Lecture Notes in Mechanical Engineering

S. R. Mishra T. N. Dhamala O. D. Makinde Editors

Recent Trends in Applied Mathematics Select Proceedings of AMSE 2019

Lecture Notes in Mechanical Engineering

Series Editors

Francisco Cavas-Martínez, Departamento de Estructuras, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain

Fakher Chaari, National School of Engineers, University of Sfax, Sfax, Tunisia

Francesco Gherardini, Dipartimento di Ingegneria, Università di Modena e Reggio Emilia, Modena, Italy

Mohamed Haddar, National School of Engineers of Sfax (ENIS), Sfax, Tunisia

Vitalii Ivanov, Department of Manufacturing Engineering Machine and Tools, Sumy State University, Sumy, Ukraine

Young W. Kwon, Department of Manufacturing Engineering and Aerospace Engineering, Graduate School of Engineering and Applied Science, Monterey, CA, USA

Justyna Trojanowska, Poznan University of Technology, Poznan, Poland

Lecture Notes in Mechanical Engineering (LNME) publishes the latest developments in Mechanical Engineering—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNME. Volumes published in LNME embrace all aspects, subfields and new challenges of mechanical engineering. Topics in the series include:

- Engineering Design
- Machinery and Machine Elements
- Mechanical Structures and Stress Analysis
- Automotive Engineering
- Engine Technology
- Aerospace Technology and Astronautics
- Nanotechnology and Microengineering
- Control, Robotics, Mechatronics
- MEMS
- Theoretical and Applied Mechanics
- Dynamical Systems, Control
- Fluid Mechanics
- Engineering Thermodynamics, Heat and Mass Transfer
- Manufacturing
- Precision Engineering, Instrumentation, Measurement
- Materials Engineering
- Tribology and Surface Technology

To submit a proposal or request further information, please contact the Springer Editor of your location:

China: Dr. Mengchu Huang at mengchu.huang@springer.com **India:** Priya Vyas at priya.vyas@springer.com **Rest of Asia, Australia, New Zealand:** Swati Meherishi at swati.meherishi@springer.com

All other countries: Dr. Leontina Di Cecco at Leontina.dicecco@springer.com

To submit a proposal for a monograph, please check our Springer Tracts in Mechanical Engineering at <http://www.springer.com/series/11693> or contact Leontina.dicecco@springer.com

Indexed by SCOPUS. All books published in the series are submitted for consideration in Web of Science.

More information about this series at <http://www.springer.com/series/11236>

S. R. Mishra · T. N. Dhamala · O. D. Makinde Editors

Recent Trends in Applied Mathematics

Select Proceedings of AMSE 2019

Editors S. R. Mishra Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar, Odisha, India

O. D. Makinde Faculty of Military Science Stellenbosch University Stellenbosch, South Africa

T. N. Dhamala Tribhuvan University Kathmandu, Nepal

ISSN 2195-4356 ISSN 2195-4364 (electronic) Lecture Notes in Mechanical Engineering
ISBN 978-981-15-9816-6 ISBN ISBN 978-981-15-9817-3 (eBook) <https://doi.org/10.1007/978-981-15-9817-3>

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Contents

Contents vii

About the Editors

Dr. S. R. Mishra is an Associate Professor in the Department of Mathematics, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India. He has completed his Ph.D. degree in the year of 2013 and published more than 84 papers in the national and international journals of repute. He has also guided 4 research scholars and currently guiding 5 scholars. His broad areas of research in the field are heat and mass transfer of various nanofluids, statistical analysis of various parameters using artificial neural network, etc.

Prof. Dr. T. N. Dhamala is working as the Full Professor in the Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal, and leading the research group of Optimization, Graph Theory, Scheduling Theory and Algorithms. He has supervised a number of Ph.D., M.Phil. and Master's degree students. He also held the position of the Head of Department in the Central Department of Computer Science and Technology, Tribhuvan University, in the years 2007–2013. He coordinated the MPhil Program in Mathematics at the Central Department of Mathematics, Tribhuvan University, from 2016 to 2019.

Prof. O. D. Makinde is presently a Distinguished Professor of Computational and Applied Mathematics at the Faculty of Military Science, Stellenbosch University, South Africa. He is also a visiting professor to several other universities, including the Vellore University of Technology in India; Nelson Mandela African Institute of Science and Technology in Tanzania; the Pan African University Institute for Basic Sciences, Technology and Innovation in Kenya; the African University of Science and Technology in Nigeria; the Adama Science and Technology University in Ethiopia, etc. He was a Full Professor & Head of Applied Mathematics Department at the University of Limpopo, South Africa (1998–2008), and Senior Professor & Director of Postgraduate Studies at the Cape Peninsula University of Technology, South Africa (2008–2013). He obtained his B.Sc. (Hons.) degree – First Class with Faculty Prize M.Sc. degree qualifications in Mathematics from Obafemi Awolowo University in Nigeria and Ph.D. degree in Computational Applied Mathematics from the University of Bristol in UK under the prestigious Commonwealth Scholarship. Prof. Makinde's research work covers three broad areas which include fluid mechanics, mathematical biology and computational mathematics. He authored 4 Applied Mathematics textbooks & monographs, edited 6 advanced research textbooks on Heat Transfer in Fluids & Solids and published over 450 research papers in many reputable international journals worldwide. Prof. Makinde's scientific metrics according to Google Scholar show H-Index = 51, Citations Index = 10390 and i10-index = 229. This bibliometric statistic continues to increase due to high quality and global impact of his research work. He has supervised over 30 Ph.D.s.

A Multi-item Deteriorating Inventory Model Under Stock Level-Dependent, Time-Varying, and Price-Sensitive Demand

Abhijit Barman and P. K. De

Abstract This paper advocates a multi-item deteriorating inventory model where shortages are not allowed. Here, we have proposed a single-stage EOQ model for deteriorating items where the demand function is depending on nonlinear selling price, nonlinear time, and inventory stock. The model is developed under a known initial inventory. The main objective of this model is to determine the selling price and time length until the inventory reaches zero for each item. To demonstrate our model, one numerical example has been given which is followed by a sensitivity analysis of the major parameters involved in this model.

