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Preface

One of the main objectives of the Malaysian Society for Automatic Control Engineers
(MACE) is to promote the science and technology of automatic control engineering
in the broadest sense in all systems whether, for example, engineering, physical,
biological, social, or economic, in both theory and application. For that, MACE orga-
nizes and sponsors technical meetings such as congresses, conferences, symposia,
and workshops. And, this book is about the collection of all the technical series
presented in the last 2 years.

Many books have been written on control engineering, describing new methods
for controlling systems and better ways of mathematically formulating existing tech-
niques to solve the ever-increasing complex problems faced by practicing engineers.
However, few books fully address the application aspects of control engineering. It
is the intention of this new series to redress this situation.

This series will stress application issues, and not just the mathematics of control
engineering. It will provide texts that present not only both new and well-established
techniques but also detailed examples of the applications of these methods to the solu-
tion of real-world problems. There are many exciting examples of the applications of
control techniques in the established fields of electrical, mechanical, and biomedical
engineering that discussed in this book. Among the applications, it includes the appli-
cations in the brake-by-wire system, assisted rehabilitation device for post-stroke
patient, pollution monitoring and control, agriculture field, piano, virtual impact
tests, underwater, and camera system.

This series presents books that draw on expertise from both the academic world
and the applications domains and will be useful not only as academically recom-
mended course texts but also as handbooks for practitioners in many applications
domains. Control Engineering in Robotics and Industrial Automation—Malaysian
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Society for Automatic Control Engineers (MACE) Technical Series 2018 is another
outstanding entry in Springer Technical Series.

Kota Kinabalu, Malaysia Muralindran Mariappan
Perlis, Malaysia Mohd Rizal Arshad
Adelaide, Australia Rini Akmeliawati

Durian Tunggal, Malaysia Chong Shin Chong
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Z RO

SR

Camera Calibration and Video Stabilization Framework
for Robot Localization

f Focal length

b  Baseline

z  Distance computed
e Error
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Rini Akmeliawati

Abstract The series of research collections, CONTROL ENGINEERING IN
ROBOTICS AND INDUSTRIAL AUTOMATION, presents research outcomes in
the fields of, but not limited to, control engineering, mechatronics, robotics and
automation. The book’s eleven chapters demonstrate the current state-of-the-art
technology in the aforementioned fields. Research work on a rehabilitation robotic
device, web-scrubber systems, swarm robots, an electric power-assisted steering
system (EPAS), a navigation system for an unmanned vehicle as part of agricul-
tural technology, a sensor-based piano-playing analyzer, a steel-plate virtual impact
tester, a review work on underwater instrumentations, an efficient wireless commu-
nication system for sensor data and vision-based robot localization are presented in
this book. These diverse contribution will be beneficial to researchers, industrialists
and whoever else is interested in the topics.

Control technology is an engineering field that involves multiple disciplines in its
development and applications; however, it is often ‘hidden’ within various other
branches of technology. It is in fact a branch of the engineering field that becomes
a key enabler to several technological applications and is considered the ‘brain’ of
any mechatronics systems. Control technology often comes together with sensor and
measurement technology, as we will see in this volume.

In this first series of research collections, various applications of control
engineering, sensors, and instrumentation technology in robotics and industrial
automation, and other mechatronics, navigation and communication systems, are
presented.

Control applications for an end-effector robotic device for upper-extremity reha-
bilitation is presented by Sidek and Fatai. Such a robotic device is aimed to help hemi-
paretic post-stroke patients. It offers three-degrees-of-freedom motions for elbow and
shoulder exercise. The controller is designed based on an adaptive hybrid impedance
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framework for safe robot—patient dynamic interactions during repetitive exercises
and monitors the patients’ motor recovery.

An intelligent control system finds an interesting application in web scrubber
systems, as presented by Umar and Salami. The controller is used to adjust the flow
rate of the liquid pump to deliver the appropriate droplet size for scrubbing the
Particulate Matter (PM) contaminants based on their detected concentration level.
As a result of the implementation of the designed intelligent controller, the web
scrubber system can maintain the emission size below the recommended value in
less than 10seconds. The details of the designed web scrubber system is provided in
the preceding chapter by Danzomo et al.

Majid et al. present an interesting technical review on swarm robotics’ behav-
iors and tasks. The review provides an overall overview of research in swarm
robotics tasks, which are classified into two types: low-level and high-level tasks.
The chapter identifies and shows the correlation between the two types of tasks. The
review also includes the software and hardware platforms used for simulation and
experimentation in swarm robotics research.

