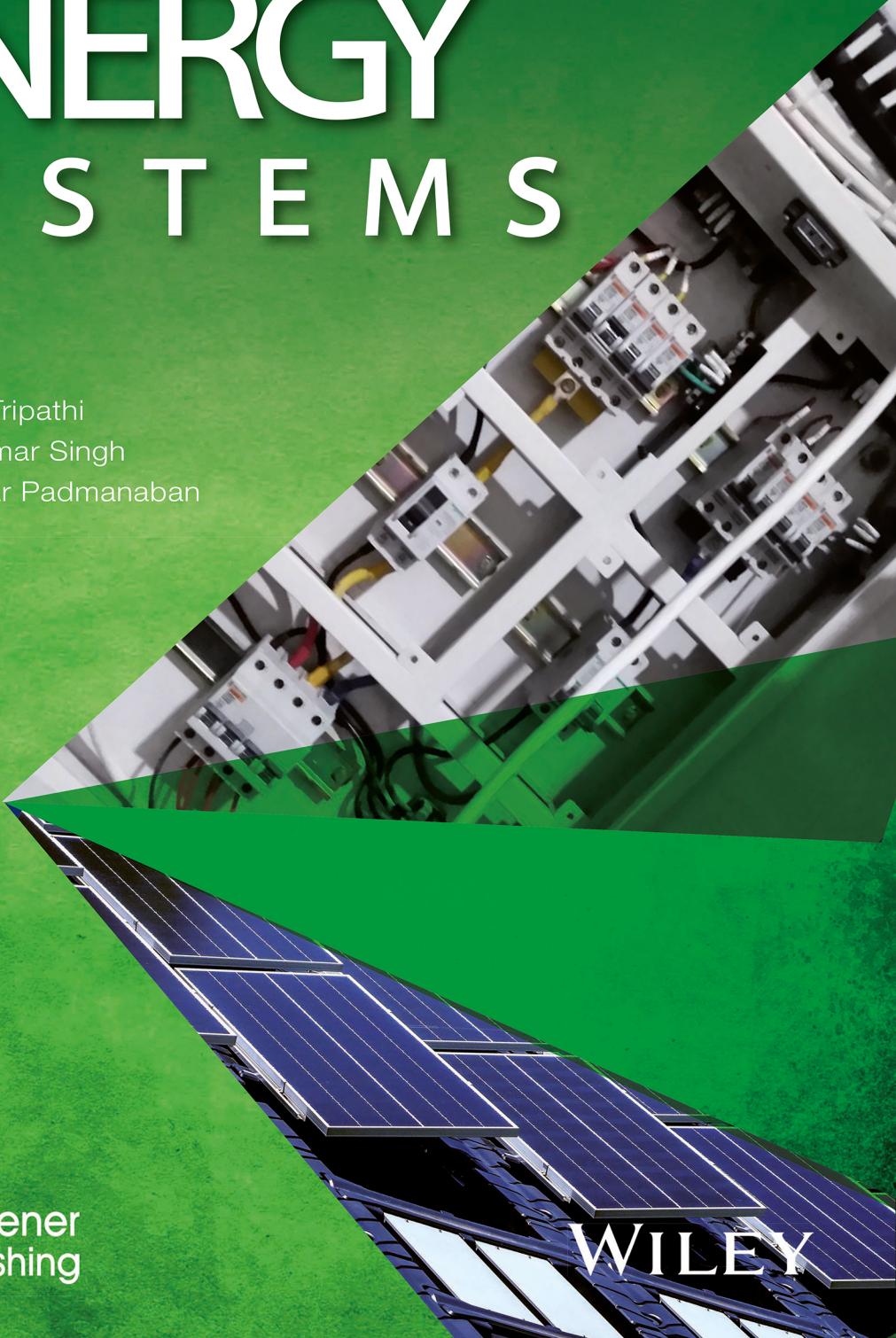


Design and Development of **EFFICIENT ENERGY SYSTEMS**


Edited by

Suman Lata Tripathi

Dushyant Kumar Singh

Sanjeevikumar Padmanaban

P. Raja

Design and Development of Efficient Energy Systems

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Design and Development of Efficient Energy Systems

Edited by
**Suman Lata Tripathi,
Dushyant Kumar Singh,
Sanjeevikumar Padmanaban,
and
P. Raja**

WILEY

This edition first published 2021 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
© 2021 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781119761631

Cover images: Electrical Systems - Suman Kumar Singh | Dreamstime.com
Solar Panels - Adisak Rungjaruchai | Dreamstime.com

Cover design by Kris Hackerott

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Preface	xv
1 Design of Low Power Junction-Less Double-Gate MOSFET	1
<i>Namrata Mendiratta and Suman Lata Tripathi</i>	
1.1 Introduction	1
1.2 MOSFET Performance Parameters	2
1.3 Comparison of Existing MOSFET Architectures	3
1.4 Proposed Heavily Doped Junction-Less Double Gate MOSFET (AJ-DGMOSFET)	3
1.5 Heavily Doped JL-DG MOSFET for Biomedical Application	8
1.6 Conclusion	9
References	10
2 VLSI Implementation of Vedic Multiplier	13
<i>Abhishek Kumar</i>	
2.1 Introduction	13
2.2 8x8 Vedic Multiplier	14
2.3 The Architecture of 8x8 Vedic Multiplier (VM)	16
2.3.1 Compressor Architecture	17
2.3.1.1 3:2 Compressor	18
2.3.1.2 4:3 Compressor	18
2.3.1.3 5:3 Compressor	18
2.3.1.4 8:4 Compressor	19
2.3.1.5 10:4 Compressor	19
2.3.1.6 12:5 Compressor	20
2.3.1.7 15:5 Compressor	21
2.3.1.8 20:5 Compressor	21
2.4 Results and Discussion	23
2.4.1 Instance Power	23
2.4.2 Net Power	24
2.4.3 8-Bit Multiplier	25
2.4.4 16-Bit Multiplier	26
2.4.5 Applications of Multiplier	27
2.5 Conclusion	28
References	28