Keywords Multi-item inventory · Deteriorating items · Selling price · Order quantity · Hessian matrix

1 Introduction

In real-life situations, it is observed that demand for an inventory model changes for the number of items increases in the stocks. That is why companies or any firm owners deal with the multi-item inventory system. The present paper presents a multiitem inventory system over a single period with a finite time horizon. The product deteriorates with the passes of time under the different deteriorating rates. Most of the items that undergo decay over time are medicine, blood banks, volatile liquids, vegetables, etc. Demand for the items is deterministic which depends on inventory label, selling price, and time-varying. The main goal of this model is to determine the unit selling price of a product and the length of the period up to zero inventory that maximizes the overall profit of a retailer or any inventory warehouse.

e-mail: abhijitmath93@gmail.com

A. Barman $(\boxtimes) \cdot P$. K. De

Department of Mathematics, National Institute of Technology Silchar, Silchar 788010, Assam, India

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Even though sufficient literature is available in the area of deteriorating items, but still very less literature is available on multi-item inventory system with deterioration.

The first effort to illustrate the optimum order policies for deteriorating items was established by Chare and Schratures [\[1\]](#page-20-0). They introduced an EOQ model for an exponentially decaying inventory system. Later, Covert and Philip [\[2\]](#page-20-1) extended this model by incorporating variable deterioration rate with two parameters Weibull distribution. Bhattacharya [\[3\]](#page-20-2) proposed a new method for deteriorating items with linear stock-dependent demand rate in a two items inventory system. Dye et al. [\[4\]](#page-20-3) discussed pricing and ordering policy for deteriorating items with shortages where the deterioration and demand rate are continuous as well as a differentiable function of time and price, respectively. Pal et al. [\[5\]](#page-20-4) established a multi-item EOQ model with nonlinear price-dependent and price break-sensitive demand. In the case of non-instantaneous deteriorating items, a joint pricing and inventory model has been established by Maihami and Kamalabadi [\[6\]](#page-20-5). Linear price-sensitive and nonlinear time-dependent demand functions have been considered to develop this model with partially backlogging. Sarkar et al. [\[7\]](#page-20-6) established an inventory model for deteriorating items considering time-sensitive demand with a finite production rate. The selling price and component cost are considered at a continuous rate of time. Yang [\[8\]](#page-21-0) studied an EOQ model where the holding cost is stock-dependent and the demand rate is also stock-dependent with relaxed terminal environments under shortages. The prime goal of this model is profit maximization by determining optimum order quantity and level of ending inventory. Janssen et al. [\[9\]](#page-21-1) reviewed 393 articles that are published from January 2012 to December 2015 and categorized the articles based on the different demand characteristics and the deterioration of the items. Feng et al. [\[10\]](#page-21-2) used the demand as a multivariate function of stock, price, and freshness in an EOQ model. Chen et al. [\[11\]](#page-21-3) discovered an inventory model for time elapse deteriorating items with a short lifecycle. This model is designed for the stock label, time-varying, and price-sensitive deterministic demand in a finite horizon multi-period setting.

This paper address an EOQ model for *n* numbers of different items in a finite time horizon. For each item, an initial inventory stock depending on store capacity has been taken separately. The deterministic demand function is taken in a pattern of the nonlinear selling price, exponential time-varying, and linear stock-dependent. Shortages of products are not allowed in this multi-item inventory system. Thus, this paper determines the optimum selling price, time length for which the inventory reaches zero for each item and the overall profit.

The rest of the paper is organized as follows. In Sect. [2,](#page-12-0) we describe the notations and assumptions used throughout the model. We inaugurate the mathematical model with necessary and sufficient conditions in Sect. [3.](#page-13-0) In Sect. [4,](#page-16-0) a numerical example has been provided to illustrate the solution procedure. In Sect. [5,](#page-17-0) a sensitivity analysis of the optimum solutions concerning different parameters has also been provided. Finally, the summarized findings and some future research suggestions are discussed in Sect. [6.](#page-20-7)

A Multi-item Deteriorating Inventory Model Under … 3

2 Notations and Assumptions

The following notations and assumption are adopted to develop the model:

Notations

Assumptions

- The model is considered for *n* number of different types of products for deteriorating items in a single stage.
- Shortages are not considered in this inventory model i.e. $I_i(p_i, t) \geq 0$ for $i = 1$, *2, 3…n.*
- The replenishment rate is infinite and lead time is negligible.
- Deterioration rate θ_i is constant for *i*th product.
- Demand rate R_i is deterministic in nature and a function of inventory level $I_i(p_i, t)$ with nonlinear selling price $(a_i - b_i p_i - c_i p_i^2)$ and exponentially time varying. For $i = 1, 2, 3...n$ with considering $a_i \gg b_i \gg c_i$, R_i is represented by

$$
R_i = (a_i - b_i p_i - c_i p_i^2) \alpha_i e^{\lambda_i t} + \mu_i I(p_i, t).
$$

3 Mathematical Model Formulation and Solution Methodology

At the beginning of the cycle, the system starts with inventory Q_i for the *i*th product. Over the course of the period, the inventory level down due to both demand and deterioration until it reaches zero at time T_i . During the time interval [0, T_i], the following differential equation represents the inventory status for the *i*th product

$$
\frac{dI_i(p_i, t)}{dt} + \theta_i I(p_i, t) = -R_i
$$
\n(1)

with two boundary conditions, $I_i(p_i, 0) = Q_i$ and $I_i(p_i, T_i) = 0$ for $i = 1, 2, \dots n$. Solving the inventory system and using the boundary conditions, we get the level of inventory of *i*th item at time *t* is

$$
I_i(p_i, t) = Q_i e^{-(\theta_i + \mu_i)t} + \frac{(a_i - b_i p_i - c_i p_i^2) \alpha_i}{(\theta_i + \mu_i + \lambda_i)} [e^{-(\theta_i + \mu_i)t} - e^{\lambda_i t}]
$$
(2)

From the second boundary condition, we have

$$
T_i = \frac{1}{(\theta_i + \mu_i + \lambda_i)} Log \bigg[\frac{Q_i(\theta_i + \mu_i + \lambda_i)}{(a_i - b_i p_i - c_i p_i^2) \alpha_i} + 1 \bigg] \tag{3}
$$

Next, for $i = 1, 2, 3...n$, the total profit in the whole cycle consists of the following five elements:

• Total ordering cost for the *i*th product is given by

$$
OC_i = O_i \tag{4}
$$

• Inventory holding cost for the *i*th product is given by

$$
HC_i = h_i \int_{0}^{T_i} I(p_i, t)dt = h_i K_i
$$
 (5)

• Total manufacturing cost for the *i*th product is

$$
MC_i = M_i Q_i \tag{6}
$$

• Deteriorating cost for the *i*th product is given by

A Multi-item Deteriorating Inventory Model Under … 5

$$
DC_i = M_i \int_0^{T_i} \theta_i I(p_i, t) dt = M_i \theta_i K_i
$$
 (7)

