

EDITED BY
RON WAKSMAN | TOBY ROGERS

TRANSCATHETER MITRAL VALVE THERAPIES

WILEY Blackwell

Transcatheter Mitral Valve Therapies

Transcatheter Mitral Valve Therapies

Edited by

Ron Waksman

Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA

Toby Rogers

Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA

Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA

WILEY Blackwell

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>

The right of Ron Waksman and Toby Rogers to be identified as the author(s) of the editorial material in this work has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

101 Station Landing, Medford, MA 02155, USA

For details of our global editorial offices, customer services, and more information about Wiley products, visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only, and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Waksman, Ron, editor. | Rogers, Toby, 1979- editor.

Title: Transcatheter mitral valve therapies / Ron Waksman, Toby Rogers.

Description: Hoboken, NJ : Wiley-Blackwell, 2020. | Includes bibliographical references and index.

Identifiers: LCCN 2020026999 (print) | LCCN 2020027000 (ebook) | ISBN 978119490685 (hardback) | ISBN 978119490678 (Adobe PDF) | ISBN 978119490654 (epub)

Subjects: MESH: Mitral Valve Insufficiency—surgery | Mitral Valve—surgery | Cardiac Catheterization—methods | Cardiac Catheters

Classification: LCC RD598.35.C35 (print) | LCC RD598.35.C35 (ebook) | NLM WG 262 | DDC 617.4/12-dc23

LC record available at <https://lccn.loc.gov/2020026999>

LC ebook record available at <https://lccn.loc.gov/2020027000>

Cover Design: Wiley

Cover Image: © Samuel A. Famoyegun

Set in 9.5/12.5pt STIXTwoText by SPi Global, Pondicherry, India

Contents

List of Contributors xvii

Introduction—The Mitral Book xxiii

1 The Pathology of Mitral Valve Disease 1

Maria E. Romero, Sho Torii, and Renu Virmani

1.1 Introduction 1

1.2 General Anatomy of the Mitral Valve 1

1.2.1 Mitral Annulus 1

1.2.2 Leaflets 3

1.2.3 Chordae Tendineae and Papillary Muscles 5

1.2.4 Papillary Muscles and Left Ventricle 5

1.3 Pathology of Mitral Valve 5

1.3.1 Mitral Valve Stenosis 5

1.3.2 Aging Changes and Mitral Annulus Calcification (MAC) 6

1.3.3 Acute Mitral Regurgitation 8

1.3.4 Chronic Mitral Regurgitation 8

1.3.5 Degenerative MR; Myxomatous Degeneration of the Mitral Valve 8

1.3.6 Functional MR 10

References 11

2 The Importance of Minimally Invasive Approaches for Mitral Valve Repair 15

Bobby Yanagawa and Niv Ad

2.1 Introduction to Minimally Invasive Mitral Valve Surgery 15

2.2 The Importance of MICS MVS 16

2.3 Patient Selection 17

2.4 Surgical Setup—Fibrillating Heart MVS 18

2.5 Alternatives for Cannulation 19

2.6 Alternatives to Myocardial Protection 19

2.7 Mitral Valve Repair 20

2.8 Outcomes 20

2.9 Initiating Minimally Invasive Mitral Valve Repair Program 21

2.10 Conclusion 22

References 22

3 When to Intervene—Should Surgical Guidelines Apply to Transcatheter Techniques in Treating Mitral Regurgitation? 25*Samir Kapadia, Rishi Puri, Kinjal Banerjee, and Lars G. Svensson*

- 3.1 Introduction 25
- 3.2 Primary MR 25
 - 3.2.1 Current Guideline Recommendations 25
 - 3.2.2 Transcatheter Therapies—New Guideline Applications? 26
- 3.3 Secondary MR 29
 - 3.3.1 Current Guideline Recommendations 29
 - 3.4 Conclusions 31
 - 3.4 References 32

4 Transcatheter Mitral Valve Therapies: A Three-Dimensional Echocardiographic View 35*Shmuel Schwartzenberg, Chaim Yosefy, and Alexander Sagie*

- 4.1 Introduction 35
 - 4.1.1 Mitral Valve Anatomy 35
 - 4.1.2 Mitral Valve Structure and Function 35
 - 4.1.3 Mitral Regurgitation Severity 36
 - 4.1.4 Diagnosis of MR Severity: Proximal Isovelocity Surface Area Method 36
 - 4.1.5 Diagnosis of MR Severity: Vena Contracta Method 37
 - 4.1.6 Primary and Secondary MR 37
 - 4.1.7 Mitral Regurgitation and Cardiovascular Death and Morbidity 38
 - 4.1.8 Screening for MitraClip Suitability 40
 - 4.1.9 MitraClip Procedure Guidance 41
 - 4.1.10 Transseptal Puncture 41
 - 4.1.11 MitraClip Delivery Guidance 42
 - 4.1.12 Adequacy of MitraClip Implantation Assessment 43
 - 4.1.13 Other Technologies 45
- 4.2 Conclusions 45
- 4.2 References 45

5 CMR Assessment of Mitral Regurgitation 51*Daniel Knight and Vivek Muthurangu*

- 5.1 Introduction 51
- 5.2 Pulse Sequences Used in CMR 52
 - 5.2.1 Cine Imaging 52
 - 5.2.2 Phase Contrast Imaging 52
- 5.3 Assessment of MR Severity 52
 - 5.3.1 Qualitative Assessment 52
 - 5.3.2 Quantitative Assessment 55
 - 5.3.3 Technical Considerations for the Quantitative Assessment of MR by CMR 56
- 5.4 Identification of MR Etiology 57
 - 5.4.1 Primary MR 57
 - 5.4.2 Secondary MR 57
- 5.5 The Role of CMR Assessment of MR in Clinical Practice 58

5.6	Conclusions	58
	References	58

6 CT Planning for TMVR and Predicting LVOT Obstruction 63

Dee Dee Wang, Mayra Guerrero, Brian O'Neill, Pedro A. Villalblanca Spinetto, James Lee, Tiberio Frisoli, Marvin Eng, and William O'Neill

6.1	Introduction	63
6.2	History of Imaging for Mitral Valve Disease	63
6.2.1	TAVR CT Planning	63
6.2.2	Surgical and Transcatheter Mitral Interventions	63
6.3	Concept of Aortic and Mitral Valve Technology Development	64
6.4	Basics of CT Imaging Acquisition	66
6.5	Definition of Mitral Valve and TMVR device Landing Zone	66
6.6	Definition of LVOT	66
6.7	CT Methods for Neo-LVOT prediction modeling	67
6.8	CT Validation of Neo-LVOT Prediction Modeling Post-TMVR	68
6.9	Correlation Between Pre- and Post-TMVR CT Neo-LVOT Prediction Modeling	69
6.10	What Else Has CT Planning for TMVR Taught Us?	70
	Acknowledgments	72
	References	72