Still related to swarm behaviors, Hassan et al. show the application of a particle
swarm optimization algorithm as a tuning mechanism for Fractional-Order PID
(FOPID) controllers for the electric motor of an Electric Power-Assisted Steering
system (EPAS). The performance of the overall system is evaluated under different
speeds and driver torques. The optimal FOPID with PSO has demonstrated a more
efficient performance than a classical PID controller to the system.

An autonomous navigation system of a small-scaled unmanned vehicle for agri-
culture applications has been proposed by Thamrin et al. Forward and headland turn
navigation based on the Bezier curve provides optimized trajectory planning for the
autonomous vehicle to perform narrow inter-tree navigation in an agricultural field.
This is essential for precision agriculture systems.

The application of sensor technology is not only limited to the engineering field but
can also be found in music. Choo and Mariappan propose the design of a contactless
sensor system to study the finger positions of musicians while playing the piano. A
non-intrusive and long-range capacitive sensor is developed and placed under the
keyboard area to sense the position of the player’s fingers on five piano keys. An
artificial neural network is used to process the data such that the pianists can store
and analyze their playing techniques.

The application of sensor and instrumentation technology is also found in impact
testing, as described by Chong et al., who propose the LabVIEW-based instrumenta-
tion to validate virtual impact tests of steel plates with various boundary conditions.
The piezoelectric accelerometer is used as the primary sensor in the instrumenta-
tion, providing excellent means of dynamics measurements of the impact incidents.
The LabVIEW-based instrumentation was used for hammer drop tests to investigate
the impact response of the steel plate with different hammer heights and various
boundary conditions.

Rashid and Ahmad present a review on state-of-the-art underwater instrumen-
tation to measure environmental underwater noise. Underwater measurements are
affected by various parameters, such as distance, fish population, sound, and other
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uncertainties due to oceanic activities. Advances in sensors and measurement tech-
niques are improving the accuracy and quality of the measurement data under such
conditions. The review describes the construction, operation and performance of
various underwater instrumentation and measurement techniques for specific appli-
cations, such as noise, sound, distance and direction measurements, fish population
estimation, and mine detection.

Controllers and their sensors are linked through communication systems. Efficient
wireless communication systems are essential in transmitting information, such as
sensor data. Minimum errors can be achieved with proper channel conditions and
modulation techniques. Farzamnia et al. investigate and compare the Bit Error Rate
(BER) performance of two modulation techniques which are used in communications
systems, the M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Ampli-
tude Modulation (M-QAM), under the Additive White Gaussian Noise (AWGN),
Rayleigh and Rician fading channels.

Another application of control and sensor technology can be found in robot local-
ization problems. In the last chapter of this volume, Sahran et al. investigate two
major issues in vision-based localization: camera calibration and video stabiliza-
tion. A stereo-vision method using Fuzzy Camera Calibration (FCC), Fuzzy Optical
Flow (FOF) and Fuzzy Gaussian Pyramid methods is proposed to improve robot
localization.

As described, 11 chapters which focus on control and sensor technology and
their related systems are included in this volume. We hope that the contributions can
enlighten the readers with various applications of control and sensor technology and
the cutting-edge research in this field. The chapters will be beneficial to researchers,
graduates, academics, and industrialists who have interests in and/or are dealing with
such technology, whether directly or indirectly.



Design and Control of a 3D )
Robot-Assisted Rehabilitation Device Gedida
for Post-Stroke

Shahrul Na’im Sidek and Sado Fatai

Abstract With the ever-increasing population of stroke patients requiring reha-
bilitation therapy compared with the few available therapists, what is now crucial
is an adaptive system that can complement closely the role of an expert therapist
by sensing the patients’ muscle tone, physical recovery condition, or sensorimotor
control performance to specify appropriate therapy and to provide an assessment.
A “high-level” adaptive hybrid impedance controller based on Modified Ashworth
Scale (MAS) assessment criteria for rehabilitation of the upper extremity of post-
stroke patients was therefore proposed and discussed in this chapter. An end-effector-
based 3 degree-of-freedom (3-DOF) rehabilitation platform was developed with the
proposed control strategy with the emphasis on proper joint coordination and control
to actualize effective trajectory tracking and consequently effective therapy.