• Sales revenue for the *i*th product is written by:

$$
SR_i = p_i \int_{0}^{T_i} R_i(p_i, t)
$$

= $\frac{1}{\lambda_i} p_i \alpha_i (a_i - b_i p_i - c_i p_i^2) (e^{\lambda_i T_i} - 1) + p_i \mu_i K_i$ (8)

where

$$
K_{i} = \int_{0}^{T_{I}} I_{i}(p_{i}, t)dt = \frac{Q_{i}}{(\theta_{i} + \mu_{i})} [1 - e^{-(\theta_{i} + \mu_{i})T_{i}}] + \left\{ \frac{(a_{i} - b_{i} p_{i} - c_{i} p_{i}^{2}) \alpha_{i}}{(\theta_{i} + \mu_{i} + \lambda_{i})} \left[\frac{1}{\lambda_{i}} + \frac{1}{(\theta_{i} + \mu_{i})} - \frac{e^{\lambda_{i} T_{i}}}{\lambda_{i}} - \frac{e^{-(\theta_{i} + \mu_{i})}}{(\theta_{i} + \mu_{i})} \right] \right\}
$$
(9)

Therefore, the total profit of the retailer for all the items in the whole cycle is

$$
TP(p_1, p_2,... p_n) = \sum_{i=1}^n [SR_i - (OC_i + HC_i + MC_i + DC_i)]
$$

=
$$
\sum_{1}^n \left[\frac{1}{\lambda_i} p_i \alpha_i (a_i - b_i p_i - c_i p_i^2) (e^{\lambda_i T_i} - 1) + (p_i \mu_i - h_i - M_i \theta_i) K_i - O_i - M_i Q \right]_i
$$

(10)

TP $(p_1, p_2,...p_n)$ is function of $p_1, p_2,...p_n$. So, for some T_i (*from Eq.* [3\)](#page-13-1), the necessary conditions for the overall profit function come from $\frac{\partial T P(p_1, p_2, \ldots p_n)}{\partial p_i} = 0$ for $i = 1, 2, 3...n$.

This gives a system of nonlinear equations with *n* number of unknowns p_i for *i* $= 1.2...n$.

Concavity test by the Hessian matrix

To check whether the profit function (10) is concave, we have to determine the hessian matrix

$$
H = \begin{bmatrix} \frac{\partial^2 T P}{\partial p_1^2} & \frac{\partial^2 T P}{\partial^2 p_1 \partial p_2} & \cdots & \frac{\partial^2 T P}{\partial p_1 \partial p_n} \\ \frac{\partial T P}{\partial p_2 \partial p_1} & \frac{\partial^2 T P}{\partial p_2^2} & \cdots & \frac{\partial^2 T P}{\partial p_2 \partial p_n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial^2 T P}{\partial p_n \partial p_1} & \frac{\partial^2 T P}{\partial p_n \partial p_2} & \cdots & \frac{\partial^2 T P}{\partial p_n^2} \end{bmatrix}
$$

We have to show all the principal minors of the hessian matrix will alternate their sign starting with a negative sign. Since the expression of the second-order derivatives is highly nonlinear, we will check the result numerically with some graphical representation. We have shown numerically as well as graphically the concavity of profit function $TP(p_1, p_2, \ldots, p_n)$ in the given numerical example.

4 Numerical Investigation

Let us consider a storehouse problem with two different items with different demand rates and deterioration rates are listed by the following parametric values in Table [1.](#page-16-1)

Fig. 1 Variation of optimal profit with respect to selling prices p_1 and p_2

Using Mathematica software, we determine the optimum selling price, time length for the different products, and also the net profit. Unit selling price of first item (p_1^*) $=$ \$35.284, Unit selling price of second item (p_2^*) = \$38.292, Cycle length for first item $(T_1^*) = 4.3837$ days, Cycle length for second item $(T_2^*) = 3.3807$ days, and the total profit (*T P*^{*}) = \$6049.46. We get $\Delta_1 = -40.55 \le 0$ and $\Delta_2 = 3174.3878 \ge 0$. The sign of principle minor of the hessian matrix alternate starting with a negative sign. So, the condition of sufficiency is also satisfied.

The following figure (Fig. [1\)](#page-17-1) represents the nature of concavity of the profit function [\(10\)](#page-21-2). For selling price $p_1^* = 35.284 and $p_2^* = 38.292 , the corresponding total profit $TP^* = 6049.46 gives the global maximum in the concave Fig. [1.](#page-17-1)

5 Sensitivity Analysis

A post-optimality analysis is carried out to analyze the outcome of the changes of different parameters on the optimal solutions. The results of the post-optimality analysis are listed in Table [2](#page-18-0) and Table [3,](#page-19-0) respectively. The changes to the optimum values $p_1^*, p_2^*, T_1^*, T_2^*, T P^*$ have been done by decreasing/increasing the values of the major parameters $a_i, b_i, c_i, \mu_i, \alpha_i, \theta_i, \lambda_i$ for $i = 1, 2...n$. The post-optimality analysis is accomplished from −*20%* to *20%* by changing one parameter at a time and keeping remain parametric values unchanged.

The sensitive analysis which is explored in Tables [2](#page-18-0) and [3](#page-19-0) indicates the following observations:

- It is visible in Table [2](#page-18-0) that, with the increase of purchasing cost (M_i) , the selling price (p_i) for both the products as well as the time interval (T_i) will decrease. So, the total profit (TC) will decrease with increasing the purchasing cost (M_i) .
- It also observed that with the increasing of holding cost (h_i) , the selling price (p_i) , time length (T_i) , and the overall profit (TC) decrease rapidly. From a financial

Parameter	Percentage change in parameter	p_1	p_2	T_I	T_2	TP
M_i	$-20%$	35.367	38.336	4.4410	3.4156	6916.08
	$-10%$	35.326	38.314	4.4121	3.3981	6482.71
	$M_1 = 10$; $M_2 = 12$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.242	38.269	4.3558	3.3636	5616.31
	20%	35.200	38.247	4.3284	3.3468	5183.28
O_i	$-20%$	35.284	38.292	4.3837	3.3807	6079.46
	$-10%$	35.284	38.292	4.3837	3.3807	6064.46
	O_i	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.284	38.292	4.3837	3.3807	6034.46
	20%	35.284	38.292	4.3837	3.3807	6019.46
h_i	$-20%$	35.597	38.584	4.6106	3.6346	6384.55
	$-10%$	35.441	38.439	4.4930	3.5012	6215.58
	h_i	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.127	38.143	4.282	3.2713	5886.05
	20%	34.969	37.994	4.1863	3.1714	5725.22
Q_i	$-20%$	35.036	38.096	3.8780	2.9830	4998.59
	$-10%$	35.160	38.195	4.1369	3.1864	5561.73
	$Q_1 = 160; Q_2 = 200$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.405	38.384	4.6199	3.5669	6678.74
	20%	35.522	38.472	4.8470	3.7459	7234.29

Table 2 Sensitivity analysis with respect to different parameters

lookout, it is clear that increasing inventory holding cost directly affects the total profit.

