the re-ordered matrix
has a perfect hierarchical structure. An ideal criterion function should always give
a zero for matrices with the perfect hierarchical structure regardless of the ordering
of columns, which is not satisfied by the current criterion function. In our numerical
experiments, we observed local minima for the simpler bifactor structure as well, but
not as severe as the two-layer structure which has more constrains to the column-
wise relationships. Second, the proposed criterion function has many local minima.
Some initial matrices may be easily rotated to a point which does not give a zero
function value, then be further distorted when forcing the function value to be zero.
Using random starts is only a heuristic solution, and more investigation is needed.
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Comparison Between Different
Estimation Methods of Factor Models
for Longitudinal Ordinal Data

Silvia Bianconcini and Silvia Cagnone

1 Introduction

In recent years, common statistical applications have dealt with multivariate longi-
tudinal data with the purpose of measuring changes in constructs over time, such as
attitudes, opinions, performances and abilities. In this context, both the multifaceted
nature of the data and the longitudinal evolution of the underlying constructs have to
be studied jointly, and Generalised Linear and Latent Variable Models (GLLVMs)
(Dunson, 2003; Cagnone et al., 2009) represent a useful framework. GLLVMs
assume that the entire set of the responses given by an individual to a certain number
of items at different occasions, called the response pattern, can be expressed as a
function of one or more latent variables and random effects through a monotone
differentiable link function.

A potential barrier to the application of these latent variable models is the
computational challenge presented by typically large datasets. Panel studies usually
have several thousands of respondents which, when combined with multiple waves
of measurement and a large choice set, renders unfeasible existing estimation
approaches (likelihood-based and Bayesian one). Even when cross-sectional models
are used, if the observed variables are of different nature, continuous and discrete,
the estimation of these models is cumbersome. It can be carried out using a full
information maximum likelihood method via either the EM algorithm or direct
maximisation, but, in both cases, the integrals involved in the likelihood compu-
tation have no analytical solutions and need to be approximated. This problem is
more evident in presence of longitudinal data since the number of latent variables
and random effects increases proportionally to the number of observed items. In
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presence of multidimensional longitudinal data, classical quadrature techniques,
such as the adaptive Gauss Hermite, that represents the gold standard in the GLLVM
framework, is already unfeasible when four items are observed at three different
time points. Alternatively, the widely applied Laplace approximation is known to
provide inaccurate estimates in presence of discrete data.

Alternative methods that can be used to produce estimators with desired statis-
tical properties and that, in addition, simplify the estimation process, are greatly
needed. The most popular method that offers reduction in estimation complexity
is the composite likelihood approach, introduced by Lindsay in 1988 (Lindsay,
1988) and further discussed, among the others, by Varin and Vidoni (2005). The
composite likelihood estimator is obtained by maximising the univariate and/or
bivariate likelihood products that contain the greatest quantity of model parameter
information. The immediate effect of the composite likelihood estimation is the
reduction of the number of integrations required in the likelihood computation.

Another approach that has been recently proposed in the literature is the
dimension-wise quadrature, developed by Bianconcini et al. (2017). It consists in
reducing the dimension of the multidimensional integrals by truncating the Taylor
series expansion of the integrand. This makes the computation feasible also when
the number of latent variables is large. The proposed approach provides a higher
order approximation than the Laplace one but does not require any derivative
computation, hence it is very simple to implement. Furthermore, the corresponding
estimators are asymptotically as accurate as the adaptive Gauss Hermite estimators.

This paper investigates the use of pairwise likelihood methods and dimension-
wise quadratures for estimating latent variable models for multivariate longitudinal
ordinal data. A simulation study is carried out to compare the performance of these
estimators under different common empirical scenarios, and their behaviour is also
highlighted through a real data example.

