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Preface

The need to handle uncertainty and to make informed decisions renders evident
the importance of the probabilistic and reliability topics. This can be seen in the
most recent advances on the topic of the existing infrastructure maintenance and
management, especially those related to safety and security under extreme events.
Additionally, it is well-known that climate change issues are becoming even more
relevant, with an impact on society, mostly affecting the likelihood and consequences
of some natural hazards. Indeed, there is a need to develop deeper studies on data
science, as well as on its application to system analysis, combining probabilistic and
reliability tools to face the huge uncertainty.

The International Probabilistic Workshop (IPW) series started in 2003 as the
Dresden Probabilistic Symposium at the Technical University of Dresden, repeated
in 2004. In 2005, the 3rd edition held in Vienna was renamed as International Prob-
abilistic Workshop. The previous IPWs took place in Berlin (2006), Ghent (2007),
Darmstadt (2008), Delft (2009), Szcecin (2010), Braunschweig (2011), Stuttgart
(2012), Brno (2013), Weimar (2014), Liverpool (2015), Ghent (2016), Dresden
(2017), Vienna (2018) and Edinburgh (2019).

The IPW2020 (18th edition) was planned to take place in September 2020 at the
University ofMinho, Guimarães, Portugal. Unfortunately, the worldwide COVID-19
pandemic forced the postponement of the event to May 2021 and the adoption of
an online format. Nevertheless, the scientific value and quantity of contributions (65
papers from27 countries covering different probabilistic calculationmethods) ensure
the high quality of this Workshop, keeping the same scientific level as the previous
ones.

The editors would like to thank all authors, keynote speakers, organizers of special
sessions and participants for their valuable contributions, members of the Scientific

ix
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Committee for their meticulous work and theWorkshop Secretariat for the dedicated
teamwork, particularly during this exceptional pandemic period.
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Decision Analysis Applied to Natural
Hazards

Herbert H. Einstein and Rita L. Sousa

Abstract Formal methods to handle decision-making under uncertainty that have
been created for business management lend themselves to applications in many other
areas, in which uncertainties play a major role. Hence, the authors and their co-
workers have applied decision analysis to landslides since the 1980′s but many other
approaches to landslide assessment and management have in principle done so. The
keynote lecture itself will illustrate the application of decision analysis with many
examples. For this reason, we concentrate in this paper on the principles of decision-
making under uncertainty and the concept of using these principles in hazard and
risk analysis of natural threats. We also like to note that what we present here is a
summary of our past work. The paper starts with an introduction to the decision-
making process and its application to natural threats. Risk management of natural
threats is then demonstrated in detail with decision trees and Bayesian networks.
This leads to sensitivity analyses to determine which risk management action is
most effective.

Keywords Natural threats · Landslides · Decision making · Bayesian networks

1 Introduction

Uncertain events can be formally handled by decision-making under uncertainty that
was developed for business management [1]. Given the uncertainty of many natural
events, it is, therefore, quite logical to apply methods of decision-making under
uncertainty to natural threats such as landslides, floods andwildfires, for instance. The
authors of this paper have developed and applied these decision-making processes to
landslides (e.g. [2, 3]). This involved the use of classic decision tree procedures that
were extended to include warning systems. Very importantly, an alternative approach
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using Bayesian networks was then developed [4]. This paper, therefore, will first
introduce the reader to the principles of decision-making under uncertainty (Sect. 2)
and then comment on the formalization of the threat assessment process and how
to incorporate it in the decision-making process (Sect. 3). This will be followed by
showing examples of decision trees (Sect. 4), the use of Bayesian networks (Sect. 5)
and end with conclusions (Sect. 6).

2 Decision-Making Under Uncertainty

Figure 1 is a schematic of decision-making under uncertainty based on the original
development at the Harvard Business School [1]. As can be seen, the process can
lead directly to the result of accepting the risk or to an updating cycle. The updating
cycle on the left side relates to obtaining and using additional information or to
managing the risk. The information model on the right side can be used to decide
if it is worthwhile to collect additional information or not. Sousa et al. [5, 6] have

Fig. 1 Decision analysis cycle |Decision: accept risk or “Update” |Update: collectmore information
and/or manage risk
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Fig. 2 Decision analysis cycle applied to natural threats | U = Updating

applied and explained the use of such information models in the context of natural
hazards and tunneling.

