
Michael C. Singer
David J. Terris
Editors 

Innovations in 
Modern Endocrine 
Surgery



Innovations in Modern Endocrine Surgery



Michael C. Singer • David J. Terris
Editors

Innovations in Modern 
Endocrine Surgery



ISBN 978-3-030-73950-8    ISBN 978-3-030-73951-5 (eBook)
https://doi.org/10.1007/978-3-030-73951-5

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Michael C. Singer
Department of Otolaryngology – Head and 
Neck Surgery, Henry Ford Hospital System  
Detroit, MI
USA

David J. Terris
Department Otolaryngology  
and Endocrinology
Augusta University Thyroid and Parathyroid 
Center, Augusta University
Augusta, GA  
USA

https://doi.org/10.1007/978-3-030-73951-5


David J. Terris

To my family, friends, colleagues, trainees, 
and the many patients who were so generous 
in allowing me to learn from them over three 
decades. And finally, a special 
acknowledgment to three very important 
people in my life – Amy, Bill, and Dick

Michael C. Singer

To my parents, David and Judy Singer, and 
in-laws, Sam and Brenda Gewurz, whose 
common values of love of family, concern for 
the welfare of others, and living lives of 
principle have provided a framework for my 
personal and professional life. Your impact 
knows no bounds.



vii

Preface

Over the past two decades, the care of patients with thyroid and parathyroid diseases 
has been transformed. Molecular, diagnostic, radiological, and surgical developments 
that touch on all elements of the care of these patients have resulted in improved 
outcomes and satisfaction.

While surgeons performing thyroid and parathyroid surgery may endeavor to 
remain abreast of all the advances in the field, staying current can be challenging. 
This book was conceived as a single resource for surgeons seeking to understand the 
latest developments and trends in the field. This book is the first to focus on the 
range of innovations that have been critical to the emergence of modern endocrine 
surgery. Fortunately, the authors of many of the chapters are the experts who have 
been the primary proponents of the individual innovations. This allows them to 
place these developments in their proper context, crucial to understanding their 
value and proper application.

Equipped with the knowledge provided by this text, surgeons can assess their 
own practice and choose to integrate innovations that may improve their patients’ 
outcomes.

Detroit, MI, USA Michael C. Singer
Augusta, GA, USA David J. Terris 
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Chapter 1
Ultrasound for Thyroid Nodule Risk 
Stratification

Poorani N. Goundan and Stephanie L. Lee

 Introduction

Ultrasound (US) is the imaging modality of choice and the standard of care for 
evaluating thyroid nodules. While thyroid nodules are a common occurrence, only 
about 5% are malignant. Historically, in order to stratify a patient’s risk for thyroid 
cancer, physicians would consider their clinical history, family history, and physical 
examination. However, these factors provided only a limited ability to discriminate 
between benign and malignant nodules. The development of a noninvasive tool for 
cancer risk assessment became a necessity to reduce the number of invasive proce-
dures including biopsy and surgical resection [1, 2].

In the 1950s, Blume and colleagues showed that one of the earlier versions of US 
technology, A-mode scanning, could provide the distance of a refractile surface to a 
US probe. Based on this capability, the detection and measurement of a single 
dimension of a thyroid nodule was possible [3]. The introduction of B-mode imag-
ing allowed the creation of two- dimensional images by combining serial A-mode 
images [4]. It was in the 1960s that US technology was first applied to the evalua-
tion of thyroid nodules. Fujimoto et al., in 1967, published their data on 184 patients 
and described four basic patterns of thyroid nodules: cystic, sparsely spotted, 
increased attenuation without internal echos and malignant [5]. Essentially, the 
technology at the time could identify large nodules, but did not provide adequate 
resolution to discriminate between benign and malignant nodules.

P. N. Goundan (*) ∙ S. L. Lee
Department of Medicine, Boston Medical Center, Section of Endocrinology,  
Diabetes and Metabolism, Boston University School of Medicine, Boston, MA, USA
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The development and application of gray-scale imaging in the 1970s allowed for 
more granular characteristics of thyroid nodules to be recognized and improved cor-
relation with histopathologic findings [6, 7]. Over the following decades,  gray-scale 
US has been further refined with the development of higher-frequency probes and 
post-imaging enhancement such as tissue harmonic and compound spatial imaging 
[8, 9]. In an effort to further increase the discriminatory value of US and aid in esti-
mating malignancy risk, gray-scale imaging has been combined with other US 
modalities, including Doppler analysis and elastography, and with fine-needle aspi-
ration (FNA). To consolidate our knowledge regarding US features and the risk of 
cancer, several risk stratification systems have been developed [10–14].