2 Generalized Linear Latent Variable Models
for Longitudinal Ordinal Data

Let yt1, yt2, . . . , ytp be a vector of p ordinal observed variables at time (t, t =
1, . . . , T ) each of them with cj , j = 1, . . . , p, categories, and z1, z2, . . . , zT a
latent variable that accounts for the associations among the p items at each time
point. Let u1, u2, . . . , up be p random effects that account for the associations of
the same item at different time points. We consider the Generalized Linear Latent
Variable Models (GLLVM) approach for longitudinal data that has been discussed
by Dunson (2003) for mixed observed variables, and by Cagnone et al. (2009) in
the specific case of ordinal data. According to the GLLVM approach, we define the
joint density of the observed variables as
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f (y) =
∫

Rq

g(y | z,u)h(z,u)dzdu

where g(y | z,u) is referred to as measurement part of the model and h(z,u) as
structural part of the model. The dimension of the integral depends on the number
of observed variables and the number of time points, that is q = p + T .

The measurement part of the model is defined as a generalized linear model with
random component given by

g(y|z,u) =
T∏

t=1

p∏

j=1

g(ytj |zt , uj ) = (1)

=
T∏

t=1

p∏

j=1

cj∏

r=1

(γtj (r)(zt , uj )− γtj (r−1)(zt , uj ))
ytj (r) , r = 1, . . . , c − 1

where the first equality comes from the conditional independence assumption
between items and over time. Each conditional marginal density g(ytj |zt , uj )
follows a multinomial distribution of parameter γtj (r)(zt , uj ) that is the cumulative
probability that an individual responds to item j at time t up to category r . ytj (r) is
a dummy variable that assumes value 1 up to category r .

The systematic component defines the linear predictor

ηtj (r) = τtj (r) − λtj zt − uj

where τtj (r)’s are item, time and category-dependent thresholds and λtj ’s are item
and time-dependent factor loadings. The link between the systematic component
and the conditional means of the random component distributions is ηtj (r) =
νtj (r)(γtj (r)(zt , uj )) where νtj (r) is the link function which can be any monotonic,
differentiable function. We consider the logit link function.

As for the structural part of the model, we consider the specification given
by Cagnone et al. (2009), that is we assume that the latent variables follow an
autoregressive no stationary process of first order as follows

zt = φzt−1 + δt , (2)

where φ is the autoregressive coefficient, δt ∼ N(0, 1) and z1 ∼ N(0, σ 2
1 ).

Moreover, the joint density h(z,u) ∼ N(0,�) where

� =
[

� 0
0 �

]

.

� = diagj=1,...,p{σ 2
uj } and the inverse of � has a well known special pattern whose

expression can be found in Cagnone et al. (2009).
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3 Model Estimation

Model estimation is usually performed by using a full maximum likelihood method.
Given a sample of size n, the log-likelihood is given by:

L(θ) =
n∑

i=1

log f (yi , θ) =
n∑

i=1

log
∫

Rq

g(yi | zi ,ui )h(zi ,ui )dzidui (3)

where θ is the vector of parameters to be estimated. A problem related to the
maximization of the log-likelihood is that, in general, the multidimensional integral
in (3) is not solvable analytically.

Among the remedies proposed in the literature, numerical quadrature-based
methods represent a widespread solution to this problem and, among them, the
adaptive Gauss Hermite quadrature is considered the gold standard approach
(Rabe-Hesketh et al., 2005; Schilling & Bock, 2005). Alternatively, the Laplace
approximation avoids the integral computation and represents the easiest method to
implement (Liu & Pierce, 1994; Huber et al., 2004). The adaptive Gauss Hermite
quadrature provides more accurate estimates than the Laplace approximation, but
it is computationally unfeasible as the number of latent variables and random
effects increases. To overcome these limitations, recent solutions proposed for factor
models for longitudinal ordinal data are the pairwise likelihood approach (Vasdekis
et al., 2012) and the dimension-wise quadrature method (Bianconcini et al., 2017).