The decision process of Fig. 1 can be expanded and adapted to dealingwith natural
threats as shown in Fig. 2. The expansion contains details on the decision in form of
different actions in the context of risk management.

3 Formalization of the Threat Assessment Process

The terms threat, hazard and risk have already been used in Fig. 2, and they need
to be formally defined. This is first done through the verbal expressions of Table 1
that lists the definitions as formulated by the Technical Committee No. 32 of the

Table 1 Definitions (Based on glossary of TC 32 of the ISSMGE)

Term Definition

Threat (Danger) Natural phenomenon that could lead to damage. Described by geometry,
mechanical and other characteristics. Can be an existing one, or a potential
one, such as a rockfall. No forecasting

Hazard Probability that a particular threat (danger) occurs within a given period of
time

Risk Measure of the probability and severity of an adverse effect to life, health,
property, or the environment
Risk = Hazard × Potential Worth of Loss
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Table 2 Other important concepts

Concept Definition

Consequence Result of a hazard being realized

Damage Another way of expressing detrimental consequences

Vulnerability – Often expressed on a scale of 0 (no loss) to 1 (total loss)
– Expresses the fact that even if a threat materializes, it is not necessarily 100%
certain that the consequences materialize

– Can be formulated as a conditional probability

ISSMGE. In addition, several other concepts (terms) need to be used, and they are
listed in Table 2.

The expressions in Table 1 and Table 2 can be used in the formal decision-making
process discussed in Sect. 4.

4 Decision-Making Process

The intent is to make a decision in the context of risk management (recall Fig. 2).
Before doing so, it is important to point out that very often it is better to work
with hazard than with risk. The latter requires that one expresses the consequences
with a value. Although this value can be qualitative or quantitative it can be often
problematic e.g. if one deals with lives. Hazard to lives can be dealt with the so-called
FN charts [7, 8] as shown in Fig. 3 for Hong Kong. The frequency (F) of events is
the hazard and it is subjectively related to the number of fatalities (N).

If one goes all the way to risk (see also Table 1):

Risk = Probability of Threat × Worth of Loss

= Hazard × Worth of Loss

= Hazard × Consequences (1)

This can be expressed as:

R = P[T] × u(Xi) (2)

where

R Risk
P[T] Probability of Threat = Hazard
u(Xi) Utility of the consequence, where (Xi) is a vector of attributes if one uses a

multiattribute approach [9, 10]

As indicated in Table 2 the fact that the consequences are uncertain is reflected
by vulnerability, which can be expressed by the conditional probability P[Xi|T] and
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Fig. 3 Consideration of life losses with F-N charts. Example from Hong Kong [7] | ALARP = As
Low As Reasonably Practical

thus risk is:

R = P[T] × P[Xi|T] × u(Xi) (3)

One can manage risk in the following manner:

• No action
• Active countermeasures reduce P[T] i.e. the hazard
• Passive countermeasure reduce P[Xi|T] i.e. the vulnerability
• Warning systems also reduce P[Xi|T] i.e. the vulnerability.

Clearly combinations of all the above are possible.

5 Decision Trees

The management actions and their “cost” will produce what we term as “modified
risk”. If the modified risk is smaller than the original one, it is worthwhile to take
the management action. All this will now be shown in detail with decision trees
related to the typical management actions. Figure 4 shows the overall decision tree
that includes all actions.
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Fig. 4 Decision tree tool
showing possible actions

The first possibility is “no-action” for which the decision tree is shown in Fig. 5.
With this tree we also introduce some basic concepts and assumptions: The hazard
model represents the probability P[T] that the threat occurs. The specific numbers
(20.7, 79.3%) can be obtained e.g. with a probabilistic slope stability analysis. The
vulnerability model provides the probability P[Xi|T] that a consequence material-
izes if the threat occurs. The numbers used here are subjective estimates. Finally,
one needs to associate costs with consequences, which is done in the consequence
model. It is important to realize that vulnerability and consequence depend on each
other. This is expressed here by having smaller vulnerability (40%) for the higher
consequence costs (−20,000). These costs are here in terms of utilities. The total
risk of no action is then obtained by multiplying and summing [(0.5x − 10,000) +
(0.4x − 20,000)] × 0.207 = −2691.