- From Table [2,](#page-18-0) it is clear that ordering cost (O_i) does not affect the selling price (p_i) . So, the change of overall profit (*TC*) is negligible for that case.
- From Table [2,](#page-18-0) it is found that increasing with initial inventory stock level (Q_i) the selling price and time interval for both the items will increase. For this case, the net profit will also increase rapidly.
- When the parametric value a_1 , a_2 increase the value of selling price (p_i) for both the product will increase but the time length for each item (T_i) of the inventory cycle will decrease. In this case, the overall profit (*TC*) also increases very rapidly which is shown in Table [3.](#page-19-0)
- With increasing the value of the other parameter b_i , c_i the value of the selling price (*pi*) decreases. So, the value of the total profit (*TC*) also decreases. For that case, b_i is more effective other than the parameter c_i .
- The effect of change in overall profit (*TC*) with respect to the change in parameters $λ_i$ and $α_i$ are shown in Table [3](#page-19-0) separately. It is observed that, as $λ_i$ or $α_i$ increases, the increment of total profit (*TC*) is not significant.

Parameter	Percentage change in parameter	p_1	p_2	T_I	T ₂	T P
a_i	-20%	28.425	31.045	4.6555	3.5545	3630.42
	-10%	31.873	34.697	4.5140	3.4647	4847.11
	$a_1 = 120; a_2 = 140$	35.284	38.292	4.3837	3.3807	6049.46
	10%	38.658	41.832	4.2626	3.3018	7238.05
	20%	41.998	45.3201	4.1501	3.2276	8413.38
b_i	$-20%$	43.192	46.108	4.5789	3.5519	8548.57
	-10%	38.885	41.887	4.4817	3.4666	7191.25
	$b_1 = 3.0; b_2 = 3.2$	35.284	38.292	4.3837	3.3807	6049.46
	10%	32.237	35.204	4.2869	3.2962	5079.12
	20%	29.630	32.529	4.1929	3.2140	4246.66
c_i	-20%	35.718	38.989	4.4207	3.4289	6222.68
	$-10%$	35.499	38.635	4.4019	3.4044	6134.79
	$c_1 = 0.005$; $c_2 = 0.008$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.074	37.959	4.3659	3.3579	5966.55
	20%	34.868	37.638	4.3486	3.336	5885.94
λ_i	-20%	35.275	38.291	4.4768	3.4654	6025.37
	-10%	35.279	38.291	4.4296	3.4224	6037.45
	$\lambda_1 = 0.1; \lambda_2 = 0.15$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.288	38.293	4.3391	3.3405	6061.39
	20%	35.293	38.294	4.2957	3.3015	6073.23
μ_i	$-20%$	34.323	37.545	4.2037	3.2193	5608.43
	-10%	34.830	37.944	4.2915	3.2984	5835.33
	$\mu_1 = 0.4; \mu_2 = 0.6$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.685	38.590	4.4802	3.4663	6250.93
	20%	36.036	38.843	4.5810	3.5549	6439.94
θ_i	$-20%$	35.594	38.454	4.6934	3.5441	6362.40
	-10%	35.437	38.373	4.5311	3.4597	6239.93
	$\theta_1 = 0.08; \theta_2 = 0.05$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.134	38.212	4.2491	3.3066	6006.71
	20%	34.987	38.131	4.1255	3.2369	5895.45
α_i	$-20%$	35.579	38.514	4.9575	3.8329	5921.67
	-10%	35.418	38.394	4.6456	3.5871	5986.68
	$\alpha_1 = 1$; $\alpha_2 = 2$	35.284	38.292	4.3837	3.3807	6049.46
	10%	35.172	38.204	4.1598	3.2045	6109.82
	20%	35.077	38.129	3.9658	3.0518	6167.71

Table 3 Sensitivity analysis with respect to different parameters

- When the value of parameter μ_i increases then the selling price (p_i) , time length (T_i) , and the total profit (TC) also increase. The physical phenomena of this parameter suggest that demand proportional to the inventory of the firm.
- Increasing of parameter θ_i the overall profit (*TC*) will decrease. The economic viewpoint of this observation shows that as increasing the deterioration rate the profit will be minimized.

6 Conclusion

In this paper, we explored a short life period multi-item EOQ model where deterioration is considered. A stock level-dependent, time-varying, and price-sensitive deterministic demand have been considered to develop the model under a known primary stock. To design the model, the effect of nonlinear selling price and nonlinear time-varying demand functions has been estimated. Our model is demonstrated and illustrated with one numerical example with a graphical explanation. Sensitivity analysis is shown to see the changes in overall profit with respect to the variant of several parameters involved in this model. The contribution of this paper helps decisionmakers to increase the overall profit by understanding the market demand situation. As a result, retailers may change their earlier selling price of the items to earn the maximum profit.

This paper can be extended by incorporating various other concepts like inflation, reliability, or some other fuzzy environments.

Acknowledgements First, the author is gratefully thankful to MHRD, Govt. of India for giving support for carrying out research at the National Institute of Technology Silchar and also thankful to TEQIP III for supporting financially to present this paper in AMSE-2019 at Bhubaneswar.