7 General Principles and State-of-the-Art Echocardiographic Evaluation of the Mitral Valve 75

Federico M. Asch and Diego Medvedofsky

7.1	Introduction	75
7.2	Mechanism and Etiology of Chronic MR	75
7.2.1	Transthoracic Echocardiography	76
7.2.1.1	Assessment of MR Severity	76
7.2.2	Qualitative Assessment	76
7.2.2.1	Color Flow Doppler	76
7.3	Continuous Wave (CW) Density Jet	79
7.3.1	Semi-Quantitative Assessment	79
7.3.1.1	VC Width	79
7.4	Pulmonary Vein Flow/Mitral Inflow	79
7.4.1	Quantitative Assessment	80
7.5	Selection of Best Candidates for Interventions of the Mitral Valve	82
7.5.1	Echocardiographic Criteria of COAPT (Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation) Trial	84
	References	84

8 Intraprocedural Echocardiography for MitraClip 87

Philip Haines and Sumbal A. Janjua

8.1	Introduction	87
8.2	Pre-Procedure Evaluation	88
8.3	Importance of the Baseline Study – TEE	88
8.4	The Transseptal Puncture	95

- 8.5 Guiding MitraClip System to Mitral Valve 98
- 8.6 Intraprocedural Guidance of Clip within Mitral Valve and Leaflets 102
- 8.7 Post-Clip-Deployment Assessment of Mitral Valve Function 103
- 8.8 Assessment of Complications and Iatrogenic ASD 105
- References 112

9 Intraprocedural Echocardiography for Transcatheter Mitral Valve Replacement 115

Patrick T. Gleason, John C. Lisko, and Stamatis Lerakis

- 9.1 Introduction 115
- 9.2 Baseline Mitral Valve Assessment 115
- 9.3 Access to the Left Atrium, Left Ventricle, and Mitral Valve 116
- 9.4 Predeployment and Deployment Monitoring 118
- 9.5 Postdeployment Evaluation 120
- References 122

10 Transcatheter Repair: MitraClip for Degenerative Mitral Regurgitation 125

Ted Feldman

- 10.1 Surgery for Degenerative Mitral Regurgitation 125
- 10.2 Evidence Base for MitraClip 125
- 10.3 Challenges for the MitraClip Procedure 130
- 10.4 Evaluation of MitraClip for Less than Prohibitive-Risk DMR Patients 131
- 10.5 Future Directions for MitraClip and Alternative Approaches for Leaflet Repair 133
- 10.6 Summary 135
- References 136

11 MitraClip™ for Secondary Mitral Regurgitation 139

Brian J. Forrestal and Toby Rogers

- 11.1 Introduction 139
- 11.2 European and US Clinical Practice Guidelines 139
- 11.3 The MitraClip System 140
- 11.4 MitraClip Preprocedural Planning 140
- 11.5 Surgical Outcomes Data 140
- 11.6 The COAPT and MITRA-FR Trials 141
- 11.7 Summary and Conclusions 144
- References 144

12 The Edwards PASCAL Transcatheter Valve Repair System 147

Mirjam Winkel, Stephan Windecker, and Fabien Praz

- 12.1 Introduction 147
- 12.2 The Edwards PASCAL™ Transcatheter Valve Repair System 147
- 12.3 Implantation Procedure 148
- 12.4 Compassionate-Use and Early Feasibility Data 150
- 12.5 Future Developments 151
- References 152

13 The Development of a Novel Percutaneous Treatment for Secondary Mitral Regurgitation—The Carillon® Mitral Contour System® 153*Steven L. Goldberg*

- 13.1 Introduction 153
- 13.2 REDUCE-FMR 157
- 13.3 The CARILLON Trial 160
- 13.4 Summary 161
- 13.5 References 161

14 A Fully Percutaneous Mitral Ring: The Cardioband System 163*Antonio Mangieri, Enrico Poletti, and Azeem Latib*

- 14.1 Introduction 163
- 14.2 Mitral Annulus Anatomy 163
- 14.3 Pathophysiological Role of the Mitral Annulus in Mitral Regurgitation 164
- 14.3.1 Mitral Annulus in FMR 164
- 14.3.2 Mitral Annulus in DMR 164
- 14.4 Surgical Annuloplasty in Mitral Regurgitation 164
- 14.5 The Cardioband System: Description of the Device 165
- 14.6 Procedural Planning 165
- 14.7 Clinical Studies 168
- 14.8 Possible Complications Related to the Implantation of Cardioband 170
- 14.9 Recurrence of Mitral Regurgitation Following Cardioband Implantation 171
- 14.10 Cardioband in Combination with Other Devices 172
- 14.11 Conclusions 173
- 14.12 References 173

15 Transcatheter Mitral Cerclage Annuloplasty 175*Christopher Bruce, June-Hong Kim, Toby Rogers, and Robert J. Lederman*

- 15.1 Introduction 175
- 15.2 Cerclage Anatomy and Function 175
- 15.3 Limitations of Coronary Sinus Annuloplasty 176
- 15.4 Cerclage Annuloplasty Device 177
- 15.5 The Cerclage Procedure 177
- 15.6 Preclinical Experiments 178
- 15.7 Initial Human Experience 178
- 15.8 Future Directions 180
- 15.9 Summary 182
- 15.10 Competing Interests 183
- 15.11 References 183

16 The Transapical Off-Pump Mitral Valve Repair with the NeoChord Implantation (TOP-MINI) 185*Stefan Bertog, Laura Vaskelyte, Nalan Schnelle, Iris Grunwald, Ilona Hofmann, Sameer Gafoor, Markus Reinartz, Predrag Matic, Bojan Jovanovic, Kolja Sievert, Michèle Jacqueline Lembens, and Horst Sievert*

- 16.1 Introduction 185
- 16.2 Technology 185

16.3	Patient Selection	186
16.4	Procedure	186
16.5	Echocardiographic Guidance	191
16.6	Examples	191
16.6.1	Ideal Anatomy	191
16.6.2	Acceptable Anatomy	191
16.6.3	Challenging Anatomy	192
16.6.4	Data	192
16.7	Conclusion	194
	References	195

17 AltaValve™—A Transcatheter Mitral Valve Regurgitation Treatment Technology 197

Katherine Kumar, PhD and Saravana Kumar, PhD

17.1	Clinical Need	197
17.2	Device Description	198
17.2.1	Principle of Operation	198
17.2.2	Device Construction	199
17.2.2.1	Stent	200
17.2.2.2	Stent Cap	200
17.2.2.3	Tissue Valve	200
17.2.2.4	Fabric Skirts and Sutures	200
17.2.3	Delivery Systems	200
17.3	Anatomical Imaging and Sizing	202
17.4	Preclinical and Clinical Experience	203
17.4.1	Animal Studies	203
17.5	Human Clinical Experience	204
17.6	Summary	205
	References	206

