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AMulti-item Deteriorating Inventory
Model Under Stock Level-Dependent,
Time-Varying, and Price-Sensitive
Demand

Abhijit Barman and P. K. De

Abstract This paper advocates a multi-item deteriorating inventory model where
shortages are not allowed. Here, we have proposed a single-stage EOQ model for
deteriorating items where the demand function is depending on nonlinear selling
price, nonlinear time, and inventory stock. The model is developed under a known
initial inventory. The main objective of this model is to determine the selling price
and time length until the inventory reaches zero for each item. To demonstrate our
model, one numerical example has been given which is followed by a sensitivity
analysis of the major parameters involved in this model.

Keywords Multi-item inventory · Deteriorating items · Selling price · Order
quantity · Hessian matrix

1 Introduction

In real-life situations, it is observed that demand for an inventory model changes
for the number of items increases in the stocks. That is why companies or any firm
owners dealwith themulti-item inventory system. The present paper presents amulti-
item inventory system over a single period with a finite time horizon. The product
deteriorates with the passes of time under the different deteriorating rates. Most of
the items that undergo decay over time are medicine, blood banks, volatile liquids,
vegetables, etc. Demand for the items is deterministic which depends on inventory
label, selling price, and time-varying. The main goal of this model is to determine
the unit selling price of a product and the length of the period up to zero inventory
that maximizes the overall profit of a retailer or any inventory warehouse.
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Even though sufficient literature is available in the area of deteriorating items, but
still very less literature is available onmulti-item inventory systemwith deterioration.

The first effort to illustrate the optimum order policies for deteriorating items
was established by Chare and Schratures [1]. They introduced an EOQ model for
an exponentially decaying inventory system. Later, Covert and Philip [2] extended
this model by incorporating variable deterioration rate with two parameters Weibull
distribution. Bhattacharya [3] proposed a new method for deteriorating items with
linear stock-dependent demand rate in a two items inventory system. Dye et al. [4]
discussed pricing and ordering policy for deteriorating items with shortages where
the deterioration and demand rate are continuous as well as a differentiable function
of time and price, respectively. Pal et al. [5] established a multi-item EOQ model
with nonlinear price-dependent and price break-sensitive demand. In the case of
non-instantaneous deteriorating items, a joint pricing and inventory model has been
established by Maihami and Kamalabadi [6]. Linear price-sensitive and nonlinear
time-dependent demand functions have been considered to develop this model with
partially backlogging. Sarkar et al. [7] established an inventory model for deteri-
orating items considering time-sensitive demand with a finite production rate. The
selling price and component cost are considered at a continuous rate of time. Yang [8]
studied an EOQ model where the holding cost is stock-dependent and the demand
rate is also stock-dependent with relaxed terminal environments under shortages.
The prime goal of this model is profit maximization by determining optimum order
quantity and level of ending inventory. Janssen et al. [9] reviewed 393 articles that are
published from January 2012 toDecember 2015 and categorized the articles based on
the different demand characteristics and the deterioration of the items. Feng et al. [10]
used the demand as a multivariate function of stock, price, and freshness in an EOQ
model. Chen et al. [11] discovered an inventory model for time elapse deteriorating
items with a short lifecycle. This model is designed for the stock label, time-varying,
and price-sensitive deterministic demand in a finite horizon multi-period setting.

This paper address an EOQ model for n numbers of different items in a finite
time horizon. For each item, an initial inventory stock depending on store capacity
has been taken separately. The deterministic demand function is taken in a pattern
of the nonlinear selling price, exponential time-varying, and linear stock-dependent.
Shortages of products are not allowed in this multi-item inventory system. Thus,
this paper determines the optimum selling price, time length for which the inventory
reaches zero for each item and the overall profit.

The rest of the paper is organized as follows. In Sect. 2, we describe the notations
and assumptions used throughout the model. We inaugurate the mathematical model
with necessary and sufficient conditions in Sect. 3. In Sect. 4, a numerical example
has been provided to illustrate the solution procedure. In Sect. 5, a sensitivity analysis
of the optimum solutions concerning different parameters has also been provided.
Finally, the summarized findings and some future research suggestions are discussed
in Sect. 6.
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2 Notations and Assumptions

The following notations and assumption are adopted to develop the model:

Notations

Mi Manufacturing cost per item for ith product

Oi Ordering cost for ith product

hi Holding cost per unit time for ith product

Qi Initial order quantity for ith product

pi Unit selling price for ith item

Ri Demand rate for each product

θ i Deterioration rate for ith product

ai , bi , ci , μi , αi , λi Demand and stock elasticity parameters

I (pi , t) Inventory level for ith product at time t

Ti Time length up to zero inventory

T P Total profit

Assumptions

• The model is considered for n number of different types of products for
deteriorating items in a single stage.