References

- 1. P. Chare, G. Schrader, A model for exponentially decaying inventories. J. Ind. Eng. **15**, 238–243 (1963)
- 2. R.P. Covert, G.C. Philip, An EOQ model for items with Weibull distribution deterioration. AIIE Trans. **5**(4), 323–326 (1973)
- 3. D.K. Bhattacharya, On multi-item inventory. Eur. J. Oper. Res. **162**(3), 786–791 (2005)
- 4. C.Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging. Omega **35**(2), 184–189 (2007)
- 5. B. Pal, S.S. Sana, K. Chaudhuri, Multi-item EOQ model while demand is sales price and price break sensitive. Econ. Model. **29**(6), 2283–2288 (2012)
- 6. R. Maihami, I.N. Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int. J. Prod. Econ. **136**(1), 116–122 (2012)
- 7. B. Sarkar, S. Saren, H.M. Wee, An inventory model with variable demand, component cost and selling price for deteriorating items. Econ. Model. **30**, 306–310 (2013)
- 8. C.T. Yang, An inventory model with both stock-dependent demand rate and stock-dependent holding cost rate. Int. J. Prod. Econ. **155**, 214–221 (2014)
- 9. L. Janssen, T. Claus, J. Sauer, Literature review of deteriorating inventory models by key topics from 2012 to 2015. Int. J. Prod. Econ. **182**, 86–112 (2016)
- 10. L. Feng, Y.L. Chan, L.E. Cárdenas-Barrón, Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. Int. J. Prod. Econ. **185**, 11–20 (2017)
- 11. L. Chen, X. Chen, M.F. Keblis, G. Li, Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent, time-varying and price-dependent demand. Comput. Ind. Eng. **135**, 1294–1299 (2019)

On Estimation of Reliability Following Selection from Pareto Populations

Ajaya Kumar Mahapatra, Brijesh Kumar Jha, and Chiranjibi Mahapatra

Abstract Let $\prod_1, \prod_2, \ldots, \prod_k$ be k populations, where \prod_i follows a Pareto distribution with unknown scale parameters α_i and common known shape parameters β_i ; $i = 1, \ldots, k$. Independent random samples are drawn from each of these populations. Let T_i be the smallest observation in the ith sample. The natural selection rule is to select the population with the largest T_i . Then, we consider the estimation of the reliability function of the selected population. The uniform minimum variance unbiased estimator is derived. A class of scale equivariant estimators have been proposed. An inadmissibility result in regards to the class of scale equivariant estimators is established generally

Keywords Selection rule · UMVUE · MLE · Scale equivariant estimators · Brewster–Zidek technique

1 Introduction

Let $\prod_1, \prod_2, \ldots, \prod_k$ be as defined above with each of them corresponding to a probability density function/ probability mass function $f(x|\theta_i), i = 1, \ldots, k$. A common problem is to choose the population or a subset of populations having the best. The population may be regarded as the best according to some attributes such as the largest mean, smallest variance, etc. An important practical problem is to estimate the parameters of the selected population or an attribute of the selected subset. These problems are in general mentioned as "Estimation after selection". Such problems have been at first constructed and explored by Rubinstein [\[16\]](#page--1-1). Estimation of the quantile of a

A. K. Mahapatra (B) · C. Mahapatra

Centre for Applied Mathematics and Computing, Siksha O Anusandhan Deemed To Be University, Bhubaneswar 751030, India e-mail: ajayamohapatra@soa.ac.in

B. K. Jha

Department of Mathematics, Siksha O Anusandhan Deemed To Be University, Bhubaneswar 751030, India

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

S. R. Mishra et al. (eds.), *Recent Trends in Applied Mathematics*, Lecture Notes

in Mechanical Engineering, https://doi.org/10.1007/978-981-15-9817-3_2

selected population has been considered by Sharma and Vellaisamy [\[17\]](#page--1-2), Kumar and Kar ($\left[10-12\right]$ $\left[10-12\right]$ $\left[10-12\right]$) and Vellaisamy [\[18](#page--1-5)]. Mishra and van der Meulen [\[15\]](#page--1-6) have studied the estimation after selection in general truncation distributions. The estimation of the reliability function of a selected subset was studied by Kumar et al. [\[13](#page--1-7)] for the case of two-parameter exponential distribution. It was assumed that the scale parameters are known and the location parameters are unknown and unequal. They derived the Uniform Minimum Variance Unbiased Estimator(UMVUE) for the survival function and proposed some natural estimators. These estimators are compared in terms of their risks using Brewster and Zidek technique. Further, this estimator is also improved by solving a differential inequality in the light of Vellaisamy and Punen [\[19\]](#page--1-8). They have considered the estimation of the location parameter from a selected subset of exponential distribution.

Income distributions were studied initially using Pareto distribution. Later on, it was applied to reliability and life testing, industrial and engineering studies. Johnson and Katz [\[8\]](#page--1-9), Harris [\[7](#page--1-10)], Davis and Feldstein [\[4\]](#page--1-11), Freiling [\[6](#page--1-12)], Berger and Mandelbrot [\[2\]](#page--1-13), etc., have described several situations where the Pareto model is very useful. This model has been found suitable to describe the allotment of service times in regard to city maintenance, allocation of fallout of nuclear particles, etc. Kumar and Gangopadhyaya [\[9\]](#page--1-14) have taken up the case to estimate the scale parameter of the chosen Pareto population. In this paper, we study the estimation of the reliability function in the following selection. In Sect. 4, we have derived the UMVUE for the reliability function of the selected Pareto population. In Sect. 5, an inadmissibility result has been established generally for the estimators in the scale equivariant class.

2 Deriving the UMVUE

Independent random samples $X_{i1}, X_{i2}, \ldots, X_{in}, i = 1, \ldots, k$ are drawn from k populations $\prod_1, \prod_2, \ldots, \prod_k$, respectively. Let these observations from the respective populations have an associated probability density function *fi*(.), given by the Pareto model.

$$
f_i(x) = \begin{cases} \frac{\beta \alpha_i^{\beta}}{x^{\beta+1}}, & \text{if } \alpha_i \leq x < \infty, \alpha_i > 0, \beta > 0, \\ 0, & \text{elsewhere, for } i = 1, 2, \dots, k. \end{cases}
$$
(1)

Let us assume overall that the scale parameters $\alpha_1, \alpha_2, \ldots, \alpha_k$ are completely unknown and the common shape parameter β is known. Let $T_i = \min(X_{i1}, X_{i2}, \ldots)$ X_{in}). Then the statistic $\mathcal{I} = (T_1, T_2, \ldots, T_k)$ is complete and sufficient. It is also the maximum likelihood estimator (MLE) of $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)$, $i = 1, \ldots, k$. It may be seen that T_i follows a Pareto distribution with shape parameter $n\beta$ and scale parameter α_i , $i = 1, \ldots, k$. It is given by

On Estimation of Reliability Following Selection from Pareto Populations 15

$$
g_i(y) = \begin{cases} \frac{n\beta\alpha_i^{n\beta}}{y^{n\beta+1}}, & \text{if } \alpha_i \leq y < \infty, \\ 0, & \text{elsewhere, for } i = 1, 2, \dots, k. \end{cases} \tag{2}
$$

The reliability function of the population \prod_i is given by

$$
R_i(t) = P(X_{ij} > t) = \left(\frac{\alpha_i}{t}\right)^{\beta}, \ \alpha_i < t. \tag{3}
$$