18 The ARTO Transcatheter Mitral Valve Repair System 209

Andrejs Erglis, Inga Narbute, Agnese Strenge, and Samantha E. Greene

18.1	Device Description	209
18.2	Procedural Details	209
18.3	Clinical Experience with the ARTO System	212
18.4	Unique Features of the ARTO System	216
	References	216

19 Transcatheter Mitral Annuloplasty: The Millipede Device 219

Jason H. Rogers and Steven F. Bolling

19.1	Background	219
19.2	The Millipede Device	219
19.3	Millipede Implantation Procedure	220
19.4	Surgical Millipede Implants	220
19.5	Millipede Clinical Results	222
19.6	Clinical Implications	223

19.7	Summary	226
	Author Disclosures	226
	References	226
20	Transapical and Transseptal Access for Transcatheter Mitral Valve Replacement: Techniques and Devices <i>227</i>	
	<i>James Edelman and Vinod H. Thourani</i>	
20.1	Introduction	227
20.2	Transapical Approach	227
20.2.1	Technique	228
20.2.2	Devices in Active Clinical Trial Phase	230
20.2.2.1	Tendyne	230
20.2.2.2	Intrepid	230
20.2.2.3	CardiAQ	231
20.2.2.4	TIARA	231
20.2.2.5	HighLife	231
20.3	Transseptal Approach	231
20.3.1	Technique	231
20.3.2	Devices in Active Clinical Trial Phase	233
20.3.2.1	Sapien M3	233
20.3.2.2	EVOQUE	233
20.3.2.3	Caisson	233
20.4	Conclusions	233
	References	233
21	Mitral Valve-in-Value and Valve-in-Ring Therapies <i>235</i>	
	<i>Norihiko Kamioka, Peter C. Block, Adam B. Greenbaum, and Vasilis C. Babalarios</i>	
21.1	Overview	235
21.2	Evidence	236
21.3	Procedure Planning	239
21.4	Procedure	243
21.5	Pitfalls and Solutions—POULEZ and LAMPOON	244
	References	245
22	Edwards SAPIEN in Native Mitral Annular Calcification (MAC) <i>251</i>	
	<i>Mayra Guerrero, Dee Dee Wang, Mackram Eleid, Charanjit Rihal, William O'Neill, and Ted Feldman</i>	
22.1	Introduction	251
22.2	Anatomic Considerations and Sizing	251
22.3	Delivery Access Types	253
22.4	Preprocedural Planning	253
22.5	Valve Deployment Technique	253
22.6	Clinical Outcomes and Complications	255
22.7	LVOT Obstruction	256
22.8	TMVR in MAC Clinical Trials	256

22.9	Aortic THV versus Dedicated TMVR Devices for MAC	257
22.10	Conclusions	257
	Disclosures	258
	References	258

23 Transcatheter Mitral Valve Replacement: The Tendyne Device 261

Alison Duncan

23.1	Introduction	261
23.2	The Tendyne TMVI Device	261
23.2.1	Current Tendyne Device Design	262
23.3	Patient Screening and Preprocedural Imaging	262
23.3.1	Patient Selection	262
23.3.2	Anatomical Screening	263
23.4	Implantation Technique	264
23.4.1	Transapical Approach	264
23.4.2	Device Entry into Left Atrium	264
23.4.3	Intra-annular Device Deployment	264
23.4.4	Apical Pad Fixation and Adjustment of Tether Tension	264
23.4.5	Confirmation of Device Position and Function	267
23.5	Clinical Outcomes	267
23.6	Future Challenges	271
23.7	Conclusion	274
	References	274

24 TIARA Transcatheter Mitral Replacement System 277

Anson Cheung

24.1	Introduction	277
24.2	Neovasc TIARA TMVR System	277
24.3	Candidacy for TIARA TMVR	278
24.4	Clinical Case and TIARA TMVR Implantation	278
24.5	Clinical Updates	281
24.6	Conclusions	281
	Conflict of Interest	282
	References	282

25 Caisson Transcatheter Mitral Valve Replacement System 283

Mathew R. Williams and Cezar S. Staniloae

25.1	Introduction	283
25.2	Caisson Transcatheter Mitral Valve Replacement System Components	283
25.2.1	Anchor	284
25.2.2	Valve	285
25.2.3	The Delivery System	285
25.2.4	Retrieval Accessories	285
25.3	Procedural Details	285
25.3.1	Role of Imaging on Valve Sizing and Procedural Guidance	287
25.3.1.1	Role of Gated CT	287

25.3.1.2	Role of TEE Guidance During the Procedure	288
25.4	Current Status of the Caisson Research Program	289
25.5	Conclusions	289
	Reference	289
26	Transcatheter Mitral Valve Replacement with the CardiAQ-Edwards and EVOQUE Prostheses	291
	<i>Howard C. Herrmann, Wilson Y. Szeto, and Frank E. Silvestry</i>	
26.1	Introduction	291
26.2	Device Description	291
26.3	First-in-Human Transfemoral Case	292
26.4	Initial Experience via Transapical Approach	292
26.5	Second-Generation Transseptal Approach	293
26.6	Current CardiAQ Generation Design and Contemporary Case Example	293
26.6.1	Evolution to EVOQUE TMVR	295
26.7	Discussion	296
	References	297
27	Intrepid	299
	<i>Eberhard Grube and Jan-Malte Sinning</i>	
27.1	Background	299
27.2	The Intrepid Valve Features	300
27.3	Clinical Experience	301
27.4	Discussion	304
	References	306
28	Laceration of the Anterior Mitral Leaflet to Prevent Outflow Obstruction (LAMPOON)	309
	<i>Jaffar M. Khan and Vasilis C. Babaliaros</i>	
28.1	Introduction	309
28.1.1	Mechanism of LVOT Obstruction from TMVR	309
28.1.2	Prediction of LVOT Obstruction	309
28.1.3	Prevention and Treatment of LVOT Obstruction	309
28.2	The LAMPOON Technique	310
28.2.1	CT Planning for TMVR and LAMPOON	311
28.2.2	LAMPOON Equipment	312
28.2.3	Step 1: Positioning the Snare System	312
28.2.4	Step 2: Leaflet Traversal	312
28.2.5	Step 3: Leaflet Laceration	312
28.3	Alternative LAMPOON Techniques	313
28.3.1	Antegrade Transseptal LAMPOON	313
28.3.2	Antegrade Apical LAMPOON	313
28.3.3	“Rescue” LAMPOON	314
28.4	Evidence for LAMPOON-Assisted TMVR	315
28.5	Future Directions	315
28.6	Conclusions	315
	References	315