• Shortages are not considered in this inventory model i.e. Ii (pi , t) ≥ 0 for i = 1,
2, 3…n.

• The replenishment rate is infinite and lead time is negligible.
• Deterioration rate θi is constant for ith product.
• Demand rateRi is deterministic in nature and a function of inventory level Ii (pi , t)

with nonlinear selling price (ai − bi pi − ci p2i ) and exponentially time varying.
For i = 1, 2, 3…n with considering ai�bi�ci, Ri is represented by

Ri = (ai − bi pi − ci p
2
i )αi e

λi t + μi I (pi , t).
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3 Mathematical Model Formulation and Solution
Methodology

At the beginning of the cycle, the system starts with inventory Qi for the ith product.
Over the course of the period, the inventory level down due to both demand and
deterioration until it reaches zero at time Ti. During the time interval [0, Ti ], the
following differential equation represents the inventory status for the ith product

d Ii (pi , t)

dt
+ θi I (pi , t) = −Ri (1)

with two boundary conditions, Ii (pi , 0) = Qi and Ii (pi , Ti ) = 0 for i = 1, 2, …n.
Solving the inventory system and using the boundary conditions, we get the level of
inventory of ith item at time t is

Ii (pi , t) = Qie
−(θi+μi )t + (ai − bi pi − ci p2i )αi

(θi + μi + λi )
[e−(θi+μi )t − eλi t ] (2)

From the second boundary condition, we have

Ti = 1

(θi + μi + λi )
Log

[
Qi (θi + μi + λi )

(ai − bi pi − ci p2i )αi
+ 1

]
(3)

Next, for i= 1, 2, 3…n, the total profit in the whole cycle consists of the following
five elements:

• Total ordering cost for the ith product is given by

OCi = Oi (4)

• Inventory holding cost for the ith product is given by

HCi = hi

Ti∫
0

I (pi , t)dt = hi Ki (5)

• Total manufacturing cost for the ith product is

MCi = Mi Qi (6)

• Deteriorating cost for the ith product is given by
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DCi = Mi

Ti∫
0

θi I (pi , t)dt = Miθi Ki (7)

• Sales revenue for the ith product is written by:

SRi = pi

Ti∫
0

Ri (pi , t)

= 1

λi
piαi (ai − bi pi − ci p

2
i )(e

λi Ti − 1) + piμi Ki (8)

where

Ki =
TI∫
0

Ii (pi , t)dt = Qi

(θi + μi )
[1 − e−(θi+μi )Ti ]

+
{

(ai − bi pi − ci p2i )αi

(θi + μi + λi )

[
1

λi
+ 1

(θi + μi )
− eλi Ti

λi
− e−(θi+μi )

(θi + μi )

]}
(9)

Therefore, the total profit of the retailer for all the items in the whole cycle is

T P(p1, p2, . . . pn) =
n∑

i=1

[SRi − (OCi + HCi + MCi + DCi )]

=
n∑
1

[
1

λi
piαi (ai − bi pi − ci p

2
i )(e

λi Ti − 1) + (piμi − hi − Mi θi )Ki − Oi − Mi Q

]
i

(10)

TP (p1, p2,…pn) is function of p1, p2, …pn. So, for some Ti (from Eq. 3), the
necessary conditions for the overall profit function come from ∂T P(p1,p2,...pn)

∂pi
= 0 for

i = 1, 2, 3…n.
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This gives a system of nonlinear equations with n number of unknowns pi for i
= 1,2…n.

Concavity test by the Hessian matrix

To checkwhether the profit function (10) is concave,we have to determine the hessian
matrix

H =

⎡
⎢⎢⎢⎢⎣

∂2T P
∂p21

∂2T P
∂2 p1∂p2

. . . ∂2T P
∂p1∂pn

∂T P
∂p2∂p1

∂2T P
∂p22

. . . ∂2T P
∂p2∂pn

. . . . . . . . . . . .
∂2T P
∂pn∂p1

∂2T P
∂pn∂p2

. . . ∂2T P
∂p2n

⎤
⎥⎥⎥⎥⎦

We have to show all the principal minors of the hessian matrix will alternate their
sign starting with a negative sign. Since the expression of the second-order deriva-
tives is highly nonlinear, we will check the result numerically with some graphical
representation. We have shown numerically as well as graphically the concavity of
profit function T P(p1, p2, . . . pn) in the given numerical example.