This chapter will discuss the current role thyroid US plays in the management of 
thyroid nodules and will highlight possible future directions of this technology.

 Ultrasound Setting and Image Acquisition

In order to obtain quality and consistent images, patient positioning and US settings 
need be optimized prior to acquiring US images. The patient’s neck should be 
hyperextended, which may be facilitated by placing a pillow behind their shoulders. 
High-resolution US typically uses US frequencies between 10 and 15  MHz or 
higher for imaging the thyroid gland. The focus and frequency of the sound waves 
and gain should be adjusted to the level of structures being imaged. Adjustment of 
the focus to the depth of the nodule is critical to detect and characterize the fine 
details of the nodule, echogenicity and margins of a nodule (Fig. 1.1). A complete 
US exam of the thyroid gland includes visualization of thyroid and perithyroidal 
structures and characterization of the cervical lymph nodes. A final US report should 
include a description of the thyroid gland parenchyma and its dimensions, a detailed 
description of relevant thyroid nodules, and information regarding the presence or 
absence of abnormal cervical adenopathy.

Fig. 1.1 Difference in quality and resolution of images between (a) sub-optimal US settings using 
a 14 MHz probe and incorrect focus (red box) and (b) optimal US settings using an 18 MHz probe 
and correct focus (red box) in a thyroid gland with a hypoechoic anterior nodule with infiltrative 
margins (arrow) with a heterogeneous background of Hashimoto’s thyroiditis

P. N. Goundan and S. L. Lee
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 Gray-scale Ultrasound Characteristics of Thyroid Nodules

Individual US characteristics have variable sensitivity, specificity and positive pre-
dictive value (PPV) for thyroid cancer (Table  1.1) [15–19]. The description, US 
examples, and interpretation of cancer risk of these characteristics are discussed in 
Table  1.2. High-risk US features for malignancy include a solid composition, 
hypoechogenicity, taller than wide dimensions, irregular margins, and microcalcifi-
cations. Interrupted peripheral macrocalcification, particularly when seen with extra-
nodular soft tissue extrusion, is a high-risk US feature, while isolated intranodular 
macrocalcification is not [20, 21]. Most US features that we associate with thyroid 
cancer identify the most common type of thyroid cancer, papillary thyroid cancer 
(PTC), in particular the classic type. Other less prevalent thyroid cancers including 
follicular thyroid cancers (FTC), follicular variants of PTC, and noninvasive follicu-
lar neoplasms with papillary-like features (NIFTP) may be hypoechoic but are more 
often iso- or hyperechoic and are not associated with microcalcifications [18, 22, 
23]. While medullary thyroid cancers tend to be hypoechoic and contain intranodular 
calcifications, their US features are less well defined [24].

There are several US features that are associated with benign nodules 
(Figure 1.2a–c). Purely cystic or spongiform nodules never or rarely require FNA, 
as their risk of malignancy is very low. A colloid comet, a US artifact due to rever-
beration of echo signals in colloid, is a benign finding. However, these can be dif-
ficult to distinguish from hyperechoic, non-shadowing microcalcifications, which 
are potentially associated with cancer. Importantly, indistinct margins must be dis-
tinguished from infiltrative margins. While indistinct margins are not specifically a 
characteristic of low-risk thyroid nodules, they usually occur in confluent isoechoic 
adenomatous nodules and are not a high-risk feature for malignancy.

US interpretation is both instrument and operator dependent. Studies have dem-
onstrated interobserver variability that is more evident with certain US features such 
as nodule volume, margins, and the presence of microcalcifications [25–27]. To try 
to minimize this interobserver variability seen when interpretation is done by a phy-
sician, the use of machine learning for US characteristic and pattern recognition has 
begun to be investigated [28, 29].