3	Gas Leakage Detection from Drainage to Offer Safety for Sanitary Workers	31
<i>Dr. D. Jeyabharathi, Dr. D. Kesavaraja and D. Sasireka</i>		
3.1	Introduction	31
3.1.1	IOT-Based Sewer Gas Detection	31
3.1.1.1	IoT Sensors	32
3.1.2	Objective	32
3.1.3	Contribution of this Chapter	33
3.1.4	Outline of the Chapter	33
3.2	Related Works	33
3.2.1	Sewer Gas Leakage Detection	33
3.2.2	Crack Detection	34
3.3	Methodology	34
3.3.1	Sewer Gas Detection	34
3.3.1.1	Proposed Tristate Pattern	35
3.3.2	Crack Detection	36
3.3.3	Experimental Setup	37
3.4	Experimental Results	39
3.5	Conclusion	40
	References	40
4	Machine Learning for Smart Healthcare Energy-Efficient System	43
<i>S. Porkodi, Dr. D. Kesavaraja and Dr. Sivanthi Aditanar</i>		
4.1	Introduction	43
4.1.1	IoT in the Digital Age	43
4.1.2	Using IoT to Enhance Healthcare Services	44
4.1.3	Edge Computing	44
4.1.4	Machine Learning	44
4.1.5	Application in Healthcare	45
4.2	Related Works	45
4.3	Edge Computing	47
4.3.1	Architecture	47
4.3.2	Advantages of Edge Computing over Cloud Computing	47
4.3.3	Applications of Edge Computing in Healthcare	48
4.3.4	Edge Computing Advantages	49
4.3.5	Challenges	50
4.4	Smart Healthcare System	50
4.4.1	Methodology	50
4.4.2	Data Acquisition and IoT End Device	51
4.4.3	IoT End Device and Backend Server	51
4.5	Conclusion and Future Directions	52
	References	52

5 Review of Machine Learning Techniques Used for Intrusion and Malware Detection in WSNs and IoT Devices	57
<i>Dr. Jeyabharathi, Dr. A. Sherly Alphonse, Ms. E.L. Dhivya Priya and Dr. M. Kowsigan</i>	
5.1 Introduction	57
5.2 Types of Attacks	58
5.3 Some Countermeasures for the Attacks	59
5.4 Machine Learning Solutions	59
5.5 Machine Learning Algorithms	59
5.6 Authentication Process Based on Machine Learning	60
5.7 Internet of Things (IoT)	62
5.8 IoT-Based Attacks	62
5.8.1 Botnets	62
5.8.2 Man-in-the-Middle	62
5.9 Information and Identity Theft	62
5.10 Social Engineering	63
5.11 Denial of Service	63
5.12 Concerns	63
5.13 Conclusion	64
References	64
6 Smart Energy-Efficient Techniques for Large-Scale Process Industries	67
<i>B Koti Reddy and N V Raghavaiah</i>	
6.1 Pumps Operation	67
6.1.1 Parts in a Centrifugal Pump	68
6.1.2 Pump Efficiency	68
6.1.3 VFD	70
6.1.4 VFD and Pump Motor	72
6.1.5 Large HT Motors	73
6.1.6 Smart Pumps	73
6.2 Vapour Absorption Refrigeration System	74
6.2.1 Vapour Compression Refrigeration	74
6.2.2 Vapour Absorption Refrigeration	75
6.3 Heat Recovery Equipment	77
6.3.1 Case Study	77
6.3.2 Advantages of Heat Recovery	78
6.4 Lighting System	78
6.4.1 Technical Terms	78
6.4.2 Introduction	78
6.4.3 LED Lighting	79
6.4.4 Energy-Efficiency Techniques	79
6.4.5 Light Control with IoT	80
6.4.5.1 Wipro Scheme	80
6.4.5.2 Tata Scheme	80
6.4.6 EU Practices	81

6.5	Air Conditioners	82
6.5.1	Technical Terms	82
6.5.2	Types of Air Conditioners	82
6.5.3	Star Rating of BEE	83
6.5.4	EU Practices	83
6.5.5	Energy-Efficiency Tips	83
6.5.6	Inverter Air Conditioners	85
6.5.7	IoT-Based Air Conditioners	85
6.6	Fans and Other Smart Appliances	86
6.6.1	BLDC Fan Motors	87
6.6.2	Star Ratings	87
6.6.3	Group Drive of Fans	88
6.6.4	Other Smart Appliances	88
6.7	Motors	92
6.7.1	Motor Efficiency	92
6.7.2	Underrated Operation	93
6.7.3	Energy-Efficient Motors	94
6.7.3.1	Energy-Efficiency Ratings of BEE	94
6.7.3.2	Energy-Efficiency Ratings of IEC	94
6.7.4	Retrofit of Standard Motors with Energy-Efficient Motors	96
6.7.5	Other Salient Points	97
6.7.6	Use of Star-Delta Starter Motor	97
6.8	Energy-Efficient Transformers	98
6.8.1	IEC Recommendation	98
6.8.2	Super Conducting Transformers	99
	References	99
7	Link Restoration and Relay Node Placement in Partitioned Wireless Sensor Network	101
	<i>Manwinder Singh and Anudeep Gandom</i>	
7.1	Introduction	101
7.2	Related Work	103
7.2.1	Existing Techniques	105
7.3	Proposed K-Means Clustering Algorithm	105
7.3.1	Homogenous and Heterogeneous Network Clustering Algorithms	105
7.3.2	Dynamic and Static Clustering	105
7.3.2.1	Routing	106
7.3.3	Flow Diagram	106
7.3.4	Objective Function	106
7.4	System Model and Assumption	108
7.4.1	Simulation Parameters	108
7.4.1.1	Residual Energy	108
7.4.1.2	End-to-End Delay	109
7.4.1.3	Number of Hops or Hop Count in the Network	109
7.5	Results and Discussion	109

7.6	Conclusions	114
	References	115
8	Frequency Modulated PV Powered MLI Fed Induction Motor Drive for Water Pumping Applications	119
	<i>Arun Kumar S, Mohana Sundaram N and K. Malarvizhi</i>	
8.1	Introduction	119
8.2	PV Panel as Energy Source	120
8.2.1	Solar Cell	120
8.3	Multi-Level Inverter Topologies	121
8.3.1	Types of Inverters Used for Drives	121
8.3.2	Multi-Level Inverters	121
8.4	Experimental Results and Discussion	122
8.4.1	PV Powered H Bridge Inverter-Fed Drive	123
8.4.2	PV Powered DCMLI Fed Drive	126
8.5	Conclusion and Future Scope	128
	References	129
9	Analysis and Design of Bidirectional Circuits for Energy Storage Application	131
	<i>Suresh K, Sanjeevikumar Padmanaban and S Vivek</i>	
9.1	Introduction	131
9.2	Modes of Operation Based on Main Converters	133
9.2.1	Single-Stage Rectification	134
9.2.2	Single-Stage Inversion	135
9.2.3	Double-Stage Rectification	137
9.2.3.1	Duty Mode - Interval -I	137
9.2.3.2	Freewheeling Mode - Interval -II	138
9.2.4	Double-Stage Inversion	139
9.2.4.1	Charging Mode - Interval -I	140
9.2.4.2	Duty Mode - Interval -II	141
9.3	Proposed Methodology for Three-Phase System	141
9.3.1	Control Block of Overall System	143
9.3.2	Proposed Carrier-Based PWM Strategy	144
9.3.3	Experiment Results	145
9.4	Conclusion	148
	References	148
10	Low-Power IOT-Enabled Energy Systems	151
	<i>Yogini Dilip Borole and Dr. C. G. Dethe</i>	
10.1	Overview	151
10.1.1	Conceptions	151
10.1.2	Motivation	152
10.1.3	Methodology	154
10.2	Empowering Tools	156
10.2.1	Sensing Components	156
10.2.2	Movers	159
10.2.3	Telecommunication Technology	160