This “no action risk” is the “original risk” R that will be compared to modified
risks R′ reflecting active or passive management actions. These management actions
have a cost that needs to be included when determining the modified risk, as will be
seen in the following.

With active countermeasures one reduces the probabilities of the threat from
P[Threat] (20.7%) to P′ [Threat] (5.2%). This reflects, for instance, the effect of
stabilizing a slope.

The stabilizing measures do have a cost that need to be considered. The modified
risk will then be:

R′ = u(Cac) + P′[Threat] × P[Xi|Threat] × u(Xi) (4)

where Cac = cost of countermeasures.
Figure 6 presents the decision tree for active countermeasures. Different from

the tree for no action it now includes the cost of countermeasures “-2000” and the
lower probability of the threat. The multiplying and summing is as before leading to
a slightly lower modified risk R′ = - 2672.75 compared to the original (no action)
risk R = −2691.
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Fig. 5 Decision tree—no action

Fig. 6 Decision tree—active countermeasures.

Passive countermeasures reduce the vulnerability e.g. a protective shed against
rockfall consequences. In the modified risk R’, the hazard P[T] will be the same as
for no action but the vulnerability will change to P′[Xi|Threat] and thus R′ will be:

R′ = u
(
Cpc

) + P[Threat] × P′[Xi|Threat} × u(Xi) (5)

where Cpc = cost of passive countermeasures. In the corresponding decision
tree (Fig. 7) the vulnerabilities reflect the fact that the countermeasures reduce the
probability of damage occurring and correspondingly increase the probability of no
damage.With the numbers shown in Fig. 7 one obtains amodified risk of R′ = 2864.6
that is higher than what resulted from active countermeasures.

Warning systems are also a kind of passive countermeasures. Many such systems
exist, notably the tsunami warning systems in Japan and the Caribbean as well as
avalanche warning systems in Switzerland [11] and Norway. Figure 8 shows how
such systems fit into the overall decision-making process. The important component
of warning systems is the trigger and this also complicates the decision-making
process. Specifically, the reliability of the warning system that can be expressed
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Fig. 7 Decision tree—passive countermeasures.

Fig. 8 Decision cycle for natural threats with warning system. | The “trigger” initiates counter-
measures

in form of a reliability matrix (Fig. 9) needs to be included. In all decisions with
countermeasures (active, passive, warning systems) it is also possible to include the
effectiveness of countermeasures.

The decision trees show that there are sets of branches for each decision model.
In the complete tree and going from right to left these models are “consequences”,
“vulnerability”, “hazard”, and “reliability”. The number of trees increases if other
models such as “effectiveness of countermeasures and multiple dependent hazards
(e.g. earthquake or rainfall causing landslides) are included. In the extreme case one
may thus end up with tens of branches. While informative since one can follow the
decision process, it becomes visually difficult to fully capture the process.
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Fig. 9 Reliability matrix:
shows probability that alarm
is triggered if threat occurs

6 Bayesian Networks

This can be remedied by using Bayesian networks [4], a probabilistic graphical
model, that represents a set of random variables and their conditional dependencies
via a directed acyclic graph. Figure 10 represents a generic BN. In this BN one has
5 random variables: X1, X2, X3, X4 and X5, represented by the nodes of the graph,
and several edges that represent the conditional dependencies between variables.
For example X2 has two parent nodes X1 and X4, so X2 conditionally depends on
X1 and X4. On the other hand, for example, the random value X3 is conditionally
independent ofX4.Attached to each node of theBNare prior probability distributions
(in the case of random variables without parent nodes) and conditional probability
distributions for all the other nodes. Bayesian networks represent joint probability
distributions in a compact and factorized way, by taking advantage of conditional
independence, considering that not all variables depend on each other (i.e. do not have
edges connecting all variables). In Fig. 11 the results of using Bayesian networks for
the previously described cases using decision trees are given in table form and the
results are summarized in Fig. 12.