Table 1.1 Individual ultrasound characteristics of thyroid nodules and risk for thyroid cancer*

Nodule characteristic Sensitivity Specificity PPV

Hypoechogenicity 68–87% 43–81% 11–61%
Marked hypoechogenicity (similar to strap muscle) 27–69% 92–98% 68–96%
Solid consistency 89–91% 33–58% 26–39%
Microcalcification 36–59% 86–98% 39–85%
Macrocalcification 2–10% 96–98% 25–65%
Irregular/microlobulated margins 48–84% 83–92% 30–81%
Taller than wide configuration on transverse view 32–64% 91–100% 67–100%

* [15–19]

1 Ultrasound for Thyroid Nodule Risk Stratification
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 Doppler Flow in Thyroid Nodule Evaluation

Doppler flow imaging (Doppler) provides additional information about the vascu-
larity of thyroid nodules. Color flow Doppler images indicate direction and speed of 
vascular flow within tissue. Power Doppler, on the other hand, does not take into 
consideration differences in frequency shifts and represents the total amount of flow 
irrespective of direction. Power Doppler is more sensitive in picking up low flow 
and is favored by some [30]. However, it also has a higher background signal, and 
some practitioners consequently prefer the higher specificity of color flow Doppler 
analysis.

Thyroid nodule vascularity can be graded on a scale of 1–4 (Figure 1.3a–d): 
no flow (grade 1), peripheral flow (grade 2), low central flow (grade 3), and high 
central flow (grade 4). In 2010, Moon et al. published data showing that vascu-
larity was not a helpful predictor for malignancy [31]. This was conflicted with 
the results of prior studies. In 1083 nodules, intranodular vascularity was pres-
ent in 17% and absent in 60% of malignant nodules vs. 31% and 60%, respec-
tively, in benign nodules. The cancers in this study were predominantly PTC 
and included small nodules (i.e., less than 1 cm). Most studies evaluating vascu-
lar flow of thyroid malignancies have a predominance of classical variant of 
PTC, which can make the sensitivity of intranodular vascular flow low as a 
marker for malignancy. When looking specifically at follicular lesions, there is 
evidence to suggest a role for Doppler detection of intranodular vascular flow 
[32, 33]. In one study, in 305 nodules that were classified as follicular lesions on 
FNA, intranodular flow was seen in only 5% of benign adenomatous nodules 
(grade 3 vascularity), 34% of follicular adenomas, and 86% of follicular carci-
nomas (grade 3–4 vascularity) [32]. Other studies have, however, showed con-
siderable overlap between the vascular pattern of benign lesions and follicular 
cancers and a lack of a predictive value of vascular distribution [34, 35].

a b c

Fig. 1.2 (a–c) Low-risk thyroid nodule ultrasound feature. (a) Cystic nodule: an anechoic or 
hypoechoic lesion with posterior enhancement and no solid tissue. (b) Spongiform nodule: nodule 
with more than 50% of the nodule occupied by microcystic spaces with linear posterior wall reflec-
tion enhancement. (c) Comet tail artifact: a reverberation artifact seen within a cystic nodule
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 Elastography

Elastography assesses the degree of stiffness of tissue utilizing sound waves to measure 
the amount of compression from external pressure. In strain elastography, the most com-
monly used technique relied on intermittent manual external pressure being applied 
with the US probe. This introduced a significant limitation of being operator dependent. 
Subsequently, quantitative elastography techniques have been developed to reduce this 
confounding factor. When a strain ratio is calculated from the mean strain of the nodule 
and the surrounding tissue, there is some improvement in interobserver variability [36]. 
Elasticity contrast index, which utilizes the pulsation of the adjacent carotid artery as a 
source of pressure, is another semiquantitative method developed and studied in thyroid 
nodules [37]. Shear wave elastography utilizes an ultrasonic pulse from the probe rather 
than manual compression to obtain a numerical value for stiffness based on change in 
wave propagation speed. This method has been demonstrated to be less operator depen-
dent and more reproducible [38].

Studies have shown the utility of combining elastography with conventional 
gray-scale US characteristics in risk assessment. When elastography was combined 

a

c dc d

b

Fig. 1.3 Vascular grade of thyroid nodules. (a) Grade 1: No or scant vascularity. (b) Grade 2: 
predominantly perinodular vascularity. (c) Grade 3: low intranodular vascular flow. (d) Grade 4: 
high intranodular vascular flow

1 Ultrasound for Thyroid Nodule Risk Stratification



12

with five conventional US risk characteristics (hypoechogenicity, microcalcifica-
tion, taller than wide configuration, irregular margins, and intranodular vasculariza-
tion), the overall sensitivity improved (compared to analysis with only gray-scale 
US characteristics) from 85% to 97%, and the negative predictive value increased 
from 91% to 97% [39]. Similarly, in 142 nodules with indeterminate cytological 
classification on FNA, elastography demonstrated a specificity of 91.8% but a sen-
sitivity of 96.8% [40]. Overall, multiple studies have demonstrated the potential use 
of elastography as a predictor of benign disease in thyroid nodules. In a prospective 
study looking at the use of shear wave elastography only, a threshold of 3.45 m/s 
produced a sensitivity of 79.3% and specificity of 71.5%. The cancer prevalence in 
the cohort was 11.5%, and the PPV and negative predictive value (NPV) were found 
to be 26.7% and 96.3%, respectively [41].