10.2.4	Internet of Things Information and Evaluation	166
10.2.4.1	Distributed Evaluation	166
10.2.4.2	Fog Computing (Edge Computing)	167
10.3	Internet of Things within Power Region	167
10.3.1	Internet of Things along with Vitality Production	168
10.3.2	Smart Metropolises	168
10.3.3	Intelligent Lattice Network	171
10.3.4	Smart Buildings Structures	172
10.3.5	Powerful Usage of Vitality in Production	173
10.3.6	Insightful Transport	174
10.4	Difficulties - Relating Internet of Things	174
10.4.1	Vitality Ingestion	178
10.4.2	Synchronization via Internet of Things through Sub-Units	178
10.4.3	Client Confidentiality	180
10.4.4	Safety Challenges	180
10.4.5	IoT Standardization and Architectural Concept	181
10.5	Upcoming Developments	182
10.5.1	IoT and Block Chain	182
10.5.2	Artificial Intelligence and IoT	184
10.5.3	Green IoT	185
10.6	Conclusion	187
	References	188

11 Efficient Renewable Energy Systems 199

Prabhansu and Nayan Kumar

	Introduction	199
11.1	Renewable-Based Available Technologies	200
11.1.1	Wind Power	201
11.1.1.1	Modeling of the Wind Turbine Generator (WTG)	201
11.1.1.2	Categorization of Wind Turbine	202
11.1.2	Solar Power	202
11.1.2.1	PV System	202
11.1.2.2	Network-Linked Photovoltaic Grid-Connected PV Set-Up	203
11.1.3	Tidal Energy	203
11.1.4	Battery Storage System	204
11.1.5	Solid Oxide Energy Units for Enhancing Power Life	204
11.1.5.1	Common Utility of SOFC	204
11.1.5.2	Integrated Solid Oxide Energy Components and Sustainable Power Life	205
11.2	Adaptability Frameworks	206
11.2.1	Distributed Energy Resources (DER)	206
11.2.2	New Age Grid Connection	209
11.3	Conclusion	210
	References	211

12 Efficient Renewable Energy Systems	215
<i>Dr. Arvind Dhingra</i>	
12.1 Introduction	215
12.1.1 World Energy Scenario	215
12.2 Sources of Energy: Classification	217
12.3 Renewable Energy Systems	217
12.3.1 Solar Energy	218
12.3.2 Wind	218
12.3.3 Geothermal	218
12.3.4 Biomass	218
12.3.5 Ocean	218
12.3.6 Hydrogen	218
12.4 Solar Energy	218
12.5 Wind Energy	223
12.6 Geothermal Energy	225
12.7 Biomass	226
12.7.1 Forms of Biomass	226
12.8 Ocean Power	227
12.9 Hydrogen	227
12.10 Hydro Power	227
12.11 Conclusion	227
References	227
13 Agriculture-IoT-Based Sprinkler System for Water and Fertilizer Conservation and Management	229
<i>Dilip Kumar and Ujala Choudhury</i>	
13.1 Introduction	229
13.1.1 Novelty of the Work	232
13.1.2 Benefit to Society	232
13.2 Development of the Proposed System	233
13.3 System Description	233
13.3.1 Study of the Crop Under Experiment	233
13.3.2 Hardware of the System	235
13.3.3 Software of the System	235
13.4 Layers of the System Architecture	236
13.4.1 Application Layer	236
13.4.2 Cloud Layer	237
13.4.3 Network Layer	237
13.4.4 Physical Layer	237
13.5 Calibration	237
13.6 Layout of the Sprinkler System	239
13.7 Testing	239
13.8 Results and Discussion	241
13.9 Conclusion	242
References	242

14 A Behaviour-Based Authentication to Internet of Things Using Machine Learning	245
<i>Mohit Goyal and Durngesh Srivastava</i>	
14.1 Introduction	246
14.2 Basics of Internet of Things (IoT)	246
14.2.1 The IoT Reference Model	248
14.2.2 Working of IoT	249
14.2.2.1 Device	249
14.2.2.2 Connectivity to Cloud	250
14.2.2.3 Data Analysis	250
14.2.2.4 User Interface	250
14.2.3 Utilization of Internet of Things (IoT)	250
14.3 Authentication in IoT	251
14.3.1 Methods of Authentication	251
14.3.1.1 Authentication Based on Knowledge	252
14.3.1.2 Authentication Based on Possession	252
14.3.1.3 Authentication Based on Biometric	253
14.4 User Authentication Based on Behavioral-Biometric	255
14.4.1 Machine Learning	256
14.4.1.1 Supervised Machine Learning	256
14.4.1.2 Unsupervised Machine Learning	256
14.4.2 Machine Learning Algorithms	257
14.4.2.1 RIPPER	257
14.4.2.2 Multilayer Perceptron	257
14.4.2.3 Decision Tree	257
14.4.2.4 Random Forest	258
14.4.2.5 Instance-Based Learning	258
14.4.2.6 Bootstrap Aggregating	258
14.4.2.7 Naïve Bayes	258
14.5 Threats and Challenges in the Current Security Solution for IoT	258
14.6 Proposed Methodology	259
14.6.1 Collection of Gait Dataset	259
14.6.2 Gait Data Preprocessing	259
14.6.3 Reduction in Data Size	260
14.6.4 Gaits Feature	260
14.6.5 Classification	260
14.7 Conclusion and Future Work	261
References	261
15 A Fuzzy Goal Programming Model for Quality Monitoring of Fruits during Shipment Overseas	265
<i>Pushan Kr. Dutta, Somsubhra Gupta, Simran Kumari and Akshay Vinayak</i>	
15.1 Introduction	265
15.2 Proposed System	266
15.2.1 Problem Statement	266
15.2.2 Overview	266