29	Use of Alcohol Septal Reduction Therapy to Facilitate Transcatheter Mitral Valve Replacement	317
	<i>Marvin H. Eng, Tiberio Frisoli, Dee Dee Wang, James C. Lee, Pedro A. Villablanca Spinetto, Janet Wyman, and William W. O'Neill</i>	
29.1	Introduction	317
29.2	Technique	319
29.3	Safety	321
29.4	Efficacy	321
29.5	Conclusion	323
	References	323
30	Direct Transatrial Approach with Resection of the Anterior Mitral Leaflet to Prevent Outflow Tract Obstruction	325
	<i>Fabien Praz and Isaac George</i>	
30.1	Introduction	325
30.2	Advantages of the Direct Transatrial Access	325
30.3	Patients Selection and THV Sizing	326
30.3.1	Mitral Annulus Sizing	326
30.3.2	Assessment of the Risk of LVOTO Using Valve Simulation	326
30.4	Implantation Techniques	328
30.4.1	First-in-Human and Early Experience	328
30.4.2	Strategies to Prevent Paravalvular Leakage	329
30.5	Surgical Access	329
30.6	Early Outcomes Data	330
30.7	Conclusions	331
	References	331
31	Transcatheter Closure of Mitral Paravalvular Leak	333
	<i>Tilak K. R. Pasala, Vladimir Jelnin, and Carlos E. Ruiz</i>	
31.1	Introduction	333
31.2	Prevalence and Clinical Presentation	333
31.3	Assessment of Mitral PVL	334
31.3.1	Grading of Severity	334
31.3.2	Complexity of Mitral PVL	334
31.3.3	Adjunctive Imaging	334
31.4	Timing of Intervention	335
31.5	Preplanning	336
31.5.1	Location	336
31.5.2	Virtual Planning	337
31.6	Devices Used for PVL Closure	338
31.6.1	Transcatheter Procedure	338
31.6.2	Procedural Guidance	340
31.6.3	Access	340
31.6.4	Procedural Techniques	341
31.6.4.1	Crossing the PVLs	341
31.6.4.2	Catheter and Device Delivery	343
31.6.4.3	Device Deployment	344
31.6.4.4	Hopscotch Technique	345

- 31.7 Procedural Complications 345
- 31.8 Follow-Up 346
- 31.9 Future 346
- 31.10 Conclusion 346
- Disclosures 346
- References 346

32 Management of Iatrogenic Interatrial Septal Defect—To Close or not to Close? 349

Christina Tan and James M. McCabe

- 32.1 Introduction 349
- 32.2 Hemodynamics and iASDs 349
- 32.3 Incidence of Persistent Iatrogenic Atrial Septal Defects 350
- 32.4 Evaluation of Iatrogenic Atrial Septal Defect 351
- 32.5 Closure 352
- 32.6 ASD Closure Procedure 352
- 32.7 Management 353
- References 355

33 Antithrombotic Therapy in Transcatheter Mitral Valve Intervention 359

Yuefeng Chen and Ron Waksman

- 33.1 Introduction 359
- 33.2 MitraClip System 359
- 33.2.1 Before the Procedure 359
- 33.2.2 During the Procedure 360
- 33.2.3 After the Procedure 361
- 33.2.4 Thromboembolic and Bleeding Risk 361
- 33.3 Transcatheter Mitral Valve Replacement 362
- 33.3.1 Before the Procedure 362
- 33.3.2 During the Procedure 362
- 33.3.3 After the Procedure 362
- 33.3.4 Thromboembolic and Bleeding Risk 363
- 33.4 Patients with Atrial Fibrillation 365
- 33.5 Antithrombotic Therapy for Other Mitral Valve Interventions 365
- 33.6 Conclusions 365
- References 366

Index 371

List of Contributors

Niv Ad, MD

Division of Cardiac Surgery
University of Maryland
Baltimore, MD
USA

Federico M. Asch, MD

MedStar Cardiovascular Research Network at
MedStar Washington Hospital Center
Washington, DC
USA

Vasilis C. Babalarios, MD

Division of Cardiology
Emory University School of Medicine
Atlanta, GA
USA

Kinjal Banerjee, MD

Cleveland Clinic
Cleveland, OH
USA

Stefan Bertog, MD

CardioVascular Center
Frankfurt
Germany

Peter C. Block, MD

Division of Cardiology
Emory University School of Medicine
Atlanta, GA
USA

Steven F. Bolling, MD

Department of Cardiac Surgery
University of Michigan Health System
Ann Arbor, MI
USA

Christopher Bruce, MBChB

Cardiovascular Branch
Division of Intramural Research
National Heart, Lung, and Blood Institute
National Institutes of Health
Bethesda, MD
USA

Yuefeng Chen, MD, PhD

Section of Interventional Cardiology
MedStar Washington Hospital Center
Washington, DC
USA

Anson Cheung, MD

Division of Cardiothoracic Surgery
St. Paul's Hospital
University of British Columbia
Vancouver, British Columbia
Canada

Alison Duncan, MD

Royal Brompton Hospital
Royal Brompton and Harefield NHS
Foundation Trust
London
UK

James Edelman, MBBS, PhD

Department of Cardiothoracic Surgery
Fiona Stanley Hospital
Perth
Australia

Mackram Eleid, MD

Department of Cardiovascular Medicine
Mayo Clinic Hospital
Rochester, MN
USA

Marvin H. Eng, MD

Henry Ford Hospital
Detroit, MI
USA

Montage Cardiology

Monterey, CA
USA

Andrejs Erglis, MD, PhD

Pauls Stradiņš Clinical University Hospital
University of Latvia
Riga
Latvia

Adam B. Greenbaum, MD

Divisions of Cardiology
Emory University School of Medicine
Atlanta, GA
USA

Ted Feldman, MD, FESC, FACC, MSCI

Edwards Lifesciences
Irvine, CA, USA

Samantha E. Greene, BA

MVRx
San Mateo, CA
USA

Brian J. Forrestal, MBBS

Section of Interventional Cardiology
MedStar Washington Hospital Center
Washington, DC
USA

Eberhard Grube, MD

Heart Center Bonn
Bonn
Germany

Tiberio Frisoli, MD

Division of Cardiology and Center for Structural
Heart Disease
Henry Ford Hospital
Detroit, MI
USA

Iris Grunwald, MD

CardioVascular Center
Frankfurt
Germany
Anglia Ruskin University
Cambridge
UK

Sameer Gafoor, MD

Swedish Medical Center
Seattle, WA
USA

Mayra Guerrero, MD

Department of Cardiovascular Medicine
Mayo Clinic Hospital
Rochester, MN
USA

Isaac George, MD

Division of Cardiothoracic Surgery
New York-Presbyterian/Columbia University
Medical Center
New York City, NY
USA