3.1 Pairwise Likelihood Approach

The pairwise likelihood estimator is obtained by maximizing bivariate likelihood
products that contain the greatest quantity of model parameter information (Lindsay,
1988; Cox & Reid, 2004). The immediate effect of the pairwise likelihood estima-
tion is the reduction of the number of integrations in the expression of the likelihood
(3). Indeed, the contribution of any given individual to the pairwise log-likelihood
is given by

pl(θ; y) =
n∑

i=1

pl(θ; yi ) (4)

with pl(θ; yi ) = ∑
t,t ′,j,j ′ log f (ytji , yt ′j ′i; θ). In particular, for the factor model

for longitudinal ordinal data described in Sect. 2, the bivariate density for a pair of
responses (ytj i , yt ′j ′i ) is given by

f (ytji , yt ′j ′i; θ) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (ytji , yt ′j ′i , zti , zt ′i , uji , uj ′i )dztidzt ′idujiduj ′i
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=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (ytji |zti , uji )f (yt ′j ′i |zt ′i , uj ′i )× (5)

×h(zti , zt ′i , uji , uj ′i )dztidzt ′idujiduj ′i .

The dimensional of the integrals involved in the expression of the likelihood
components is four and if j = j ′ or t = t ′ it reduces to three. Thus, the
three/four-dimensional integral can be easily approximated using a the Gauss
Hermite quadrature method.

The resulting estimators are generally consistent and asymptotically normally
distributed (Varin & Vidoni, 2005).

3.2 Dimension-Wise Quadrature Method

Let b = (z,u) denote the vector of latent variables and random effects and consider
the following representation of the marginal density function

f (y; θ) =
∫

Rq

∏p

j=1 g(yj |b)h(b)
φ(b;bmo,�mo)

φ(b;bmo,�mo)db = (6)

= |Cmo|
∫

Rq

∏p

j=1 g(yj |Cmob∗ + bmo)h(Cmob∗ + bmo)

φ(b∗; 0, I) φ(b∗; 0, I)db∗ =

= |Cmo|
∫

Rq

m(b∗)φ(b∗; 0, I)db∗ =

= |Cmo|Eφ[m(b∗)]

where bmo is the maximum of the integrand g(y | z,u)h(z,u) and �mo = CmoC′
mo

is minus the inverse of the corresponding Hessian matrix evaluated in the mode bmo.
φ(·) the normal density function.

The dimension-wise method is applied to the expected value Eφ[m(b∗)]. It is
based on the Taylor expansion of m(b∗) around 0 up to the s term as follows

m̂(b∗) =
s∑

w=1

tw (7)

where each component tw considers all the derivatives of m(b∗) taken with respect
to w latent factors, that is

tw =
∑

j1,j2,...,jw

∑

k1<k2<...<kw

1

j1!j2! . . . jw!
∂j1+j2,...,+jwm

∂b
∗j1
k1

∂b
∗j2
k2

. . . ∂b
∗jw
kw

(0)b∗j1
k1

b
∗j2
k2

. . . b
∗jw
kw

(8)
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The approximated function m̂(b∗) admits the following equivalent representation
(Bianconcini et al., 2017)

m̂(b∗) =
s∑

l=0

(−1)l
(
q − s + l − 1

l

)

ms−l (b∗) (9)

where ms−l (b∗) = m(0, · · · , b∗
k1
, 0 · · · , 0, b∗

ks−l , 0, · · · , 0). Thus, ms−l is a func-
tion of just s − l variables being all the remaining fixed to 0. Replacing Eq. (9) in
Eq. (6), we obtain the approximate density function

fa(y; θ) = |Cmo|
⎡

⎣
s−1∑

l=0

(−1)l
(
q − s + l − 1

l

)∫

Rs−l

∑

k1<...<ks−l
ms−l (b∗)×

(10)

φ(b∗
k1
) · · ·φ(b∗

ks−i )db
∗
k1
..db∗

ks−l

]
.

The dimension of the integrals in expression (10) depends on the choice of s. If s =
1, we obtain a linear combination of unidimensional integrals, if s = 2, we obtain a
linear combination of uni- and bi-dimensional integrals and so on. For small values
of s, the integrals can be easily approximated using the Gauss Hermite quadrature
method. In the extreme cases of s = 0 and s = q the solution is equivalent to the
classical Laplace and to the adaptive Gauss-Hermite quadrature ones, respectively.