15.2.3	System Components	268
15.3	Work Process	271
15.3.1	System Hardware	271
15.3.2	Connections and Circuitry	271
15.4	Optimization Framework	271
15.4.1	Fuzzy Goal Description	271
15.4.2	Characterizing Fuzzy Membership Function	272
15.4.3	Construction of FGP Model	272
15.4.4	Definition of Variables and Parameters	273
15.4.5	Fuzzy Goal Description	274
15.5	Creation of Database and Website	275
15.5.1	Hosting PHP Application and Creation of MySQL Database	275
15.5.2	Creation of API (Application Programming Interfaces) Key	275
15.5.2.1	<code>\$api_key_value = "3mM44UaC2DjFcV_63GZ14aWJcRDNmYBMsxceu";</code>	275
15.5.2.2	Preparing Mysql Database	275
15.5.2.3	Structured Query Language (SQL)	275
15.5.2.4	Use of HTTP (Hypertext Transfer Protocol) in Posting Request	276
15.5.2.5	Adding a Dynamic Map to the Website	277
15.5.2.6	Adding Dynamic Graph to the Website	277
15.5.2.7	Adding the Download Option of the Data Set	278
15.6	Libraries Used and Code Snipped	278
15.7	Mode of Communication	280
15.8	Conclusion	280
	Abbreviations	282
	References	282
16	Internet of Things – Definition, Architecture, Applications, Requirements and Key Research Challenges	285
	<i>Dushyant Kumar Singh, Himani Jerath and P. Raja</i>	
16.1	Introduction	285
16.2	Defining the Term Internet of Things (IoT)	286
16.3	IoT Architecture	287
16.4	Applications of Internet of Things (IoT)	289
16.5	Requirement for Internet of Things (IoT) Implementation	290
16.6	Key Research Challenges in Internet of Things (IoT)	291
16.6.1	Computing, Communication and Identification	291
16.6.2	Network Technology	292
16.6.3	Greening of Internet of Things (IoT)	292
16.6.4	Security	293
16.6.5	Diversity	293
16.6.6	Object Safety and Security	293
16.6.7	Data Confidentiality and Unauthorized Access	293
16.6.8	Architecture	293

16.6.9 Network and Routing Information Security	293
References	294
17 FinFET Technology for Low-Power Applications	297
<i>Bindu Madhavi, Suman Lata Tripathi and Bhagwan Shree Ram</i>	
17.1 Introduction	297
17.2 Existing Multiple-Gate MOSFET Architectures	299
17.3 FinFET Design and Analysis	301
17.4 Low-Power Applications	304
17.4.1 FinFET-Based Digital Circuit Design	304
17.4.2 FinFET-Based Memory Design	304
17.4.3 FinFET-Based Biosensors	304
17.5 Conclusion	305
References	305
18 An Enhanced Power Quality Single-Source Large Step-Up Switched-Capacitor Based Multi-Level Inverter Configuration with Natural Voltage Balancing of Capacitors	307
<i>Mahdi Karimi, Paria Kargar, Kazem Varesi and Sanjeevikumar Padmanaban</i>	
18.1 Introduction	307
18.2 Suggested Topology	309
18.2.1 Circuit Configuration	309
18.2.2 Generation of Output Voltage Steps	310
18.2.3 Voltage Stress of Switches	320
18.3 Cascaded Configuration of Suggested Topology	320
18.4 Modulation Technique	321
18.5 Power Loss Analysis	324
18.5.1 Conduction Losses	324
18.5.2 Switching Losses	326
18.5.3 Capacitor Losses	327
18.6 Design of Capacitors	328
18.7 Comparative Analysis	330
18.8 Simulation Results	333
18.9 Conclusions	336
References	336
Index	339

Preface

The objective of this edition is to provide a broad view of the fundamental concepts of green energy technology and applications in a concise way for fast and easy understanding. This book provides information regarding almost all the aspects to make it highly beneficial for all students, researchers and teachers of this field. Fundamental principles of green energy technology with the latest developments are discussed in a clear and detailed manner with explanatory diagrams wherever necessary. The book focuses on the basic concepts of Internet of Things (IoT) in power conversion, IoT in renewable energy, and adoption of machine learning, low-power device and circuit design including the latest research available depending upon the technological changes based upon their application.

Chapter Organization

Chapter 1 deals with prefabrication low-power device design and analysis on Visual TCAD device simulator with graphical and programming interfaces. Also, the chapter discusses the design of device-based low-power memory and biomedical applications.

Chapter 2 mainly describes Vedic multiplication based on the compressor block that is focused on the reduction of interconnect wire. The multiplier is implemented using Verilog HDL with cadence NC SIM and the constrain areas, power and delay optimize using underlying block.

Chapter 3 deals with gas leakage detection from drainage to offer safety for sanitary workers from gases such as Carbon monoxide (CO), Hydrogen sulphide (H₂S), and Methane (CH₄), which are some of the hazardous gases present in underground drainage systems.

Chapter 4 presents a smart healthcare system development with machine learning, which is energy efficient, with reduced network latency and minimum bandwidth.

Chapter 5 This chapter presents some of the solutions in literature for implementing security. The chapter also covers different types of attacks such as goal-oriented attack, performer-oriented attack and layer-oriented attack.

Chapter 6 addresses the energy-saving component and the application of digital technology and Internet of Things (IoT) in large-scale process industries.

Chapter 7 discuss the method deployed relay node in such a way that the network will behave like a sensor network with the help of K-Means clustering approach.

Chapter 8 analyzes an MLI fed Induction Motor Drive by considering Solar Energy as a source. The effects of employing various types of MLI for a PV source-based drive, and methods of deriving maximum drive efficiency are elaborated in this chapter with sufficient simulation results.

Chapter 9 describes energy storage systems using a universal controller that can work for a wide range of voltage to both DC and AC loads with high power rating and low power loss.

Chapter 10 explores energy arrangement producers, energy financial analysts, and directors with a review of the job of IoT in enhancement of energy frameworks.

Chapter 11 focuses on integration of photovoltaic cell, wind energy and other forms of renewable energy. It also covers microgrid systems with high reliability, less transmission losses and improved power system efficiency.

Chapter 12 describes state-of-the-art renewable energy systems and highlights the global efforts being made to increase their efficiency.

Chapter 13 is dedicated to Internet of Things (IoT) technologies with best solutions, ease of the task of monitoring and analysis that opens up a wide range of prospects for making better future decisions.

Chapter 14 examines new security challenges in the Internet of Things (IoT) using machine learning algorithm and the system of interrelated computing devices for its quick development and distribution that are essential for internet and smart device users.

Chapter 15 presents a working and solution process, an illustrative fuzzily defined mathematical framework for optimizing food quality. Here, the emphasis is not only on ensuring fruit safety but also avoiding foodborne diseases.

Chapter 16 is an overview of the various requirements for Internet of Things (IoT) systems and architectures, highlighting different research challenges and security issues connected with IoT.

Chapter 17 presents a state-of-the-art of FinFET technology with low power consumption and their application in a low-power VLSI circuit.

Chapter 18 proposes a single-source high step-up switched-capacitor-based 19-level inverter topology with enhanced power quality that can be extended by addition of switched-capacitor units. The extended topology can produce larger gain and voltage steps.