In the discussion so far we assessed probabilities to demonstrate what can be
done in decision-making under uncertainty. What is particularly interesting is the
possibility to conduct sensitivity analyses to determine how the results i.e. the risk
expressed in utilities will change if the underlying probabilities change. An example
is shown in Fig. 13 in which P[T] the hazard is varied. For low P[T] no action results
while warning systems are recommended for higher P[T].

Fig. 10 Bayesian networks are a concise representation of joint probability



12 H. H. Einstein and R. L. Sousa

Fig. 11 Bayesian network applied to management of risk caused by natural threats

Fig. 12 Bayesian network applied to management of risk caused by natural threats-results

Fig. 13 Sensitivity analysis—different actions depending on probability of threat
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7 Conclusions

Natural threats are characterized by uncertainty regarding temporal occurrence,
spatial extent and many other aspects. Using probabilistic methods to describe the
uncertainties is therefore common. It is then also logical to use methods of decision-
making under uncertainty to assess and manage the threats and their consequences.
Over the years the authors of this paper have developed decision-making approaches
mostly regarding landslides. The keynote presentation and this paper summarize
these approaches, which use decision trees and Bayesian Networks. This paper in
essence provides a succinct guideline on how to use the decision-making approaches.
The keynote presentation will then build on this with applications to practical cases
mostly involving landslides but also other natural threats.

References

1. Pratt, J., Raiffa, H., & Schlaifer, R. (1965, 2008). Introduction to statistical decision theory.
2. Einstein, H. H., & Sousa, R. L. (2012). Risk in slopes. In L. Ribeiro e Sousa, E. Vargas Jr.,

M.M. Fernandes, & R. Azevedo (Eds.), Innovative Numerical Modelling in Geomechanics,
Chapter 11 (pp. 201–210). CRC Press. ISBN 9780415616614.

3. Einstein, H. H., Sousa, R., Karam, K., Manzella, I., & Kveldsvik, V. (2010). Rock slopes
from mechanics to decision making. Keynote paper. In Proceedings of the ISRM Interna-
tional Symposium—EUROCK 2010, 15–18 June, Lausanne, Switzerland. ISRM-EUROCK-
2010-001.

4. Sousa, R. L. (2010). Risk analysis for tunneling projects (Ph.D. dissertation). Massachusetts
Institute of Technology. https://hdl.handle.net/1721.1/58282.

5. Sousa, R. L., Karam, K., & Einstein, H. H. (2014). Exploration analysis for landslide risk
management. Georisk, 8(3), 155–170. https://doi.org/10.1080/17499518.2014.958174soli.

6. Sousa, R. L., Karam, K., Costa, A. L., Einstein, H. H. (2016). Exploration and decision-making
in geotechnical engineering—A case study. In 10th Anniversary Special Issue of Georisk (Vol.
11, No. 1, pp. 129–145).

7. Ho, K., Leroi, E., & Roberts, B. (2000). Quantitative. In Proceedings of International
Conference on Geotechnical and Geological Engineering GEOENG 200. Melbourne Risk
Assessment—Applications, Myths and Future direction.

8. Health and Safety Executive (HSE). (1984). Control of Industrial Major Hazards.
9. Keeney, R. L., & Raiffa, H. (1976). Decision analysis with multiple conflicting objectives.

Wiley.
10. Baecher,G.B. (1981).Risk screening for civil facilities (20 p).Department ofCivil Engineering,

Massachusetts Institute of Technology CER-81-9.
11. Bründl,M.,Etter, H. J, Steiniger,M.,Klingler, Ch.,Rhyner, J.,&Ammann,W. J. (2004). IFKIS

(Interkantonales Frühwarn undKriseninformationssystem)-a basis formanaging avalanche risk
in settlements and on roads in Switzerland. Natural Hazards and Earth Sciences, 4.

https://hdl.handle.net/1721.1/58282
https://doi.org/10.1080/17499518.2014.958174soli