The dimension-wise quadrature estimators share the same accuracy as the
adaptive Gauss-Hermite method (Bianconcini et al., 2017), but avoiding the main
computational limitations of the latter.

4 Simulation Study

The performance of the two approximation methods are compared through a
simulation study.

We consider a first scenario where the number of factors is fixed to four, that
is we assume to have observed two items at two different occasions (q = 4, p =
2, T = 2). This simple scenario allows us to also consider the Adaptive Gauss
Hermite (AGH) quadrature that is feasible with number of quadrature points nq
equal to 8 (AGH8) and 15 (AGH15). The AGH with 15 quadrature points can
be considered the benchmark providing an almost exact representation of the
function (Bianconcini et al., 2017). In this scenario, the AGH corresponds to the
dimension-wise method (DWM) with s = 4. We also estimate the classical Laplace
approximation, that corresponds to DWM with s = 0. Finally, we consider the
dimension-wise quadrature with s = 1, 2, and 3. We set sample sizes equal to
n = 200 and 1000, and, as suggested by Vasdekis et al. (2012), we consider 100
replications for each condition of the study.
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Table 1 reports the bias and Root Mean Square Error (rmse) of the parameter
estimates in the case of n = 200. The first loading is fixed to 1 for identification
reasons and measurement invariance of thresholds and loadings over time is
assumed.

As known, the Laplace approximation produces strongly biased estimates but
with generally lower rmse than AGH15. The accuracy of the DWM estimates
improves as s increases, and with similar results to AGH15 when s = 3.

The pairwise method also produces similar estimates to those of AGH15. Thus,
for finite samples (n = 200), the pairwise method and the dimension-wise with
s = 3 perform similarly. The main differences in the performance of the pairwise
and dimension-wise methods are evident in larger samples, that is for n = 1000.

Figures 1 and 2 show the density estimates for λ2 and φ, respectively.
The Laplace estimator is very inaccurate whereas the DWM estimator based on

s = 3 is the closest to the AGH15 one. The pairwise behaves in between DWMwith
s = 2 and DWMwith s = 3. It is interesting to notice that even if DWMwith s = 1
is less accurate than the same method with higher values of s and pairwise, it is far
superior to the Laplace estimator. The parameter estimators not shown here have a
similar performance.

Table 1 Results for the 4-factor model, n = 200

Pairwise Laplace DWM DWM DWM

s = 0 s = 1 s = 2 s = 3

True Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.00 0.70 −0.67 0.67 −0.35 0.83 −0.15 0.87 0.06 0.82

φ = 0.8 −0.02 0.19 0.11 0.12 0.01 0.15 0.00 0.17 −0.05 0.18

σ 2
1 = 2 0.51 1.29 0.69 1.39 1.10 2.84 0.92 2.26 0.59 1.50

σ 2
u1

= 1 −0.12 0.71 −0.96 1.11 −0.76 1.06 −0.46 0.99 −0.13 0.75

σ 2
u2

= 1.5 0.19 0.95 −0.44 0.92 −0.52 1.22 0.20 1.28 0.50 1.62

AGH8 AGH15

s = 4 s = 4

True Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.03 0.76 0.05 0.78

φ = 0.8 −0.02 0.17 −0.02 0.17

σ 2
1 = 2 0.59 1.58 0.57 1.58

σ 2
u1

= 1 −0.10 0.84 −0.14 0.81

σ 2
u2

= 1.5 0.34 1.25 0.48 1.59
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Fig. 1 Densities estimation of λ2 (true value: 1.61) for the 4-factor model, n = 1000
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Fig. 2 Densities estimation of φ (true value: 0.8) for the 4-factor model, n = 1000

In Fig. 3 the values of the log-likelihood for an increasing number of quadrature
point nq, that is 3, 5, 8, 11, and 15 are reported for the analyzed methods. We can
observe that in all the cases pairwise performs worse than AGH, DWM with s = 2
and s = 3, whereas the log-likelihood values based on DWM with s = 3 and AGH
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Fig. 3 Log-likelihood for increasing number of quadrature points, 4-factor model, n = 1000

are almost identical, independently on the number of quadrature points used in the
integral approximations.