Our goal is to choose the population associated with the highest reliability $R_i(t)$, $i = 1, \ldots, k$. The probability density of T_i has monotone likelihood ratio property in (α_i, T_i) , $i = 1, ..., k$. A logical selection rule is to select the population \prod_i if $T_i = max(T_1, \ldots, T_k)$, $i = 1, \ldots, k$. Optimality properties in this regard have been scrutinized by Bahadur and Goodman [\[1](#page--1-15)], Lehmann [\[14\]](#page--1-16) and Eaton [\[5\]](#page--1-17). Let $T_{(1)} \leq T_{(2)}$ $T_{(2)}$, $\leq T_{(k)}$ stand for the ordered values of T_i 's. We want to estimate

$$
R_J(t) = \sum_{j=1}^k \left(\frac{\alpha_j}{t}\right)^{\beta} I_j,
$$
\n(4)

where

$$
I_j = \begin{cases} 1, \text{ if } T_j = T_{(k)}, j = 1, \dots, k; \\ 0, \text{ otherwise.} \end{cases}
$$
 (5)

An unbiased estimator δ of $R_J(t)$ satisfies $E(\delta - R_J(t)) = 0$. To derive the UMVUE of $R_J(t)$, we need the following lemmas.

Lemma 2.1 *Let X be a random variable with pdf* $g_i(.)$ *, given by*

$$
g_i(x) = \begin{cases} \frac{n\beta\alpha_i^{\mu\beta}}{x^{n\beta+1}} & \text{if } \alpha_i \leq x < \infty \\ 0 & \text{otherwise, for } i = 1, \dots, k. \end{cases}
$$
 (6)

Suppose that $U(x)$ be a real-valued function defined on R, such that (a) $E_{\alpha}(U(x)) < \infty \ \forall \alpha \in \Omega$, (b) The integral $\int_x^{\infty} U(t)P(t, \beta)dt$ exists and is finite, where $P(x, \beta) = \frac{n}{\beta^{n-1} x^n \beta + 1}$ for $0 < x < \infty$, (c) lim_{*x*→∞}[*x*^β $\int U(t)P(t, \beta)dt$] = 0. Then the function

$$
V(x) = x^{\beta} U(x) - \frac{\beta x^{\beta-1}}{P(x,\beta)} \int_{x}^{\infty} U(t) P(t,\beta) dt
$$

satisfies

$$
E_{\alpha}V(x) = \alpha^{\beta} E_{\alpha}U(x) \tag{7}
$$

Proof The proof follows using integration by parts to the second expression. The following lemma is a generalization of the above lemma.

Lemma 2.2 *Let* T_1, T_2, \ldots, T_k *be k independent random variables with pdf* $g_i(.)$ *as defined in* (4.2)*.*

Suppose that $U_1(t)$, $U_2(t)$, ..., $U_k(t)$ *be k real-valued function defined on R, such that*

 $f(a) E_{\underline{\alpha}}(U_i(\underline{T})) < \infty \quad \forall \alpha_i > 0, i = 1, \ldots, k.$ $f(t)$ *The integral* $\int_{t_i}^{\infty} U(t_1, t_2, \ldots, t_{i-1}, x, t_{i+1}, \ldots, t_k) P(x, \beta) dx$ exists and is finite, *where* $P(x, \beta) = \frac{n}{\beta^{n-1}x^n\beta+1}$ *for* $0 < t_i < \infty$, *(c) Then the function*

$$
V_i(\underline{T}) = t_i^{\beta} U_i(\underline{T}) - \frac{\beta t_i^{\beta-1}}{P(t_i, \beta)} \int_{t_i}^{\infty} U(t_1, t_2, \dots, t_{i-1}, x, t_{i+1}, \dots, t_k) P(x, \beta) dx
$$

satisfies

$$
E_{\alpha}V_i(\underline{T}) = \alpha_i^{\beta} E_{\alpha}U_i(\underline{T})
$$

Next, since $R_J(t) = \sum_{j=1}^k \frac{\alpha_j^{\beta}}{t^{\beta}} I_j$, define

$$
U_i(\underline{t}) = \begin{cases} \frac{1}{t^{\alpha}} & \text{if } T_j = T_{(k)} \\ 0 & \text{otherwise} \end{cases}
$$
 (8)

then we can write $E(R_J(t)) = \sum_{i=1}^k \alpha_i{}^{\beta} E[U_i(t)]$, from lemma (4.2) we have

$$
E[\sum_{i=1}^{k} V_i(\underline{T})] = E[\sum_{i=1}^{k} \alpha_i^{\beta} U_i(\underline{T})]
$$

which is the unbiased estimator of $R_J(t)$.

Theorem 2.1 *The UMVUE of R_J*(*t*) *is given by* $\hat{R}_J^U(t) = \frac{1}{n} \left(\frac{T_{(k)}}{t} \right)^{\beta}$ $\left[n-1-\sum_{i=1}^{k-1} \left(\frac{T_i}{T_{(k)}}\right)^{n\beta+\beta}\right].$

Proof We have

$$
V_i(\underline{t}) = t_i^{\beta} U_i(\underline{t}) - \frac{\beta t_i^{\beta-1}}{P(t_i, \beta)} \int_{t_i}^{\infty} U_i(t_1, t_2, \dots, t_{i-1}, x, t_{i+1}, \dots, t_k) P(x, \beta) dx
$$

\n
$$
= \frac{t_i^{\beta}}{t^{\beta}} I(t_i \ge \max_{i \ne j} t_j) - \frac{\beta t_i^{\beta-1}}{P(t_i, \beta)} \int_{t_i}^{\infty} I(t_i \ge \max_{i \ne j} t_j) \frac{P(x, \beta)}{t^{\beta}} dx
$$

\n
$$
= \left[t_i^{\beta} - \frac{\beta t_i^{\beta-1}}{P(t_i, \beta)} \int_{t_i}^{\infty} P(x, \beta) dx \right] \frac{I(t_i \ge \max_{i \ne j} t_j)}{t^{\beta}}
$$

$$
\Rightarrow E\left(\sum_{i=1}^k V_i(\underline{T})\right) = \frac{1}{t^\beta} \bigg[T_{(k)}^\beta - \left(\sum_{i=1}^{k-1} \frac{\beta T_i^\beta}{P(T_i, \beta)}\right) \int_{T_{(k)}}^\infty P(x, \beta) dx \bigg]
$$

$$
= \frac{1}{n} \left(\frac{T_{(k)}}{t}\right)^\beta \bigg[n - 1 - \sum_{i=1}^{k-1} \left(\frac{T_i}{T_{(k)}}\right)^{n\beta + \beta} \bigg],
$$

which is the UMVUE of $R_J(t)$.