While elastography may provide additional, useful information, it does have 
drawbacks. In addition to interobserver variability, shear wave elastography does 
have a marked operator learning curve. Additionally, both strain and shear wave 
elastography cannot be used when significant cystic areas or calcification is present 
in thyroid nodules. Furthermore, their results are affected by nodule depth and sur-
rounding tissue fibrosis, which limits the broad utility of these imaging methods.

 Risk Stratification System

Recognizing that sensitivity and specificity of individual US features are not ade-
quate to predict benignity or malignancy of thyroid nodules, risk stratification 
systems, which incorporate multiple US features, have been developed. Several of 
these systems, which were based on the Breast Imaging Reporting and Data 
System (BI-RADS) system followed for breast imaging, adopted the name 
Thyroid Imaging Reporting and Data System (TI-RADS). One of the earliest ver-
sions of this was developed and described by Horvath and colleagues in 2009 
[42]. Since then, several research groups and professional societies have devel-
oped different iterations of TI-RADS. The American College of Radiology (ACR) 
TI-RADS assigns points for individual US features, and the total score determines 
the risk category – a higher score indicating a higher risk for cancer [11].

In contrast, the American Thyroid Association (ATA) guidelines rely on pattern 
recognition in determining cancer risk in a nodule [12]. This is similar to the pattern 
recognition approach taken by the Korean Society of Radiology (K-TI-RADS), the 
European Thyroid Association (EU-TI-RADS) and the American Association of 
Clinical Endocrinologist (with the American College of Endocrinology and 
Associazione Medici Endocrinologi Medical) [10, 13, 14]. All methods follow the 
same principle of assigning a higher risk category for nodules with a greater number 
of high-risk US features. When combined with a threshold diameter to consider 
biopsy, these systems are designed at improving diagnostic accuracy of US and 
FNA and reducing the number of unnecessary thyroid nodule biopsies performed 
[10–14]. It is important to point out that, as noted previously, the high-risk US 
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characteristics used to determine if a nodule requires biopsy are more specific for 
the hypoechoic classical PTC compared to the more isoechoic follicular variant 
PTC, the more isoechoic follicular thyroid cancer, and NIFTP.

When comparing the two commonly used thyroid nodule risk stratification sys-
tems in the Unites States, i.e., the ATA US risk stratification and ACR TI-RAD 
(Tables 1.3, 1.4, and 1.5) [11, 12]:

 (a) Ahmadi et al. showed in their review of 323 thyroid nodules (27.2% malignant) 
the sensitivity and specificity for detection of cancer of the ATA guideline rec-
ommendations to be 77.3% and 76.6%, respectively, and the ACR TI-RADS 
78.4% and 73.2% [43]. Gao et al. reviewed 2455 nodules (66.1% malignant) 
and determined a higher sensitivity of 95.5% for the ATA guidelines compared 
to 81.6% for the ACR TI-RADS [44]. In general, based on statistical analysis, a 
risk stratification system that combines multiple US features compared to indi-
vidual high-risk characteristics will increase specificity but also reduce the sen-
sitivity of the test. This results from the fact that while few thyroid cancers will 
have all the high-risk sonographic features, those that do have these character-
istics are very likely to be malignant.

 (b) The ATA system utilizes US patterns to classify nodules into risk categories. 
Because of this, several nodules are not considered classifiable if the definition 
of each risk category is strictly followed. Nodules in this “unclassified” cate-
gory include iso- or hyperechoic nodules with additional high-risk US charac-
teristics such as irregular margins or microcalcification. In one study, this 
represented 54 of 1077 thyroid nodules that were found to have an increased 
risk (OR 7.2, CI: 2.44–21.24) for high-risk cytology compared to the nodules 
with lower US suspicion features [45].