Philip Haines, MD, MPH, MS

Director of Structural and Interventional
Echocardiography
Rhode Island Hospital
Lifespan, and Brown University
Providence, RI
USA

Patrick T. Gleason, MD

Emory University School of Medicine
Atlanta, GA
USA

Howard C. Herrmann, MD

John W. Bryfogle Professor of Medicine and Surgery
Health System Director for Interventional
Cardiology
Director, Cardiac Catheterization Laboratories
Hospital of the University of Pennsylvania
Philadelphia, PA
USA

Steven L. Goldberg, MD

Medical Director for Structural Heart Disease
Tyler Heart Institute
Community Hospital of the Monterey Peninsula

Ilona Hofmann, MD

CardioVascular Center
Frankfurt
Germany

Sumbal A. Janjua, MD

MedStar Heart and Vascular Institute
MedStar Washington Hospital Center
Washington, DC
USA
Brown University
Rhode Island Hospital
Providence, RI
USA

Vladimir Jelnin, MD

Structural and Congenital Heart Center
Hackensack University Medical Center
Seton Hall-Hackensack University School of
Medicine
Hackensack, NJ
USA

Bojan Jovanovic, MD

CardioVascular Center
Frankfurt
Germany

Norihiko Kamioka, MD

Division of Cardiology
Emory University School of Medicine
Atlanta, GA
USA

Samir Kapadia, MD

Cleveland Clinic
Cleveland, OH
USA

Jaffar M. Khan, BM BCh, PhD

Section of Interventional Cardiology
MedStar Washington Hospital Center
Washington, DC
USA
Cardiovascular Branch
Division of Intramural Research
National Heart, Lung, and Blood Institute
National Institutes of Health
Bethesda, MD
USA

June-Hong Kim, MD, PhD

Division of Cardiology
Pusan National University Yangsan Hospital
Busan
Republic of Korea

Daniel Knight, MBBS, MRCP(UK), MD(Res)

Department of Cardiology
Royal Free Hospital
Royal Free London NHS Foundation Trust
London, UK
Institute of Cardiovascular Science
University College London (UCL)
London, UK

Katherine Kumar, PhD, RAC

4C Medical Technologies, Inc.,
Minneapolis, MN
USA

Saravana Kumar, PhD

4C Medical Technologies, Inc.,
Minneapolis, MN
USA

Azeem Latib, MD

Division of Cardiology
Department of Medicine
University of Cape Town
Cape Town
South Africa
Division of Cardiology
Montefiore Medical Center
New York, NY
USA

Robert J. Lederman, MD

Cardiovascular Branch, Division of Intramural
Research
National Heart, Lung, and Blood Institute
National Institutes of Health
Bethesda, MD
USA

James C. Lee, MD

Henry Ford Hospital
Detroit, MI
USA

Michèle Jacqueline Lembens

CardioVascular Center
Frankfurt
Germany

Stamatios Lerakis, MD

Mount Sinai Heart
Icahn School of Medicine at Mount Sinai
New York, NY
USA

John C. Lisko, MD

Emory University School of Medicine
Atlanta, GA
USA

Antonio Mangieri, MD

Cardiovascular Department
GVM Care and Research
Maria Cecilia Hospital
Ravenna
Italy

Predrag Matic, MD

CardioVascular Center
Frankfurt
Germany

James M. McCabe, MD

Division of Cardiology
University of Washington
Seattle, WA
USA

Diego Medvedofsky, MD

MedStar Cardiovascular Research Network at
MedStar Washington Hospital Center
Washington, DC
USA

Vivek Muthurangu, MD

Institute of Cardiovascular Science
University College London (UCL)
London
UK

Inga Narbute, MD

Pauls Stradiņš Clinical University Hospital
University of Latvia
Riga
Latvia

William O'Neill, MD

Division of Cardiology and Center for Structural
Heart Disease
Henry Ford Hospital
Detroit, MI
USA

Tilak K. R. Pasala, MD

Structural and Congenital Heart Center
Hackensack University Medical Center
Seton Hall-Hackensack University School of
Medicine
Hackensack, NJ
USA

Enrico Poletti, MD

Cardiovascular Department
GVM Care and Research
Maria Cecilia Hospital
Ravenna
Italy

Fabien Praz, MD

Department of Cardiology
Inselspital
University of Bern, Bern
Switzerland

Rishi Puri, MD

Cleveland Clinic
Cleveland, OH
USA

Markus Reinartz, MD

CardioVascular Center
Frankfurt
Germany

Charanjit Rihal, MD

Department of Cardiovascular Medicine
Mayo Clinic Hospital
Rochester, MN
USA

Jason H. Rogers, MD

Division of Cardiovascular Medicine
University of California
Davis Medical Center
Sacramento, CA
USA

Toby Rogers, PhD, BM BCh Cardiovascular Branch, Division of Intramural Research National Heart, Lung, and Blood Institute National Institutes of Health Bethesda, MD USA Section of Interventional Cardiology MedStar Washington Hospital Center Washington, DC USA	Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
Maria E. Romero, MD CVPath Institute, Inc. Gaithersburg, MD USA	Horst Sievert, MD CardioVascular Center Frankfurt Germany
Carlos E. Ruiz, MD Structural and Congenital Heart Center Hackensack University Medical Center Seton Hall-Hackensack University School of Medicine Hackensack, NJ USA	Kolja Sievert, MD CardioVascular Center Frankfurt Germany
Alexander Sagie, MD Echocardiography and Valvular Clinic, The Department of Cardiology, Rabin Medical Center Beilinson Hospital Petah Tikva Israel Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel	Frank E. Silvestry, MD Hospital of the University of Pennsylvania Philadelphia, PA USA
Nalan Schnelle, MD CardioVascular Center Frankfurt Germany	Jan-Malte Sinding, MD, PhD Heart Center Bonn, Bonn Germany
Shmuel Schwartzenberg, MD Echocardiography and Valvular Clinic The Department of Cardiology Rabin Medical Center Beilinson Hospital Petah Tikva Israel	Cezar S. Staniloae, MD Associate Professor of Medicine Division of Interventional Cardiology New York University Langone Health New York, NY USA
	Agnese Strenge, MD Pauls Stradiņš Clinical University Hospital University of Latvia Riga Latvia
	Lars G. Svensson, MD, PhD Cleveland Clinic Cleveland, OH USA
	Wilson Y. Szeto, MD Hospital of the University of Pennsylvania Philadelphia, PA USA

Christina Tan, MD

Division of Cardiology
Kaiser Permanente
Honolulu, HI
USA

Vinod H. Thourani, MD

Department of Cardiovascular Surgery
Marcus Valve Center
Piedmont Heart Institute
Atlanta, GA
USA