1 Introduction

Rehabilitation therapy post-stroke is crucial in helping patients to regain as much
possible use of their paretic limbs in the activities of daily living. The major chal-
lenge, however, in contemporary post-stroke rehabilitation therapy especially in the
post-acute phase of stroke recovery is that the therapy is time-demanding and labor-
intensive. Therefore, expensive with a consequent reduction in the amount of training
sessions required for optimal therapeutic outcome. In recent years, the use of robotic
devices for rehabilitation therapy has been widely favored. Robot-assisted rehabili-
tation therapy is cost-effective, fatigue-free, and has the potential to improve the effi-
ciency of the rehabilitation process. More so, positive outcomes of improved motor
control abilities for patients undergoing robot-assisted therapy have been widely
recorded through proper developed exercise programs that are usually task-specific
and intensive, and require progression of difficulty.
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This chapter presents the development and control of a portable 3-DOF end-
effector-type robotic device for upper-extremity rehabilitation for hemi-paretic post-
stroke patients. The device has three active DOFs consisting of two revolute joints
and one prismatic joint (R-R-P) designed to allow three-dimensional range of motion
(ROM) exercise for elbow and shoulder rehabilitation. An adaptive hybrid impedance
control framework has also been developed for the device to allow safe robot—patient
dynamic interaction during the planned repetitive range of motion exercises and to
keep track of patients’ motor recovery based on an embedded Modified Ashworth
Scale (MAS) muscle assessment criteria. Experimental results performed, using a
healthy subject, to test and evaluate the ability of the device to track a planned simple
flexion/extension range of motion exercise for the elbow joint showed the possibility
of use of the device for real patients.

2 Background

In the last few decades, the increasing cases of upper-extremity disabilities resulting
from stroke, spinal cord injuries (SCI), and other related illness have favored the use
of robotic devices to provide assistance and support to patients undergoing rehabil-
itation therapy [11, 14]. The effectiveness of the devices in extending the therapy
session and in providing repetitive exercises aimed at inducing motor plasticity have
been widely reported [8, 11]. Robotic devices have the potentials of allowing repeata-
bility and automation of therapeutic procedures with significant improvement on the
efficiency of the rehabilitation process [13]. With the increasing demand, for robotic
devices, the need for portable, lightweight, and safety devices have created new chal-
lenges ranging from the design of compact robot mechanical/actuation systems to
the development of effective control algorithms.

A survey on robotic devices in the recent past showed that most of the earlier
robotic devices and some of the recent commercially available ones are mechani-
cally bulky and suited for use only in rehabilitation centers [2, 4, 5]. Besides, most
are less autonomous to the extent that they require constant assistance of a human
therapist for effective usage, for task specification, and for difficulty level adjust-
ment of therapy [5]. This implies a considerable amount of valuable therapist time
in programming the robot, monitoring the patients, analyzing data from the robot,
and also assessing the progress of the patients. Krebs et al. [6, 10] earlier proposed a
3-DOF robotic device that allowed the horizontal motion and a 6-DOF Mirror Image
Movement Enabler (MIME) robotic device that allowed three-dimensional spatial
motion respectively for upper-limb rehabilitation which was generally bulky and
suited only for rehabilitation centers. The devices were less autonomous and require
the manual monitoring of patients’ progress by an expert therapist. A 9-DOF cable-
driven robotic device was also proposed by Loureiro et al. [9] based on GENTLE/S
system. The device was effectively used for reach and grasp therapy for post-stroke
patients but was equally bulky and non-adaptive to patients’ recovery. A more recent
commercially available robotic device referred to as Armeo Power [12] with 7-DOF
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for elbow and shoulder rehabilitation and additional DOFs for wrist and fingers
flexion/extension rehabilitation exercise which has been successfully used in many
rehabilitation centers is also seen to be largely stationary and not lightweight. As the
development of robotic devices for rehabilitation exercises continues, the need for
portable and lightweight devices capable of autonomous guidance and monitoring
of patients’ progress, therefore, remains a critical driving factor of consideration [5].

In this chapter, the development and control of a 3-DOF end-effector robotic
device for autonomous rehabilitation of the shoulder and elbow region of patients
with hemi-paretic upper-limb impairment is presented. The device is made portable
and lightweight to allow flexibility of usage and for possible use at homes. In addition,
anovel adaptive control framework as reported in Sado et al. [15] is developed for the
device to allow safe robot—patients dynamic interaction and effective tracking of a
planned range of motion exercise, and independent monitoring of patients’ physical
recovery progress.