Probabilistic Seismic Risk Assessment
of School Buildings

Ricardo Monteiro

Abstract The inadequate behavior of existing school buildings observed during past
earthquakes in Italy have underlined the need to accurately understand their seismic
performance. In order to do so, different metrics can be adopted to characterize their
seismic response, either more focused on structural aspects or economic variables.
This paper assesses the seismic risk level for three case study school buildings,
representing the main typologies found within the Italian school building stock,
and comments on the eventual need for retrofitting. A probabilistic-based earth-
quake engineering (PBEE) performance assessment is carried out using detailed
numerical models, analyzed under ground motion records of increasing intensity,
to quantify risk-based decision variables, such as expected annual loss and mean
annual frequency of collapse. As an alternative to the detailed PBEE framework, a
simplified seismic risk classification framework, recently applied in Italy, was also
implemented. Different uncertainty parameters are included in the risk estimation
frameworks, with a view also to future large-scale implementation of cost-benefit
analyses. Lastly, one of the school buildings is further analyzed to understand the
impact of the structural modelling uncertainty in the risk estimates and the conse-
quent need for its proper consideration. The results show how the simplified risk
classification framework is, as expected, conservative with respect to the detailed
component-based approach, aswell as the need for retrofitting of some of the building
structural systems.

Keywords Risk assessment · Seismic retrofit · Cost-benefit analysis · Loss
estimation · Modelling uncertainty

1 Introduction

Extensive damage and structural collapse observed in Italian school buildings during
past seismic events have pointed out the need for seismic risk mitigation programs.
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These should identify the most vulnerable building typologies and reduce the
earthquake-related economic losses and casualties through adequate seismic retrofit
strategies. The collapse of a school in San Giuliano di Puglia during the 2002Molise
earthquake in Italy, which caused 30 fatalities, is a key example of the seismic vulner-
ability of the Italian existing school building stock [1]. Recent studies have also
pointed out the importance of non-structural elements in achieving adequate seismic
performance levels for an entire building system [2–4]. De Angelis and Pecce [5]
reported the death of a student caused by the collapse of a classroom ceiling on
November 22nd, 2008 at the Darwin High School in Rivoli, Italy and proposed a
simplified methodology to assess the safety of non-structural elements installed in
school buildings. Based on these considerations, the need for a seismic risk iden-
tification scheme for Italian school buildings comprising both structural and non-
structural elements appears evident. Grant et al. [6] developed a risk-management
framework to prioritize rehabilitation interventions for Italian school buildings; once
the more vulnerable structures are identified. Furthermore, the seismic risk classi-
fication guidelines recently introduced in Italy [7] provide a simplified method that
classifies existing buildings before and after strengthening interventions. The use of
these guidelines may result in tax deductions as an incentive to improve the seismic
safety of the existing Italian school building stock, leading to increased awareness
of seismic safety and the importance of adequate seismic retrofit among citizens.

To contribute to this important issue, the European Centre for Training and
Research in Earthquake Engineering (EUCENTRE) conducted “Progetto Scuole”,
a research project aimed at investigating the seismic vulnerability of Italian
school buildings. A comprehensive database was developed for approximately
49,000 school buildings in Italy by Borzi et al. [8]. Data related to structural behavior,
as well as other features concerning school organizations, was collected. From the
database, it was observed that approximately 80% of school buildings in Italy are
made of unreinforced masonry (URM) and reinforced concrete frames with masonry
infill (RC), whereas the remaining 20% are characterized by other typologies, such as
precast structures (PC), steel constructions or mixed assemblies [9]. The knowledge
of the main features of the existing school building stock allowed the identifica-
tion of representative case study school buildings in order to perform detailed loss
estimation studies, to be used in future identification of adequate retrofit strategies.

The well-known performance-based earthquake engineering (PBEE) method-
ology, proposed by Cornell and Krawinkler [3], and subsequently developed by the
Pacific Earthquake Engineering Research Center (PEER) in California as the PEER-
PBEE methodology, is applied in a systematic fashion in this study to perform the
seismic loss assessment [4] of three case study school buildings, representative of
different structural typologies, namely RC frames with masonry infill, URM build-
ings and PC structures. As reported by Taghavi and Miranda [10], the initial mone-
tary investment in non-structural elements for office/schools, hotels, and hospitals
buildings can reach up to 60–90% of the total building value.

In this study, the complete seismic loss assessment of the aforementioned three
case-study school buildings, belonging to the most common typologies of the Italian
existing school building stock, is presented. A detailed inventory of structural and