Sho Torii, MD

CVPath Institute, Inc.
Gaithersburg, MD
USA

Laura Vaskelyte, MD

CardioVascular Center
Frankfurt
Germany

Pedro A. Villablanca Spinetto, MD

Henry Ford Hospital
Detroit, MI
USA

Renu Virmani, MD

CVPath Institute, Inc.
Gaithersburg, MD
USA

Ron Waksman, MD

Section of Interventional Cardiology
MedStar Washington Hospital Center
Washington, DC
USA

Dee Dee Wang, MD

Division of Cardiology and Center for Structural
Heart Disease
Henry Ford Hospital
Detroit, MI
USA

Mathew R. Williams, MD

Associate Professor of Surgery
Division of Cardiothoracic Surgery
Director Cardiovascular Institute Structural
Heart Disease Program
New York University Langone Health
New York, NY
USA

Stephan Windecker, MD

Department of Cardiology
Inselspital, University of Bern
Bern
Switzerland

Mirjam Winkel, MD

Department of Cardiology
Inselspital
University of Bern
Bern
Switzerland

Janet Wyman, MD

Henry Ford Hospital
Detroit, MI
USA

Bobby Yanagawa, MD, PhD

Division of Cardiac Surgery
St. Michael's Hospital
University of Toronto
Toronto
Ontario
Canada

Chaim Yosefy, MD

Cardiology Department
Barzilai University Medical Center
Ben-Gurion University of the Negev
Ashkelon
Israel

Steven F. Bolling

Department of Cardiac Surgery
Michigan Medicine
Ann Arbor, MI
USA

Introduction—The Mitral Book

Good God! How should the mitral valves prevent the regurgitation of air and not of blood?

—William Harvey (April 1578–June 1657).

The *mitral valve*, also known as the *bicuspid* or *atrioventricular valve*, plays a major role in controlling the transfer of blood from the left atrium to the left ventricle. There are two main types of mitral valve disease that can lead to mitral regurgitation: degenerative, in which the leaflets or the sub-valvular apparatus are deformed, and functional, in which cardiomyopathic dilatation of the ventricle or atrium results in malcoaptation of otherwise structurally normal leaflets. In reality, mitral regurgitation is often caused by a combination of both degenerative and functional processes. Therefore, it is essential to identify and understand the pathology and physiology of the valve to tailor the optimal therapeutic approach.

While there were sporadic attempts to surgically replace the faulty mitral valve at the beginning of the twentieth century, the breakthrough came after 1948 with open heart surgery and development of mechanical and bioprosthetic replacement valve devices. Since then, the quest for less-invasive valve repair has continued with the introduction of ring annuloplasty and chordal and leaflet repair. The desire to adapt open heart surgery to minimally invasive procedures and techniques did not stop with surgery. The success of converting from open heart surgery to catheter-based

therapies for coronary artery disease and aortic valve replacement enthused inventors, physicians, and industry to develop catheter-based approaches to repair the mitral valve in a beating heart.

Thus, in the late 1990s, engineers and physicians teamed up to give birth to the first device to treat mitral regurgitation, known today as the MitraClip. The principle of the “edge-to-edge” repair technique was developed by an Italian surgeon Ottavio Alfieri and adopted by Mehmet Öz, who was visiting him at that time and proposed a device to deliver the surgical edge-to-edge repair via a catheter-based device. Over the past two decades, there has been a proliferation of new transcatheter solutions and approaches for the treatment of mitral valve disease, with a variety of edge-to-edge, spacer, annuloplasty, and chordal solutions all currently being tested in clinical trials. Most recently, the results of the COAPT study demonstrated the potential of mitral repair to grow the field and help to extend patients’ lives with improved quality. As the field moves forward, it is increasingly apparent that there is no “one-size-fits-all” solution for mitral valve disease because there are many etiologies to the disease state, and a combination of different solutions is likely to be required for repair and replacement.

This book is an attempt to present the most recent technology and clinical trial updates in the transcatheter mitral valve repair and replacement space. We realize that this is a very dynamic field with growing interest and

rapidly advancing innovative solutions, and so this edition will be followed by regular updates. Nevertheless, we assembled the content within the last 12 months and bring you the most up-to-date book in the field. In this book, you will find details on transcatheter repair and replacement devices for the treatment of mitral regurgitation. This field could not move forward without the collaborative Heart Team approach, including multimodality imaging and heart failure specialists, innovators, and industry. We would like to thank the contribu-

tors—including industry—who agreed to share with the readers their latest advances in the field. We would also like to acknowledge Wiley, the publisher, and Jason Wermers, the managing editor, for expediting the release of the book. We hope that you will find it useful and that it will get you enthused to be part of the mission to find simple and effective solutions for the treatment of mitral valve disease.