3 An Inadmissibility Result

In this section, we will try to find out the form of an equivariant estimator of $R_I(t)$. For this, let us consider the scale group of transformations $G = \{g_c : g_c(x) = cx, c > 0\}$. Under this transformation $\alpha \to c\alpha$, $R_J \to c^{\beta} R_J$. Hence, the decision problem is invariant under this transformation in regards to the quadratic loss, given by

$$
L(\hat{R}_J(t), R_J(t)) = \left(\frac{\hat{R}_J(t) - R_J(t)}{R_J(t)}\right)^2,
$$

where $R_J(t)$ is any estimator of $R_J(t)$. An estimator $h(\underline{T})$ is said to be equivariant if

$$
h(cT_1, cT_2, \ldots, cT_k) = c^{\beta}h(T_1, T_2, \ldots, T_k).
$$

Let $c = \frac{1}{T_k}$, we have

$$
h\left(\frac{T_1}{T_k}, \frac{T_2}{T_k}, \dots, \frac{T_{k-1}}{T_k}, 1\right) = \frac{1}{T_k^{\beta}} h(\underline{T})
$$

$$
\Rightarrow h(\underline{T}) = T_k^{\beta} h(\underline{Z}), \tag{9}
$$

where $\underline{Z} = (Z_1, Z_2, \dots, Z_{k-1}), Z_i = \frac{T_i}{T_k}$, for $i = 1, \dots, k-1$ and let $\underline{z} = (z_1, z_2, \dots, z_k)$...,*zk*−¹) be any observed value of *Z*.

It can be easily seen that the UMVUE is a scale equivariant estimator. We now use the Brewster–Zidek technique for improving upon the equivariant estimators.

The risk of $h(T)$ for estimating $R_i(t)$, for $i = 1, 2, ..., k$ is given by

$$
R(T_k^{\beta}h(\underline{Z}), R_i(t)) = E[T_k^{\beta}h(\underline{Z}) - R_i(t)]^2 = E^{\underline{Z}}[E^{\underline{T}|\underline{Z}}(T_k^{\beta}h(\underline{Z}) - R_i(t))^2|\underline{Z}]
$$

Differentiating the above equation with respect to $h(Z)$. We see that the inner conditional expectation is minimized by

18 **A. K. Mahapatra et al.**

$$
h_{\beta}^*(\underline{z}) = R_i(t) \frac{E(T_k^{\beta} | \underline{Z} = \underline{z})}{E(T_k^{2\beta} | \underline{Z} = \underline{z})}
$$
(10)

In order to find out the expectation above, we need the conditional density of T_k given $Z = z$. It is given by

$$
\frac{k n \beta \alpha_i^{k n \beta}}{t_k^{k n \beta + 1} z_i^{k n \beta}}, \quad \frac{\alpha_i}{z_i} \le t_k < \infty, \quad \text{and } \frac{\alpha_{i+1}}{\alpha_i} \le z_i < \infty. \tag{11}
$$

(See also Kumar and Kar [\[9\]](#page--1-14). Hence

$$
h_{\beta}^*(\underline{Z}) = \frac{kn-2}{kn-1} \left(\frac{\alpha_j}{t\alpha_i}\right)^{\beta} z_i^{\beta}, \quad i \neq j.
$$

If we fix j and vary i such that $i \neq j$, we have

$$
\hat{h_{\beta}}(\underline{z}) = \sup h_{\beta}^{*}(\underline{Z}) = \frac{kn - 2}{kn - 1} \left(\frac{\max(z_1, \dots, z_{k-1}, 1)}{t} \right)^{\beta} \text{ also inf } h_{\beta}^{*}(\underline{z}) = 0. \tag{12}
$$

Summarizing the above results the following theorem is concluded immediately.

Theorem 3.1 *Let* $\Psi(Z)$ *be an estimator of R as defined in* (5.1)*, then define an estimator* $\Psi^*(Z)$ *by*

$$
\Psi^*(\underline{Z}) = \begin{cases} \Psi(\underline{Z}), & \text{if } \Psi(\underline{Z}) < \hat{h_\beta}(\underline{Z}), \\ \hat{h_\beta}(\underline{Z}), & \text{otherwise.} \end{cases} \tag{13}
$$

Then, $\Psi^*(\underline{Z})$ *is an improved estimator of* $\Psi(\underline{Z})$ *provided* $P{\Psi(\underline{Z}) \geq h_\beta(\underline{Z})} > 0$.

Remark [3.1](#page-27-0) It can be seen that Theorem 3.1 will also hold good even for the usual squared error loss function. This is because the proof of Brewster–Zidek [\[3\]](#page--1-18) technique was established on the orbits of $Z = z$.

Remark 3.2 For *n* > 2, then the estimator $\hat{R}_{J}^{c} = \frac{1}{n} \left(\frac{T_{(k)}}{t} \right)^{\beta} \left[c - \sum_{i=1}^{k-1} \left(\frac{T_i}{T_{(k)}} \right)^{n\beta+\beta} \right]$ uniformly dominates $\hat{R}_J^U(t) = \frac{1}{n} \left(\frac{T_{(k)}}{t} \right)^{\beta} \left[n - 1 - \sum_{i=1}^{k-1} \left(\frac{T_i}{T_{(k)}} \right)^{n\beta + \beta} \right]$ for $\frac{n^2 - 2n - 1}{n - 1} \le$ $c < n - 1$.