Design of Low Power Junction-Less Double-Gate MOSFET

Namrata Mendiratta and Suman Lata Tripathi*

VLSI Design Laboratory, Lovely Professional University, Phagwara, Punjab, India

Abstract

The requirement of low power consumption and higher IC packing density leads the designer to explore new MOSFET architectures with low leakage current and operating voltages. Multi-gate MOSFET architectures are a promising candidate with increased gate-control over the channel region. Double-gate MOSFET is one of the advanced MOSFETs with a thin-channel region sandwiched into the top and bottom gate. The changes in the position of the top and bottom gate overlap and also have a significant effect on the electrical characteristics of transistors. The higher number of gates increases the drive current capability of the transistor with enhanced gate control that is desired for low-power and high-speed operations of digital circuit and bulk memories. The junction-less feature future improves switching characteristics of multi-gate MOSFETs with more drive current and high I_{ON}/I_{OFF} current ratio. These prefabrication low-power design and analysis can be done on a Visual TCAD device simulator with graphical and programming interfaces that reduce fabrication cost and improve overall throughput.

Keywords: Low power, junction-less, DGMOSFET, TCAD, leakage current, etc.

1.1 Introduction

The size of semiconductor devices is being continuously reduced and has entered into the nanoscale range. Every two years the number of transistors doubles because the size of the MOSFET is reduced. Reducing the size of the MOSFET reduces the size of the channel, which causes short-channel effects and it increases the leakage current. Reduction in the size of semiconductor devices has given rise to short-channel effects (SCEs). The various SCEs are parasitic capacitances, drain field effect on channel field, degraded subthreshold region of operation, mobility degradation, hot carrier effects, etc. To overcome these effects the devices need to be engineered using different techniques like gate or channel engineering. The cause of the SCEs is when the width of the drain barrier extends into the drain and source region barrier lowering. Many MOSFET structures like DG-MOSFET, GAA (Gate-all-around) MOSFET, TG (Triple-gate) MOSFET, SOI (Silicon-on-insulator)

*Corresponding author: tri.suman78@gmail.com

2 DESIGN AND DEVELOPMENT OF EFFICIENT ENERGY SYSTEMS

MOSFET, double-step buried-oxide including junction-less properties have been designed to overcome SCEs [1–6].

MOSFETs are used for analog and RF applications to handle the radio frequency signals that are high in power from devices like televisions, radio transmitters, and amplifiers. MOSFETs are used for biomedical applications [7]. It is used as a biosensor to detect biomolecules. It is useful in detecting molecules like enzymes, nucleotide, protein and antibodies. Using MOSFETs as a biosensor has benefits over other methods as it has more sensitivity, compatibility, mass production and miniaturization. MOSFET is also used to store memory. It is used in the construction of SRAM cells for storing data. MOSFETs were also adopted by NASA to detect interplanetary magnetic fields and interplanetary plasma. MOSFETs are used in digital applications for switching which prevents DC to flow supply and ground that lead to reduced power consumption and providing high input impedance.

1.2 MOSFET Performance Parameters

The MOSFET performance mainly depends on ON and OFF state conditions depending on the different applied bias voltage. The performance analysis is categorized as:

a) DC Analysis

In DC analysis, subthreshold parameters are mainly calculated such as I_{OFF} , DIBL, SS, and threshold voltage (V_{th}). These parameters can be defined as:

- i) I_{OFF} : It is OFF-state current when the applied gate voltage (V_{gs}) is less than the threshold voltage (V_{th}).
- ii) V_{th} : It is the required minimum value of the gate voltage to establish channel inversion.
- iii) Subthreshold Slope (SS): It is one of SCE that can be derived from the equation:

$$SS = \frac{dV_{gs}}{d(\log I_d)} \text{ mV/decade} \quad (1.1)$$

- iv) Drain induced barrier lowering (DIBL): DIBL is another important parameter of SCE which is a measure of threshold voltage variations with the variation in drain voltage for constant drain current. It can be derived from the equation:

$$DIBL = \frac{dV_{gs}}{dV_{ds}} (\text{mV/V}) \quad (1.2)$$

b) AC analysis

AC analysis is dependent on frequency of applied bias voltages. The important ac parameters are:

- i) Transistor Capacitance (C_g): There are several inherent capacitances such as gate to source, the gate to drain and gate to body capacitances.

Transistor capacitances are important for desired switching behavior from OFF to ON state.

- ii) Transconductance (g_m): It is a measure of drain current with the variation in gate voltage for constant drain current. It plays an important role to achieve high value of transistor amplifier gain. It can be derived from the equation:

$$g_m = \frac{di_d}{dv_{gs}} \quad (1.3)$$

c) *Electrostatic Characteristics*

There are a few other important parameters that also have significant importance of MOSFET behavior during ON/OFF state. Energy band diagram, channel potential, electric field distribution and electron-hole density are important electrostatic properties that need to be analysed while designing any MOSFET architecture.

1.3 Comparison of Existing MOSFET Architectures

Table 1.1 shows a comparison of existing MOSFET structures based on their performance and suitable applications.

1.4 Proposed Heavily Doped Junction-Less Double Gate MOSFET (AJ-DGMOSFET)

An AJ-DGMOSFET shown in Figure 1.1 has top and bottom gates arranged asymmetrically with an overlap region of 10nm. An n+ pocket region is added to the source side with heavy doping of donor atoms. p+ polysilicon is used as gate contact material with Hf as an oxide region of high-k dielectric constant. The body thickness is kept very low (6nm). The gate (L_{gate}) is 20 nm, with overlap region ($L_{overlap}$) of 10 nm. The body thickness ($T_{silicon}$) is 6 nm source /drain length ($L_{source} = L_{drain}$) of 8 nm. The oxide thickness (T_{oxide}) is 1 nm. A thin pocket region (n+ doping) is doped with $1 \times 10^{22} \text{ cm}^{-3}$ with channel region II doping (n+ doping) of $1 \times 10^{19} \text{ cm}^{-3}$. Including channel region I + and channel region II, the overall channel length becomes 30 nm.

The high doping concentration of the source drain region with heavy doping of n+ pocket region improves the ON-state current transistor. The drain region doping is slightly less than the source to achieve a low value of leakage current, therefore enhanced current ratio (I_{ON}/I_{OFF}). Here channel length is also dependent on bias condition. In ON-state the effective channel length is equal to the length of overlap region of top and bottom gates. In OFF-state, the effective channel length is the length excluding overlap region between top and bottom gate.

Figure 1.2 shows a comparison between ON-state and OFF-state of the transistor. Different characteristics have been drawn with and without pocket region. The proposed AJ-DGMOSFET with heavily doped pocket region shows better ratio in comparison to AJ-DGMOSFET without a doped pocket region.