Ron Waksman

Toby Rogers

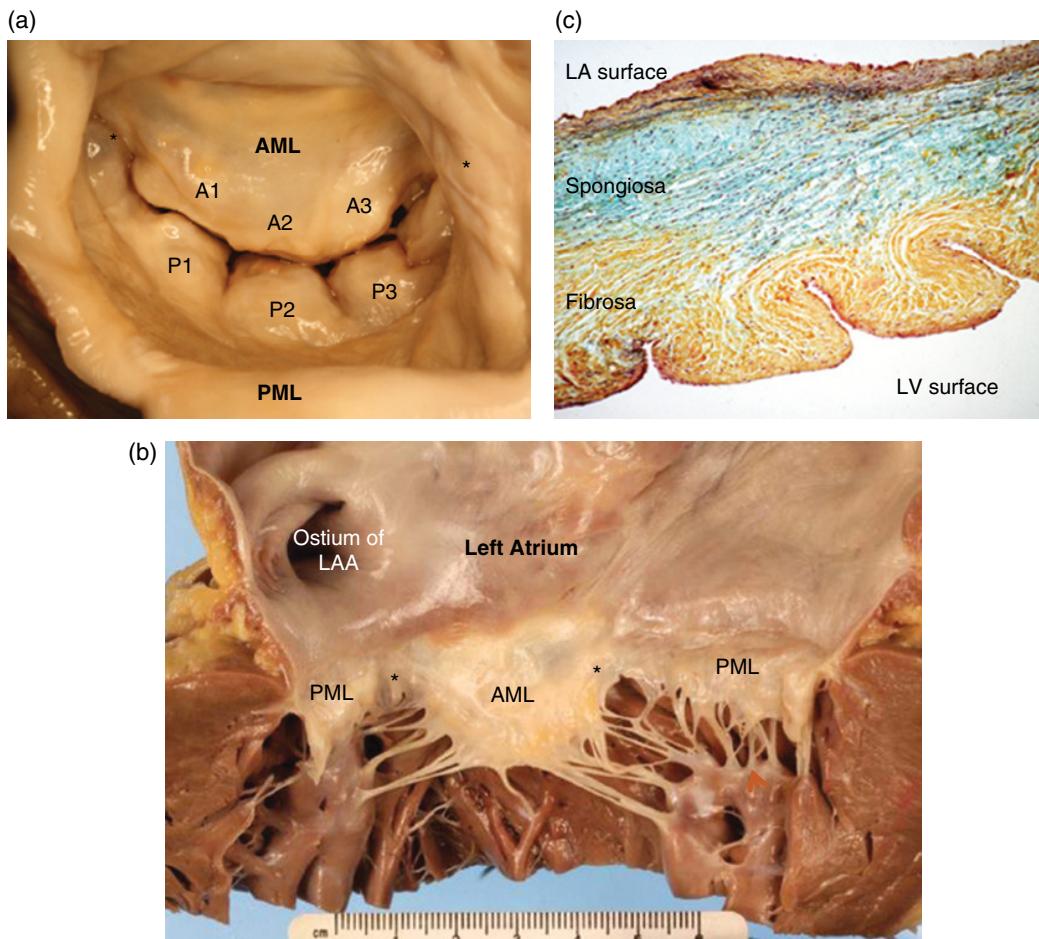
1

The Pathology of Mitral Valve Disease

Maria E. Romero, Sho Torii, and Renu Virmani

CVPath Institute, Inc., Gaithersburg, MD, USA

1.1 Introduction


Mitral valve (MV) insufficiency is a major causation of heart failure and cardiac death, with complications of arrhythmia, endocarditis, and sudden cardiac death [1, 2]. The most common clinical finding in degenerative valve disease is elongation and or rupture of the chordal apparatus resulting in leaflet prolapse, and varying degrees of mitral valve regurgitation due to abnormal leaflet coaptation during ventricular contraction [3]. Up to one third of all patients requiring mitral valve repair/replacement are at high operative risk for surgery [4]. Surgical mitral valve treatment is still the gold standard for treating severe mitral valve insufficiency; however, controversy exists as to whether early surgical intervention in asymptomatic patients before the onset of ventricular changes improves the outcome of patients with severe degenerative mitral valve disease [2, 5–7]. For patients with high surgical risk, transcatheter mitral valve device has become a therapeutic option [8]. This chapter highlights the mitral valve anatomy, pathophysiology of normal mitral valve, mitral stenosis (MS), and mitral regurgitation (MR).

1.2 General Anatomy of the Mitral Valve

The mitral valve is a two-leaflet valve with a saddle-shaped annulus and its valvular plane facing anteriorly, inferiorly, and to the left [9–12]. The mitral valve apparatus, both functionally and morphologically, consists of a constellation of individual structures, which consist of the annulus, anterior and posterior leaflets, chordae tendineae, papillary muscles (PMs), and also include the left ventricular wall and the left atrium which are essential for the valve to function normally. The valve is obliquely located in the heart and has a close relation to the aortic valve [13].

1.2.1 Mitral Annulus

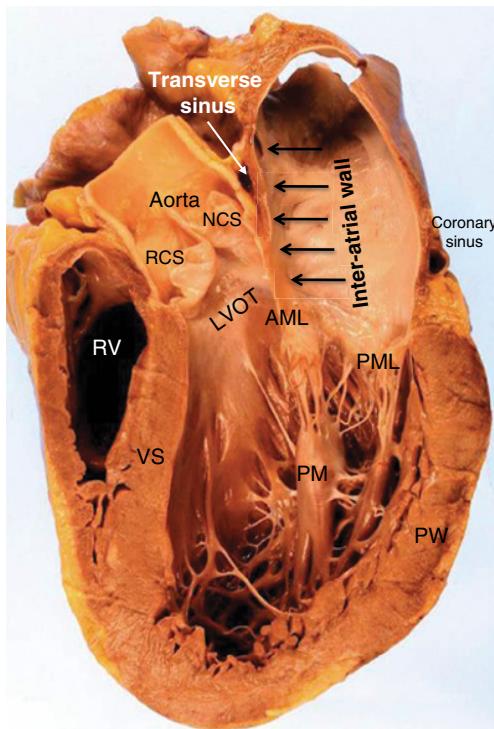
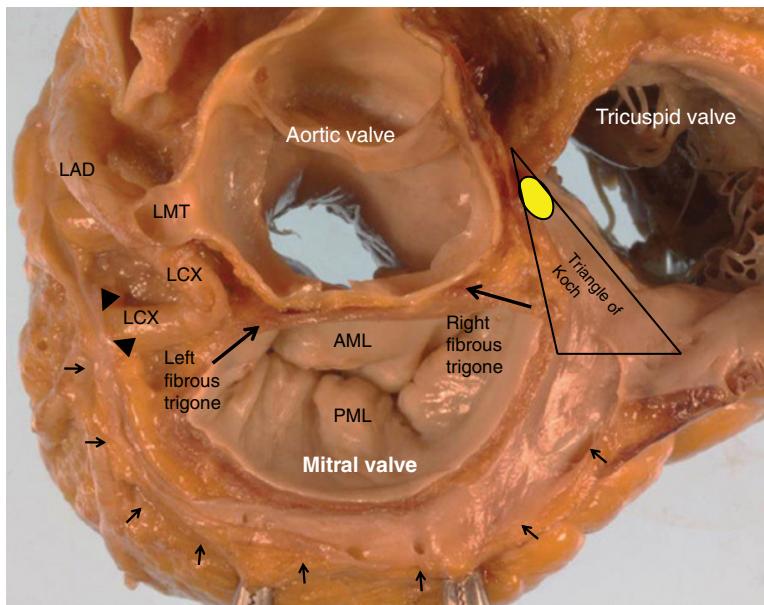

The mitral annulus, the hinge line of the valvular leaflets, is “D”-shaped, unlike the aortic annulus which is circular (Figure 1.1a). The geometric “saddle shape” of the mitral annulus has the highest point of the saddle located in the middle of the anterior leaflet. During ventricular systolic phase, the mitral annulus folds at the intercommissural axis. This folding helps coaptation of the leaflet and prevents