Proof Consider the risk difference RD_1 of the above two estimators. So,

On Estimation of Reliability Following Selection from Pareto Populations 19

$$
RD_{1} = E[(R_{J}^{U}(t), R_{J})^{2} - (\hat{R}_{J}^{c}(t) - R_{J}(t))^{2}]
$$

\n
$$
= E[(\hat{R}_{J}^{U}(t) + \hat{R}_{J}^{c}(t))((\hat{R}_{J}^{U}(t) - \hat{R}_{J}^{c}(t)))]
$$

\n
$$
- E[2R_{J}(t)((\hat{R}_{J}^{U}(t) - \hat{R}_{J}^{c}(t)))].
$$

\nWe have $\hat{R}_{J}^{U}(t) + \hat{R}_{J}^{c}(t) = \frac{1}{n} \left(\frac{T_{(k)}}{t}\right)^{\beta} \left[n - 1 + c - 2 \sum_{i=1}^{k-1} \left(\frac{T_{i}}{T_{(k)}}\right)^{n\beta + \beta}\right],$
\n $\hat{R}_{J}^{U}(t) - \hat{R}_{J}^{c}(t) = \frac{n - 1 + c}{n} \left(\frac{T_{(k)}}{t}\right)^{\beta}$
\nand $E[R_{J}(t)(\hat{R}_{J}(t) - \hat{R}_{J}^{c}(t))] = \frac{1}{t^{\beta}} E\left[\frac{n - 1 - c}{n} \sum_{i=1}^{k} \left(\frac{\alpha_{i}}{t}\right)^{\beta} T_{i}^{\beta} I(T_{i} \ge \max_{i \neq j} T_{j})\right]$

Taking $U_i(\underline{T}) = T_i^{\beta} I(T_i \ge \max_{i \ne j} T_j)$, from Lemma [2.2,](#page-25-0) we have

$$
E\Big[\sum_{i=1}^{k} \left(\frac{\alpha_{i}}{t}\right)^{\beta} T_{i}{}^{\beta} I(T_{i} \geq \max_{i \neq j} T_{j})\Big] = \sum_{i=1}^{k} E\Big[T_{i}{}^{2\beta} I(T_{i} \geq \max_{i \neq j} T_{j}) - \beta T_{i}{}^{n\beta+\beta} \int_{T_{i}}^{\infty} \frac{I(x \geq \max_{i \neq j} T_{j})}{x^{n\beta-\beta+1}} dx\Big]
$$

$$
= E\Big[\frac{T_{(k)}^{2\beta}}{n-1} \Big(n-2-\sum_{i=1}^{k-1} \Big(\frac{T_{i}}{T_{(k)}}\Big)^{n\beta+\beta}\Big)\Big].
$$
 (14)

With the help of [\(14\)](#page-28-0), we are in a position to compute RD_1 .

$$
RD_{1} = \frac{1}{t^{\beta}} \bigg[\frac{n-1-c}{n^{2}} E\Big\{ T_{(k)}^{2\beta} \Big(n-1+c-2 \sum_{i=1}^{k-1} \Big(\frac{T_{i}}{T_{(k)}} \Big)^{n\beta+\beta} \Big) \Big\}
$$

$$
-2 \frac{n-1-c}{n(n-1)} E\Big\{ T_{(k)}^{2\beta} \Big(n-2-2 \sum_{i=1}^{k-1} \Big(\frac{T_{i}}{T_{(k)}} \Big)^{n\beta+\beta} \Big) \Big\} \bigg]
$$

$$
= \frac{1}{t^{\beta}} \frac{n-1-c}{n^{2}(n-1)} E\Big[T_{(k)}^{2\beta} \Big(1+2n-n^{2}+c(n-1)+2 \sum_{i=1}^{k-1} \Big(\frac{T_{i}}{T_{(k)}} \Big)^{n\beta+\beta} \Big) \Big].
$$
 (15)

We see that for $\frac{n^2-2n-1}{n-1} \le c < n-1$ and $n > 2$, then $RD_1 > 0$. Hence the conclusion follows immediately.

Remark 3.3 The natural estimator $\hat{R}_j^*(t) = (\frac{T_{(k)}}{t})^{\beta}$ is inadmissible.

Proof Consider the counterpart of the UMVUE for the component problem $R_j^{AU}(t) = \frac{n-1}{n}(\frac{T_{(k)}}{t})^{\beta}$. We claim that this estimator dominates uniformly the natural estimator for $n > 2$. The risk difference between these two estimators RD_2 is given by

$$
RD_2 = E[(\hat{R}_j^*(t), R_J(t))^2 - (R_J^{\hat{A}U}(t) - R_J(t))^2]
$$

\n
$$
= E[(\hat{R}_j^*(t) + R_J^{\hat{A}U}(t))((\hat{R}_j^*(t) - R_J^{\hat{A}U}(t)))
$$

\n
$$
- E[2R_J(t)((\hat{R}_j^*(t) - R_J^{\hat{A}U}(t)))]
$$

\nWe have $\hat{R}_J^*(t) + R_J^{\hat{A}U}(t) = \frac{2n-1}{n} \left(\frac{T_{(k)}}{t}\right)^\beta$,
\n $\hat{R}_J^*(t) - R_J^{\hat{A}U}(t) = \frac{1}{n} \left(\frac{T_{(k)}}{t}\right)^\beta$
\nand $E[R_J(t)(\hat{R}_J^*(t) - R_J^{\hat{A}U}(t))] = \frac{1}{t^\beta} E\left[\frac{1}{n}\sum_{i=1}^k \left(\frac{\alpha_i}{t}\right)^\beta T_i^\beta I(T_i \ge \max_{i \neq j} T_j)\right]$

Proceeding similarly as above, we have

$$
RD_2 = \frac{1}{t^{\beta}} \frac{2n-1}{n^2(n-1)} E\bigg[T_{(k)}^{2\beta} \Big(n+1+2n \sum_{i=1}^{k-1} \Big(\frac{T_i}{T_{(k)}} \Big)^{n\beta+\beta} \Big) \bigg] > 0. \tag{16}
$$

Hence the conclusion follows.

Remark 3.4 The estimator $R_J^{\hat{A}U}(t) = \frac{n-1}{n} \left(\frac{T_{(k)}}{t}\right)^{\beta}$ is inadmissible.

Proof For the component problem, let us consider the counterpart of the best scale equivariant estimator, given by, $\hat{R}_J^S(t) = \frac{n-2}{n-1} (\frac{T_{(k)}}{t})^{\beta}$. Here also we see that the estimator $R_j^S(t)$ dominates uniformly R_j^{AU} for $n > 2$. We compute the risk difference *R D*3, which is given by

$$
RD_3 = E[(R_J^U(t), R_J(t))^2 - (R_J^S(t) - R_J(t))^2]
$$

=
$$
\frac{1}{t^{\beta}} \frac{1}{n^2(n-1)^2} E\left[T_{(k)}^{2\beta} \left(1 + 2n(n-1) \sum_{i=1}^{k-1} \left(\frac{T_i}{T_{(k)}}\right)^{n\beta + \beta}\right)\right] > 0.
$$
 (17)

Hence the conclusion follows.

Conclusion: Under the mean squared error criterion the estimator R_f^S dominates R_J^U , which once again improves upon the natural estimator $\hat{R_J^*}$. Hence R_J^U is preferred. One should not prefer R_J unless one is not interested in the class of unbiased estimators. Also we have \hat{R}_J^c which dominates \hat{R}_J .