3 System Description

3.1 System Modeling—Forward Kinematics

The robotic device has three active DOFs arranged in a revolute—revolute—prismatic
(R—R-P) configuration as shown in Fig. 1. The three joints allow for the rehabilita-
tion (flexion, extension, abduction, and adduction) of the elbow and shoulder of the
patients in three-dimensional space. The relationship between the joints variables
and the position and orientation of the robot’s end-effector is derived from the four
Denavit-Hartenberg (DH) parameters given in Table 1. The four parameters a;, «;,
d;, 6, are generally known as the link length, link twist, link offset, and joint angles
respectively [16].

The link transformation matrices which relate any two successive frames attached
to the joints are derived from the homogenous transformation matrix [16] given by
Eq. (1).

C@i —SQ,' 0 a1
il sOica;y ctica; 1 —sa; 1 —so;_1d; 1)
! sO;sa;_1 cOisai_y coi—q  ca_qd;

0 0 0 1

where s and ¢ stands for sine and cosine of the angles. The homogenous transforma-
tion matrix relating the end-effector frame (x3, y;3, z3) to the base frame (x¢, yo, 20),
see Fig. 1, is therefore obtained by multiplying the individual link transformation
matrices as shown in Eq. (2).

0T =97 x 3T x3T )
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Fig. 1 The robot kinematic d
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Finally, the forward kinematics equation derived from Eq. (2) is expressed as
Eq. (3).

c01(lcOy + d3s6,)

X
y | =1 s61cO, + dzs6s) 3)
Z dsc, — 156,

3.2 System Modeling—Inverse Kinematics

The inverse kinematics of the rehabilitation robot is derived in order to determine
the joint angles or variables in terms of the end-effector position and orientation. It
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is however more computationally demanding than the forward kinematics analysis
due to the non-linearity in the forward kinematics equation. Since the robotic device
is designed with two-axis intersecting, the inverse kinematic analysis becomes fairly
easy with a possible closed-form solution.

Observing that the forward kinematics equations are transcendental, the following
substitutions are made:

9[ 1—u? . 2u;
e — = —1  sinf = =X
u; = tan 5 cos b; Tl (el 4)

where u; denotes the tangent of any half angle, and i = 1, 2. By substituting Eq. (4)
in Eq. (3) and solving for the joint variables g = [0; 6, d3], the inverse kinematics
equations for the robotic system is obtained as follows:

6 = Atan2(£2, 1)

d3+z
dy=2yx2+y2+ 2212

0, = Atan2(—1 + |12 + (M) 1) (5)

The solution is however not unique since there is the possibility of different
configurations (some unreachable) for a given solution. Therefore, the use of inverse
kinematics for controller development is avoided as will be seen in the next section.

3.3 System Modeling—Velocity Kinematics: The Jacobian

The velocity kinematics equation relates the linear velocity, v and angular velocity, g
of the end-effector to the joint velocities of the robotic device. Similar to the forward
kinematics equation, it defines the map between the Cartesian space and joint space.
This relationship is expressed by the Jacobian time-varying linear transformation
given by Eq. (6).

v=1J(q)q (6)

Taking the first derivative of the forward kinematics equations (refer to Eq. 3) and
using the techniques described in Spong et al. [16], the Jacobian, J is obtained and
given as
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[ —s1(ca + dys0) —ci(lcy + dzsa) c15y |
ci(ley +dzsy) —si(lex + dzsz) 5152

0 k €2

J = 7
0 —S81 0 ( )
0 —C1 0
1 0 0

where k =— c%(lcz+ dssy) — s%(lcz+ dssy)

3.4 System Modeling—the Robot Dynamics

To obtain the robot dynamic model, the Lagrange equation of motion for a
conservative system is adopted and given by Eq. (8)

e ®)

where ¢ is the 3 x 1 vector of generalized joint coordinates, T is the 3 x 1 vector of
generalized input actuator forces/torque, and L the Lagrangian.
The Lagrangian is given by the expression

L=K—-P 9)

where K is the kinematic energy of the robotic system and P is the potential energy of
the system. Using Egs. (8) and (9), the overall dynamic model of the robotic device
is derived and expressed by Eq. (10) which is a requisite for developing the control
algorithm.

M (q)§ + Lag +C(q. )4 +G(g) = (10)

M, represents the robot mass matrix, [, represents the actuator inertia, C(q, q)
represents the Coriolis and centrifugal terms, and G(g) represents the gravity term.
Since the joint frictions are small for the robotic device, these components are
assumed negligible in the robot dynamic model.

3.5 Control Architecture—Sensors and Actuation System

A DC motor coupled at the prismatic joint, at frame (x>, y2, z2), provide linear actu-
ation by means of a lead screw mechanism to allow flexion and extension of the