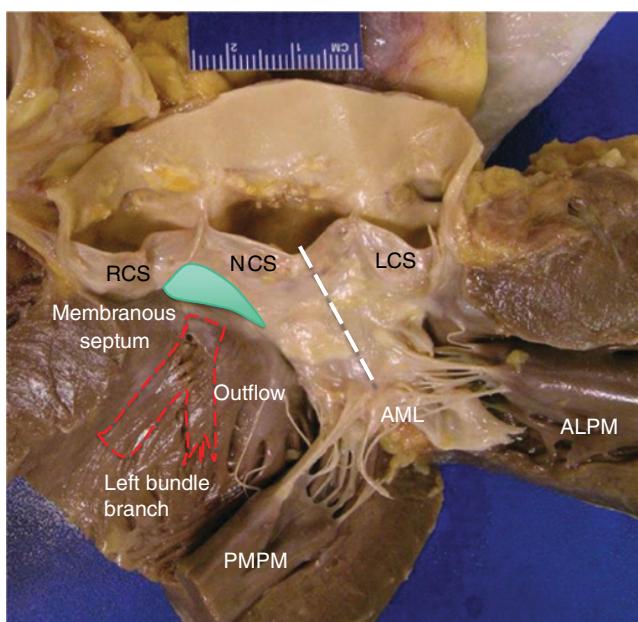
Figure 1.1 Normal mitral valve. (a) Gross atrial view of the mitral valve showing anterior and posterior leaflets. (b) The anterior leaflet is larger, and the chordae arise from the ventricular surface at 45° angle. The anterior leaflet is separated from the posterior leaflet by the commissures (*) with fan-shaped branching commissural chordae. The posterior leaflet has three, often poorly defined, scallops, each with chordal attachments. (c) A histological section of a mitral valve leaflet (Movat pentachrome stain) demonstrates the atrial surface which is rich in elastic fibers and collagen, glycosaminoglycans-rich spongiosa in the mid portion (green), and dense collagenous tissue (yellow) which is observed on the ventricular surface of the leaflet. Abbreviations: AML, anterior mitral leaflet; PML, posterior mitral leaflet. Source: Reproduced with permission from Torii et al. [14].

leaflet distortion along the lines of annular attachment, and reduces the pressure exerted on the mitral valve leaflets [15]. The normal annular circumference is <10 cm and the normal mitral valve orifice area is 4–6 cm². The anterior annulus spans the left and right fibrous trigones and is anatomically coupled to the aortic annulus (Figure 1.2). The right fibrous trigone is thicker with more fibrous

tissue than left fibrous trigone; however, there is significant variability from heart to heart [16]. Both the trigones are extension of the fibrous tissue at the two ends of the aortomitral continuity. The central fibrous body is formed by the membranous septum together with the right trigone. The atrioventricular conduction bundle passes through the right fibrous trigone. There is a close relationship of


Figure 1.2 Long axis view of the heart demonstrating the fibrous continuity of the anterior leaflet with the non-coronary sinus. The atrioventricular junction is shown in the longitudinal view; the interatrial septal wall (arrows) is separated by the transverse sinus from the aorta. Note the fibrous continuity of the anterior leaflet with the non-coronary sinus. Abbreviations: AML, anterior mitral leaflet; NCS, non-coronary sinus; PML, posterior mitral leaflet; PM, papillary muscle; RCS, right coronary sinus; RV, right ventricle; VS, ventricular septum; PW, posterior wall; LVOT, left ventricular outflow tract. Source: Reproduced with permission from Torii et al. [14].

the coronary sinus to the posterior mitral annulus and the left circumflex artery lies adjacent to the left trigone and passes inferior to continuation of the coronary sinus (Figure 1.3). The annulus opposite the area of valvular fibrous continuity tends to be weaker in terms of lacking a well-formed fibrous cord. This is the area affected in annular dilatation and also most often involved in calcification of the annulus [13].


1.2.2 Leaflets

The normal mitral valve is comprised of an anterior leaflet connected by the commissures to a posterior leaflet. Owing to the oblique location of the valve, its two leaflets do not occupy anterior/posterior positions. The corresponding terms for anterior and posterior are “aortic” and “mural,” respectively [13]. The latter usually consists of three scallops (92%) described as anterior, middle, and posterior, assigned as P1, P2, and P3, and is not equally in size, with a small percent (8%) of hearts having two or even five scallops [17]. Ranganathan and colleagues [17] found the middle scallop to be larger in the majority of hearts; in a floppy valve when the mural leaflet is deformed, the middle scallop is likely to prolapse [13]. The anterior leaflet (1.5–2.5 cm [mean 2.0 cm]) is semicircular occupying 1/3 of the circumference, whereas the posterior leaflet (0.8–1.4 cm [mean 1.1 cm]) is long and narrow forming 2/3 of the circumference. The mean anterior leaflet width is 3.3 ± 0.5 cm, and the mean posterior leaflet width is 4.9 ± 0.9 cm. When the mitral valve is closed, 2/3 of the floor of the atrium is formed by the anterior leaflet, while the other 1/3 is formed by the posterior leaflet (Figure 1.1a) [14]. The anterior mitral leaflet is in direct continuity (without an intervening myocardium, in contrast to the tricuspid valve) with the non-coronary and the left coronary cusps of the aortic valve (Figure 1.4). The closure line of the mitral valve is just above the free edge of the leaflets and is thicker than the free margins of the leaflets (Figure 1.1b) [14].

The mitral valve leaflets are thin, pliable, delicate, and translucent structures with an atrial and a ventricular surface. Grossly, two zones can be distinguished on the anterior leaflet, whereas three zones can be distinguished on the posterior leaflet according to the insertion of the chordae tendineae. There are three orders of chordae tendineae: (i) inserted on the free edge, (ii) inserted on the ventricular surface of the leaflet beyond the

Figure 1.3 Adjoining structure around the mitral valve. Superior view of the base of the heart shows the spatial relations of the three cardiac valves (aortic, mitral, and tricuspid). The left heart valves are close together and the right heart valves are separated by interatrial septum and the base of the ventricular septum. Atrioventricular node is located within the triangle of Koch near its apex and lies close to the junction of the septal and anterior tricuspid leaflets. Note that the coronary sinus hugs the posterior mitral annulus with an intervening posterior left atrial wall. The left circumflex artery lies adjacent to the left trigone and passes inferior to the continuation of the coronary sinus (arrowheads). The aortic valve is separated from the anterior mitral leaflet by fibrous tissue, and on the right and left are located the fibrous trigones (the non-coronary and the left coronary cusps have been removed). Abbreviations: AML, anterior mitral leaflet; PML, posterior mitral leaflet; LMT, left main trunk; LAD, left anterior descending artery; LCX, left circumflex artery. Source: Reproduced with permission from Torii et al. [14].

Figure 1.4 Fibrous continuity of the anterior mitral leaflet with the aortic valve. Note the fibrous continuity between the anterior mitral valves and the non-coronary and the left coronary sinuses (white dotted line) of the aorta. The membranous septum is located inferiorly and proximal between the non-coronary and the right coronary sinus. The location of the left bundle branch has been outlined in red dotted lines. Also, the chordae tendineae arising from the two papillary muscle heads inserting into the anterior mitral leaflet at 45° angle. Abbreviations: AML, anterior mitral leaflet; ALPM, anterolateral papillary muscle; PMPM, posteromedial papillary muscle; RCS, right coronary cusp; LCS, left coronary cusp; NCS, non-coronary cusp. Source: Reproduced with permission from Torii et al. [14].