In the second simulation scenario we consider a factor model with seven factors,
that is we assume to observe three items at four different occasions (q = 7, p =
3, T = 4). In this setting the AGH is not feasible. As before, we consider sample
sizes equal to 200 and 1000, and 100 replications for each condition of the study.

The results are reported in Tables 2 and 3 for n = 200 and n = 1000,
respectively. It is interesting to notice that, in this scenario, for both small and large
sample sizes, even DWM with s = 2 outperforms the pairwise method in terms of
bias as well as rmse. The pairwise performs more similarly to DWM with s = 1.

5 Real Data Analysis

Lastly, the two different approximation techniques considered through this research
are compared using a real dataset, taken from the British Household Panel Survey
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Table 2 Results for the 7-factor model, n = 200

Laplace DWM DWM DWM
Pairwise s = 0 s = 1 s = 2 s = 3

True Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.23 0.39 −0.32 0.35 −0.15 0.34 −0.03 0.25 0.03 0.29

λ3 = 0.66 0.05 0.20 −0.06 0.15 −0.10 0.17 −0.01 0.15 0.00 0.16

φ = 0.4 −0.04 0.11 0.08 0.13 0.02 0.11 0.00 0.01 −0.01 0.10

σ 2
1 = 2 0.01 0.59 −0.29 0.44 −0.20 0.41 −0.03 0.11 0.00 0.33

σ 2
u1

= 1 0.17 0.33 −0.32 0.50 −0.21 0.47 0.00 0.22 0.08 0.52

σ 2
u2

= 1.5 0.38 0.61 −0.18 0.51 −0.07 0.49 0.03 0.26 0.05 0.52

σ 2
u3

= 2 0.19 0.57 0.32 0.86 0.45 1.09 0.16 0.60 0.14 0.75

Table 3 Results for the 7-factor model, n = 1000

Laplace DWM DWM

Pairwise s = 0 s = 1 s = 2

True Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.28 0.31 −0.33 0.33 −0.19 0.22 −0.05 0.12

λ3 = 0.66 0.04 0.10 −0.06 0.09 −0.10 0.12 −0.01 0.07

φ = 0.4 −0.05 0.07 0.09 0.10 0.03 0.06 0.01 0.11

σ 2
1 = 2 −0.08 0.25 −0.29 0.33 −0.20 0.25 −0.03 0.05

σ 2
u1

= 1 0.28 0.31 −0.37 0.40 −0.26 0.32 −0.06 0.06

σ 2
u2

= 1.5 0.42 0.47 −0.21 0.30 −0.11 0.24 −0.01 0.23

σ 2
u3

= 2 0.14 0.28 0.17 0.37 0.26 0.46 0.05 0.31

(BHPS). The data are composed of an annual nationally representative sample of
approximately 10,000 individuals (5000 households) aged 16 years and over. The
main objective of the BHPS is to study social and economic changes in Britain
at individual and household levels. To analyze the data, five waves were selected
(1992, 1994, 1996, 1998, 2000), as well as three ordinal items that indicate social
and political attitudes. After eliminating the missing values, we are left with a
sample size of 3784 individuals. The manifest items that are to be analyzed are
taken from the section on values and opinions and indicate respondents views
on responsibility of the private sector, Government and trade unions for labor
conditions. The items are:

1. Private enterprise is the best way to solve the UKs economic problems [Enterp].
2. It is the Governments responsibility to provide a job for everyone who wants one

[Govern].
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3. Strong trade unions are needed to protect the working conditions and wages of
employees [TrUnion].