Table 1.3 American Thyroid Association stratification of sonographic patterns and risk of 
malignancy

Sonographic 
pattern US feature

High suspicion Hypoechoic echogenicity (solid nodule or solid portion of a partially cystic 
nodule) with one or more of the following:
  Irregular margins
  Microcalcifications
  Taller than wide dimension
  Peripheral rim of calcification with soft tissue extrusion
  Extrathyroid extension
  Presence of abnormal or suspicious cervical lymphadenopathy

Intermediate 
suspicion

Hypoechoic solid nodule with smooth margins without other high-risk US 
features

Low suspicion Isoechoic or hyperechoic solid nodule or partially cystic nodule with 
eccentric solid area, without high-risk US features

Very low 
suspicion

Spongiform or partially cystic nodules without any high, intermediate, or 
low suspicion US features

Benign Purely cystic nodule

1 Ultrasound for Thyroid Nodule Risk Stratification
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Table 1.5 Comparison of ATA and ACR TI-RADS thyroid nodule risk stratification systems and 
biopsy recommendations (with theoretial risk of malignancy)

ATA (2015) ACR TI-RADS (2017)
Benign (0%) No FNA TR1: benign (<2%) No FNA

Very low suspicion 
(<3%)

Consider FNA if 
≥2 cm or observation

TR2: not suspicious 
(<2%)

No FNA

Low suspicion 
(5%–10%)

FNA if ≥1.5 cm TR3: mildly 
suspicious (5%)

FNA if ≥2.5 cm
Follow if ≥1.5 cm (US 
at 1 and 3 years)b

Intermediate 
suspicion 
(10%–20%)

FNA if ≥1 cm TR4: moderately 
suspicious (5%–20%)

FNA if ≥1.5 cm
Follow if ≥1 cm (US at 
1, 2, 3, and 5 years)b

High suspicion 
(>70%–90%)

FNA if ≥1 cm TR5: highly 
suspicious (at least 
20%)

FNA if ≥1 cm
Follow if ≥0.5 cm (US 
every year for 5 years)b

aIf adenopathy suspicious for metastatic cancer is seen on US, both the ACR TI-RADS and ATA 
guidelines recommend FNA of the lymph node [11, 12]
bCan stop imaging at 5 years if there is no change in nodule size; if a nodule’s ACR TI-RADS level 
increases on follow-up imaging, then repeat US in 1 year irrespective of initial TI-RADS level

Table 1.4 Summary of ACR Thyroid Imaging Reporting and Data System (TI-RADS) 

Step one: Assign points for US feature

Composition 
(choose one) 

Cystic or spongiform a(zero points)/mixed solid
and cystic (one point)/solid (two points)  
(if composition cannot be determined, assign
two points)

Echogenicity 
(choose one)

Anechoic (zero points)/hyper-or isoechoic (one 
point)/hypoechoic (two points)/very hypoechoic
(three points)
(if echogenicity cannot be determined, assign
one point) 

Add points 
from each 
category

Shape 
(choose one)

Wider-than tall (zero points)/Taller than wide
(three points)

Margin
(choose one)

Smooth or ill defined (zero points)/lobulated or 
irregular (two points)/extrathyroidal extension
(three points) 
(if margin cannot be determined, assign zero
points)

Echogenic 
foci (all that 
apply)

None or large comet tail artifacts (zero points)/
macrocalcification (one point)/peripheral (rim)
calcifications (two points)/punctate echogenic
foci (three points)  

TI-RADS 
category

TR1 (benign): 
zero points

TR2 (not 
suspicious): 
two points

TR3 (mildly 
suspicious):
three points
TR4 (moderately 
suspicious): four to
six points 

TR5 (highly 
suspicious): 
≥ seven points

aIf spongiform, do not add additional points for echogenicity, shape, margin or echogenic foci 
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 (c) Both the ATA system and ACR TI-RADS suggest a size threshold of 1 cm for 
recommending a biopsy for a nodule in their highest-risk categories (i.e., high 
suspicion and TR5, respectively). Sub-centimeter tumors, in the absence of 
local invasion or adenopathy or distant metastasis, often are indolent [46].