Table 1.1 Comparison of existing MOSFET structures.

Ref.	Existing MOSFET structure and methodology	Electrical performance and applications
[2]	Ge pockets are inserted in SOI JLT	Reduces the lattice temperature. The channel length is 20 nm.
[3]	Gate all around junctionless MOSFET with source and drain extension	The highly doped regions have also led to an increase in I-ON current magnitude by 70%.
[4]	Gate engineering using double-gate MOSFET	The sub-threshold slope is decreased by 1.61% and ON/OFF current ratio is increased by 17.08% and DIBL is decreased by 4.52%. The channel length is 20 nm.
[5]	Gate material engineering and drain/source Extensions	Improves the RF and analog performance. The figure of merit is also increased compared to the conventional double-gate junctionless MOSFET. The channel length is 100 nm.
[6]	Inducing source and drain extensions electrically	Suppresses short-channel effects for the channel length less than 50 nm and also suppresses hot electron effects.
[7]	Nanogap cavity is formed by the process of etching gate oxide in the channel from both the sides of source and drain	Detecting biomolecules such as DNA, enzymes, cells etc using dielectric modulation technique. The channel length is 100 nm.
[8]	Graded channel dual material gate junctionless (GC-DMGJL) MOSFET	The GC-DMGJL MOSFET gives high drain current and transconductance and also reduces short-channel effects. The channel length is 30 nm.
[9]	Black phosphorus is integrated with the junctionless recessed MOSFET	Structure drain current increases up to 0.3 mA. The off current reduces, improvement in subthreshold slope. The channel length is 44 nm.
[10]	Fully depleted tri material double-gate MOSFET is used	Improvement in the RF performance, linearity and analog performance compared to the DM-DG MOSFET and single material DG MOSFET. The channel length is 35 nm.
[11]	Pocket region is constructed near the source and drain region and is heavily doped	Good immunity from short-channel effects and can meet the specifications of OFF-state current and ON-state current. The channel length is 100 nm.

(Continued)

Table 1.1 Comparison of existing MOSFET structures. (*Continued*)

Ref.	Existing MOSFET structure and methodology	Electrical performance and applications
[12]	A transparent gate recessed channel is used	Enhancement of cut-off frequency by 42% and oscillator frequency is increased by 32%. The channel length is 30nm.
[13]	MOSFET with asymmetrical gate to improve the functioning of the device	Decrease in subthreshold slope (68 mV/dec) and drain induced barrier lowering (65 mV/V). The channel length is 20 nm.
[14]	6-T SRAM cell using silicon on insulator	The area of the junctionless transistor-based 6-T SRAM cell using silicon on inductor is 6.9 μm -cube and that of the conventional structure is 11.3 μm -cube.
[15]	Short-channel dual metal gate with recessed source and drain SOI MOSFET	This device provides high on current, low DIBL value. The channel length is 30 nm -300nm.
[16]	Dual Material Surrounding Gate MOSFET to suppress short-channel effects	DMSG MOSFET (SCEs) more efficient as compared to a conventional SMSG MOSFET
[17]	Misalignment effect introduced by the asymmetrical source and drain	The region which is non-overlapped produces extra series resistance and weak control over the channel, while the additional overlapped region produces extra overlap capacitance and supply to ground leakage current through gate
[18]	Optimized the design of the gate all around MOSFET and compared it with the double gate MOSFET	GAA structure reduced the DIBL value to 81.44 mV/V when compared to the double-gate MOSFET. The ON-state current is increased and OFF-state current is reduced.
[19]	The deviation in the oxide thickness between the two gates is considered small. A surface potential solution is used for symmetric double-gate MOSFET for initial trial approximation for approaching surface potential solution for asymmetric double-gate MOSFET.	Different parameters of MOSFET like drain current, 5channel current, transconductance, gate capacitances and the effect of oxide thickness on these parameters are determined.
[20]	Performance analysis of junctionless double-gate MOSFET based 6T SRAM with gate stack configuration	The use of high k dielectric material in the junctionless DG-MOSFET shows improvement in static noise margin. Scaling down of gate length degrades the stability.

(Continued)

Table 1.1 Comparison of existing MOSFET structures. (*Continued*)

Ref.	Existing MOSFET structure and methodology	Electrical performance and applications
[21]	Simulation of junctionless double-gate MOSFET with symmetrical side gates. With the presence of side gates the channel present under the front gate, is electrically insulated from the drain voltage resulting to electron shielding.	The DIBL and SS values improved using the side gates. The drain voltage effect on the channel is reduced so it becomes easy for the gate to have more control over the channel.
[22]	A structure of double-gate MOSFET with symmetrical insulator packets for improving the SCEs. In this, insulator packets were inserted between the channel junction and source/drain ends	Hot electron reliability improves. There is an improvement in the DIBL value and ON/OFF-state current ratio.

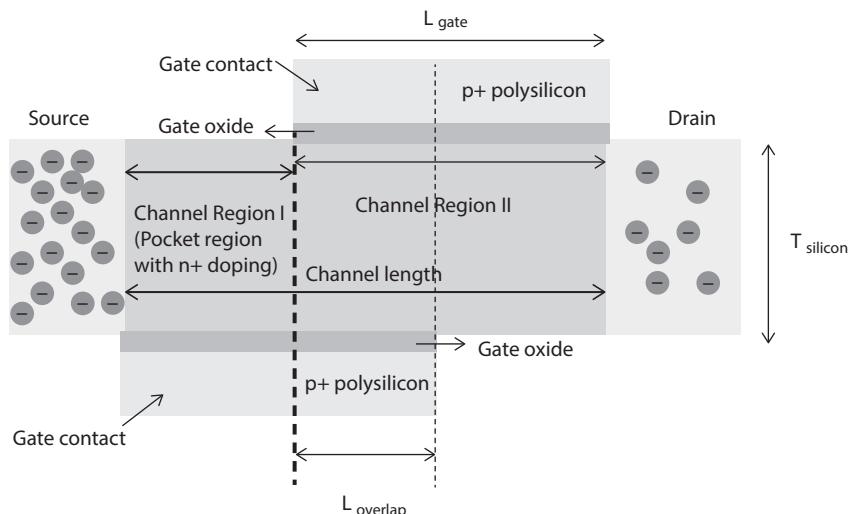

Figure 1.1 2D view of AJ-DGMOSFET.

Figure 1.4 shows the performance of MOSFET when different gate contacts are used like aluminium, polysilicon and copper. MOSFET shows better performance when polysilicon is used as a gate contact. Metal gates like Aluminium and copper operate at voltages 3V to 5V. The lowering of operating voltages leads to the use of polysilicon gate contact. From the graph we can observe at lower operating voltages polysilicon gate contact gives better performance because the OFF-state current is low.