Permitted responses to these questions were agree strongly (AS), agree (A), not
agree/disagree (Neither A nor D), disagree (D), disagree strongly (DS). Due to the
fact that a small proportion of respondents fall into the first and last item categories,
the first two and last two categories have been collapsed; thus leaving us with three
categories for each item. Finally, the response categories of item Enterp have been
reversed.

A one factor model is fitted with the time-dependent factors (latent variables) as
an AR(1) autoregressive model. Previously, Vasdekis et al. (2012) analyzed the same
data by allowing all model item parameters that are associated with the measurement
model (thresholds and slopes) to vary across time points. The analysis proceeded
with the fitting of the models, exclusively with: equal thresholds, equal loadings,
and, finally, equal thresholds and loadings. The model with equal loadings, but
not thresholds, across time was the preferred, and we quote here the results for
this model. The model is estimated using the pairwise likelihood method and by
applying the diwension-wise quadrature with different levels of approximation (s
ranging from 0 to 3). The choice of s in the dimension-wise quadrature has been
done by increasing its value until the mean of the relative absolute differences in
parameter estimates (Av(Δ)) was sufficiently small (order 10−3). The stability in
the estimated parameters is achieved with s = 3. Hence, Table 4 gives the estimated
model parameters using the pairwise likelihood method and the dimension-wise
quadrature with s set equal to three.

As observed in the simulation study, the two methods provide similar results.
Loadings are all found to be positive and close to one-another. The large estimated
variances for the random effects are indicative of the presence of a large amount of
heterogeneity in the responses within each item over time. Heterogeneity that clearly
could not be entirely accounted for by the autoregressive model was fitted upon the
time-dependent latent variables. The latter are characterised by a strong correlation
between subsequent time-dependent factors, which is judged by the large estimated
autoregressive parameter φ equal to 0.83, with an estimated standard error equal
to 0.002, for the pairwise method, and equal to 0.896 (with standard error equal to
0.005) for the dimension-wise quadrature.

Table 4 Estimated factor loadings with standard errors in brackets for the non-stationary model
with time-specific latent variables and estimated variances for the item-specific random effects
based on pairwise likelihood and dimension-wise quadrature (s = 3) methods

Pairwise DWM

Item λj σuj λj σuj

Enterp 1.00 3.65 (0.21) 1.00 3.30 (0.15)

Govern 1.30 (0.07) 6.67 (0.37) 1.29 (0.04) 6.64 (0.33)

TrUnion 1.27 (0.07) 5.80 (0.40) 1.05 (0.03) 6.36 (0.71)
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6 Discussion

The estimation of models for longitudinal data with random components, such as
latent variable models, involve multidimensional integrations. A way to avoid the
high dimensional integrations is to base the estimation and inference on lower data
dimensions such as bivariate or trivariate. It is found that composite likelihood esti-
mation, using the bivariate marginal likelihoods, and dimension-wise quadratures
for a latent variable model with longitudinal ordinal responses, produce estimates
with desirable properties. These results are endorsed by the simulation studies.
In presence of multidimensional longitudinal data, these approximate likelihood
estimation methods also allow the fit of more realistic models to data sets with many
items and a few factors on each time dimension.

Both the simulation results and the real data application have shown the similar
performance of the pairwise approach and the dimension-wise quadrature with
s = 3. However, the latter is more advantageous than the pairwise likelihood
method, since its implementation is straightforward and does not depend on the
specified model. On the other hand, the pairwise approach becomes unfeasible in a
longitudinal setting where the latent variable model has more than one factor at each
occasion, and the matrix of the factor loadings does not have a simple structure.

Further work needs to be done to corroborate the findings of this study.
The properties of the dimension-wise based and pairwise estimators should be
investigated and compared theoretically. Furthermore, more efficient versions of
the pairwise likelihood estimation based on weighted estimators should be also
considered. The real application from the British Household Panel study has shown
the potential of the proposed methodologies to the analysis of real data sets. More
complex models for the structural part of the model and the inclusion of covariates
in the measurement model are useful additions.
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