 (d) The ATA guideline provides a lower size threshold, of 1.5 cm and 1 cm, regard-
ing when to recommend biopsy for low and intermediate suspicion nodules. For 
equivalent ACR TI-RADS categories of mildly suspicious TR3 and moderately 
suspicious TR4, biopsy is recommended for nodules greater than 2.5 cm and 
1.5 cm, respectively. Multiple studies have demonstrated that the ACR TI- 
RADS results in a greater number of nodules in which biopsies are avoided 
compared to the ATA system. This relative reduction by the ACR TI-RADS has 
been reported to be around 40%–50%, with a false negative rate between 2% 
and 3% [44, 47]. In one study, however, in nodules which would not have been 
biopsied if following TI-RADS, the malignancy rate was as high as 11.3%. 
Interestingly, the rate was similar when the ATA guidelines were applied 
(10.1%). These false-positive cases tend to be iso- or hyperechoic nodules, as 
described earlier. Of note, data suggests that papillary and follicular thyroid 
cancers that are >2–2.5  cm in size have been associated with an increased 
cumulative risk for distant metastasis [48, 49].

 (e) As part of the thyroid nodule evaluation guidelines, the ATA recommends thy-
roid scintigraphy if TSH levels are low. This is not outlined in the ACR  TI- RADS 
and can lead to biopsy of “hot” nodules that have to have a low risk of malig-
nancy. In this setting, some have expressed concerns about an increased risk of 
false-positive cytology (atypia of undetermined significance/follicular lesion) 
on FNAs performed on autonomous nodules. However, this has not been seen 
consistently [50, 51].

 (f) The ACR TI-RADS recommends serial US for TR3–5 nodules that do not meet 
the criteria for FNA for up to 5 years at varying frequency depending on the risk 
category. If there is stability in size and US characteristics, the US can be 
stopped at 5 years. It does not provide specific recommendations regarding 
follow-up for nodules with a prior benign biopsy.

The ATA guidelines do address this scenario. Following a benign biopsy, 
they recommend repeating a US for nodules with a high suspicion pattern in 1 
year and for nodules with low to intermediate suspicion patterns in 1–2 years. 
For nodules with a very low suspicion pattern (spongiform or cystic) and for 
nodules with two benign biopsy results, follow-up US may not be required. In 
a nodule with a benign biopsy result, suspicious US features rather than growth 
should possibly determine the need for repeat biopsy [52]. It should be noted 
that the serial US exams recommendations in the ATA and TI-RADS classifica-
tion systems are for risk of malignancy and not for sequential growth of a 
benign nodule. Although it is likely that low risk subcentimeter nodules do not 
require long-term followup, larger nodules have a potential for growth and 
developement of obstructive symptoms and require intermittent evaluation for 
growth [53].
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 (g) Both the ATA guidelines and ACR TI-RADS recognize extrathyroidal exten-
sion as a high-risk feature that should place a thyroid nodule in a higher risk 
category. Nodule size would then determine if a biopsy would be indicated. The 
authors, however, recommend biopsy of any suspicious nodule with extrathy-
roidal extension irrespective of its size. Biopsy of abnormal cervical lymph 
nodes, if detected while evaluating a thyroid nodule, is recommended regard-
less of the nodule size.

 (h) The ATA guidelines and ACR TI-RADS do not incorporate elastography or vas-
cularity as a tool in the assessment of thyroid nodules. In a stratification system 
developed by Russ and colleagues, a five-tier TI-RADS classification system that 
included the use of elastography with gray-scale US characteristics demonstrated a 
slightly improved sensitivity of 98.5% (in 991 cases) compared to 95.7% when only 
gray-scale US characteristics were included (in 3658 cases) [54]. The use of elas-
tography has not been universally adopted because of the cost of the equipment and 
operator and machine variability. Some classification systems, however, such as the 
French thyroid TI-RADS, have included it [55, 56].

 Conclusion

The current evaluation of thyroid nodules includes assessment of thyroid function, 
gray-scale characteristics of a thyroid nodule combined with other US modalities, 
including Doppler analysis and elastography, and with fine-needle aspiration. The 
TI-RADS thyroid nodule risk assessment reduces biopsies compared to the ATA 
system but may be associated with more missed cancers (follicular thyroid cancer, 
follicular variant of PTC and NIFTP that are usually isoechoic). Newer techniques 
including contrast-enhanced US, three-dimensional US imaging, and quantitative 
US have been or are currently being studied to expand the sonographic techniques 
to evaluate thyroid nodules [57–59]. Many groups are exploring the application of 
deep machine learning and artificial intelligence to improve the diagnostic accuracy 
of the current risk stratification systems and to avoid errors in interpretation of 
images [28, 29]. However, despite that gray-scale US includes machine and opera-
tor limitations, it remains the imaging modality of choice for evaluating thyroid 
nodules for the risk of malignancy.
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