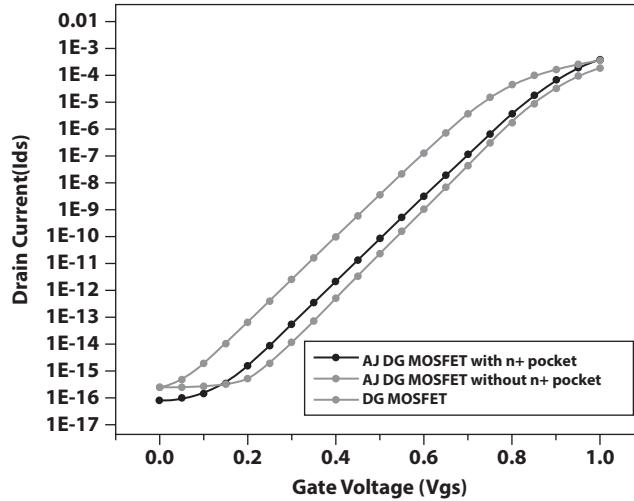


Figure 1.2 I_d versus V_{gs} plot of AJ-DGMOSFET.

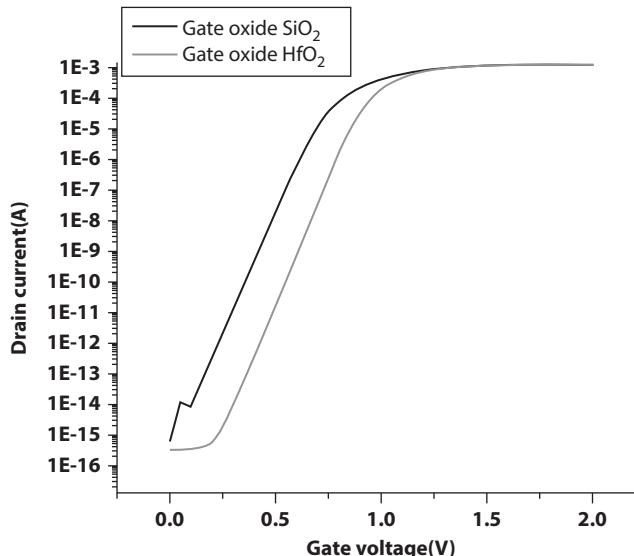


Figure 1.3 I_d Versus V_{gs} plot with different oxide region material.

The proposed JL-DG MOSFET has ratio of 10^{13} which is higher than other existing structures. The calculation of SCE parameters like SS and DIBL is also a deciding factor for device performance. The proposed device show SS value of 59 mV/ decade and DIBL of 13.4 mV/V. Both SS and DIBL values are less than other existing transistors. Therefore, heavily doped AJ-DG MOSFET has superior ON/OFF performances.

Figure 1.4 I_d versus V_{gs} Plot of different gate contact material.

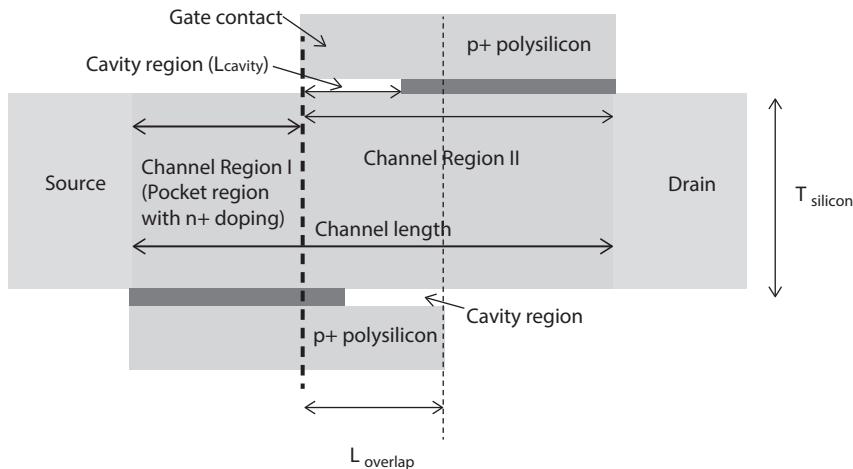


Figure 1.5 JL-DG MOSFET with cavity region.

1.5 Heavily Doped JL-DG MOSFET for Biomedical Application

DG MOSFETs were designed with a nanogap cavity region as bio-sensor that can sense the bio-molecule present in the nanogap cavity [23, 24]. These bio-sensors work on the principle of dielectric modulation with the variation in bio-species present in the air (nanogap cavity) that further varies the electrical parameters of the device.

Figure 1.5 shows the 2-D view of JL-DG MOSFET with a cavity region. Here the cavity plays an important role to sense the bio-species present in air. The presence of bio-species

and their concentration affect the dielectric constant of the cavity region that further affects the electrical parameters of transistor. The cavity region with different length (L_{cavity}) and height (H_{cavity}) shows varied device sensitivity towards the presences of biomolecules. This effect has been studied through varying dielectric constant with different materials such as air, SiO_2 , HfO_2 and S_3N_4 .

Figure 1.5 shows AJ-DG MOSFET with the nanogap cavity region. A thin SiO_2 layer used for binding the molecules entering the cavity region by restricting the movements of bio-molecules. For the presented device the cavity region height (H_{cavity}) is 2.7 nm and SiO_2 layer thickness is 0.3 nm. Another way to analyze device sensitivity is by introducing different types of charged particles in the cavity region.

In Figure 1.6 a sharp change is observed in the threshold voltages with the different dielectric constant of the material added in the cavity region. The longer cavity region length shows more variations in threshold voltage that results in the shifting of channel inversion threshold level. Therefore with a higher value of dielectric constant, the threshold voltage lowers. This shows that the device is highly sensitive towards the change in dielectric material constant depending on biomolecule presence resulting in electrical parameter variations.

A significant variation in threshold voltage is observed with a change in oxide thickness. The changing oxide thickness results in a change in the cavity region thickness that also affects the electrical parameter variations.

1.6 Conclusion

The AJ-DG MOSFET is a suitable choice for low-power applications such as bulk memories that are integral parts of many IoT-enabled systems. The performance of AJ-DG MOSFET can also be varied by adjusting the position of the top and bottom gate overlapping regions. High ON/OFF current ratio and low leakage current are the key features of the AJ-DG MOSFET with low static power consumption and enhanced speed of circuit operation. Another application of JL-DG MOSFET is as biosensor by introducing cavity region

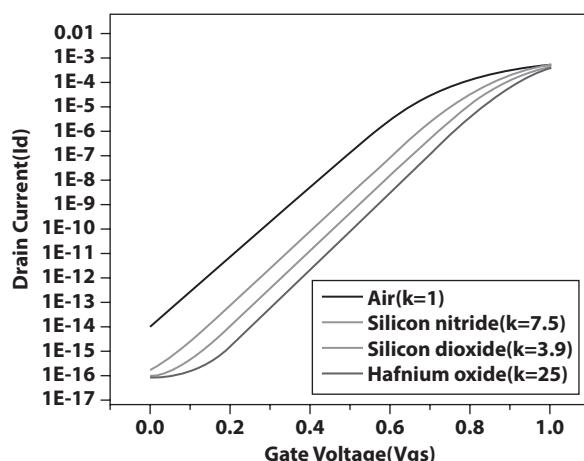


Figure 1.6 I_d Versus V_{gs} of AJ-DG MOSFET with varying dielectric constant ($L_{cavity} = 7\text{nm}$).

between gate and channel. These cavity regions are sensitive to the bio species present in the environment. The variation in biomolecule changes the dielectric constant of the medium that results in the variation in electrical parameters of a device that can be easily measured to detect the presence of bio-species.

References

1. S L Tripathi, Ramanuj Mishra, R A Mishra, "Characteristic comparison of connected DG FINFET, TG FINFET and Independent Gate FINFET on 32 nm technology" *IEEE ICPCES*, pp. 1-7, December, 2012.
2. Ammina, V.P., Vankudothu, S.P., Shaik, R.R. *et al.* An Optimized Ge Pocket SOI JLT with Efforts to Improve the Self-Heating Effect: Doping & Materials Perspective. *Silicon*, 2019. <https://doi.org/10.1007/s12633-019-00319-x>
3. F. Djeffal, H.Ferhat, T.Bentrcia Improved analog and RF performances of gate-all-around junctionless MOSFET with drain and source extensions, *Superlattices and Microstructures*, 90, 132-140, 2016.
4. Nirmal Ch. Roy, Abhinav Gupta, Sanjeev Rai. Analytical surface potential modeling and simulation of junction-less double gate (JLDG) MOSFET for ultra low-power analog/RF circuits, *Microelectronics Journal*, 46 (10), 916-922, 2015.
5. E. Chebaki, F.Djefal, H.Ferhati, T.Bentrcia. Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions, *Superlattices and Microstructures*, 92, 80-91, 2016.
6. Ali A. Orouji, M. Jagdeesh. Nanoscale SOI MOSFETs with electrically induced source/drain extension: Novel attributes and design considerations for suppressed short-channel effects, *Superlattices and Microstructures*, 39(5), 395-405, 2006.
7. Ajay, Rakhi Narang, Manoj Saxena, Mridula Gupta. Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors, *Superlattices and Microstructures*, 85, 557-572, 2015.
8. Varsha Pathak, Gaurav Saini. A Graded Channel Dual-Material Gate Junctionless MOSFET for Analog Applications, *Procedia Computer Science*, Vol. 125, 825-831, 2018.
9. Ajay Kumar, M.M.Tripathi, Rishu Chaujar. Analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications, *Superlattices and Microstructures*, 116, April 171-180, 2018.
10. Angsuman Sarkar, Aloke Kumar Das, Swapnadip De, Chandan Kumar Sarkar. Effect of gate engineering in double-gate MOSFETs for analog/RF applications, *Microelectronics Journal*, 43(11), 873-882, 2012.
11. Yon-Sup Pang, John R Brews. Design of 0.1-lm pocket n-MOSFETs for low-voltage applications, *Solid-State Electronics*, 46(12), 2315-2322, 2002.
12. Ajay Kumar, Neha Gupta, Rishu Chaujar. TCAD RF performance investigation of Transparent Gate Recessed Channel MOSFET, *Microelectronics Journal*, 49, 36-42, 2016.
13. Ying Wang, Yan Tang, Ling-ling Sun, Fei Cao. High performance of junctionless MOSFET with asymmetric gate, *Superlattices and Microstructures*, 97, 8-14, 2016.
14. Vimal Kumar Mishra, R. K. Chauhan. Efficient Layout Design of Junctionless Transistor Based 6-T SRAM Cell Using SOI Technology, *ECS Journal of Solid State Science and Technology*, 7(9)2018.
15. G.K. Saramekala, Abirmoya Santra, Sarvesh Dubey, Satyabrata Jit, Pramod Kumar Tiwari. An analytical threshold voltage model for a short-channel dual-metal-gate (DMG) recessed-source/drain (Re-S/D) SOI MOSFET, *Superlattices and Microstructures*, 60, 580-595, 2013.

16. Arobinda Pal, Angsuman Sarkar, Analytical study of Dual Material Surrounding Gate MOSFET to suppress short-channel effects (SCEs), *Engineering Science and Technology*, 17 (4), December 2014, pp. 205-212, 2014.
17. Chunshan, P.C.H. Chan. Investigation of the Source/Drain Asymmetric Effects Due to Gate Misalignment in Planar Double-Gate MOSFETs, *IEEE Transactions on Electron Devices*, 52(1), 85-90, 2005.
18. Jae Young Song, Woo Young Choi, Ju Hee Park, Jong Duk Lee, Byung-Gook Park. Design Optimization of Gate-All-Around (GAA) MOSFETs, *IEEE Transaction on Nanotechnology*, 5(3), 186-191, 2006.
19. Sheng Chang, Gaofeng Wang, Qijun Huang, Hao Wang. Analytic Model for Undoped Symmetric Double-Gate MOSFETs With Small Gate-Oxide-Thickness Asymmetry, *IEEE Transactions on Electron Devices*, 56(10), 2297-230, 2009.
20. Shubham Tayal, Ashutosh Nandi. Performance analysis of junctionless DG-MOSFET-based 6T-SRAM with gate-stack configuration, *Micro & Nano Letters, IET Journal*, 13(6), 838-84, 2018.
21. Bavir, M., Abbasi, A. & Orouji, A.A. A Simulation Study of Junctionless Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor with Symmetrical Side Gates. *Silicon* (2019). <https://doi.org/10.1007/s12633-019-00258-7>
22. Zeinab Ramezani, Ali A. Orouji. A Novel Double Gate MOSFET by Symmetrical Insulator Packets with Improved Short Channel Effects, *International Journal of Electronics*, 105(3), 361-374, 2018.
23. Tripathi S. L., Patel R., Agrawal V. K. Low Leakage Pocket Junction-less DGTFET with Bio-Sensing Cavity Region. *Turkish Journal of Electrical Engineering and Computer Sciences* 27(4), 2466-2474, 2019.
24. Mendiratta N., Tripathi S. L., Padmanaban S. and Hossain E. Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications. *Appl. Sci.* 10, 2499, 2020.