4 Numerical Investigation

Let us consider a storehouse problem with two different items with different demand
rates and deterioration rates are listed by the following parametric values in Table 1.

Table 1 Different parametric
values

Value of the
parameter

Item 1 Item 2

Demand elasticity
parameter

a1 = 120; b1 =
3.0;
c1 = 0.005;
λ1 = 0.1; α1 = 1

a2 = 140; b2 =
3.2;
c2 = 0.005;
λ2 = 0.15; α2 =
1.5

Manufacturing cost
($)

M1 = 10 M2 = 12

Ordering cost ($) O1 = 70 O2 = 80

Holding cost ($) h1 = 3 h2 = 4

Deterioration rate θ1 = 0.08 θ2 = 0.05

Stock elasticity
parameter

μ1 = 0.6 μ2 = 0.8

Initial inventory
level

160 units 200 units
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Fig. 1 Variation of optimal profit with respect to selling prices p1 and p2

UsingMathematica software, we determine the optimum selling price, time length
for the different products, and also the net profit. Unit selling price of first item (p∗

1)= $35.284, Unit selling price of second item (p∗
2) = $38.292, Cycle length for first

item (T ∗
1 ) = 4.3837 days, Cycle length for second item (T ∗

2 ) = 3.3807 days, and the
total profit (T P∗) = $6049.46. We get �1 = −40.55 ≤ 0 and �2 = 3174.3878 ≥ 0.
The sign of principle minor of the hessian matrix alternate starting with a negative
sign. So, the condition of sufficiency is also satisfied.

The following figure (Fig. 1) represents the nature of concavity of the profit
function (10). For selling price p∗

1 = $35.284 and p∗
2 = $38.292, the corresponding

total profit T P∗ = $6049.46 gives the global maximum in the concave Fig. 1.

5 Sensitivity Analysis

A post-optimality analysis is carried out to analyze the outcome of the changes
of different parameters on the optimal solutions. The results of the post-optimality
analysis are listed in Table 2 and Table 3, respectively. The changes to the optimum
values p∗

1, p
∗
2, T

∗
1 , T2,∗ T P∗ have been done by decreasing/increasing the values of

the major parameters ai , bi , ci , μi , αi , θi , λi for i = 1, 2…n. The post-optimality
analysis is accomplished from −20% to 20% by changing one parameter at a time
and keeping remain parametric values unchanged.

The sensitive analysis which is explored in Tables 2 and 3 indicates the following
observations:

• It is visible in Table 2 that, with the increase of purchasing cost (Mi), the selling
price (pi) for both the products as well as the time interval (Ti) will decrease. So,
the total profit (TC) will decrease with increasing the purchasing cost (Mi).

• It also observed that with the increasing of holding cost (hi), the selling price (pi),
time length (Ti), and the overall profit (TC) decrease rapidly. From a financial
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Table 2 Sensitivity analysis with respect to different parameters

Parameter Percentage change in parameter p1 p2 T1 T2 T P

Mi −20% 35.367 38.336 4.4410 3.4156 6916.08

−10% 35.326 38.314 4.4121 3.3981 6482.71

M1 = 10; M2 = 12 35.284 38.292 4.3837 3.3807 6049.46

10% 35.242 38.269 4.3558 3.3636 5616.31

20% 35.200 38.247 4.3284 3.3468 5183.28

Oi −20% 35.284 38.292 4.3837 3.3807 6079.46

−10% 35.284 38.292 4.3837 3.3807 6064.46

Oi 35.284 38.292 4.3837 3.3807 6049.46

10% 35.284 38.292 4.3837 3.3807 6034.46

20% 35.284 38.292 4.3837 3.3807 6019.46

hi −20% 35.597 38.584 4.6106 3.6346 6384.55

−10% 35.441 38.439 4.4930 3.5012 6215.58

hi 35.284 38.292 4.3837 3.3807 6049.46

10% 35.127 38.143 4.282 3.2713 5886.05

20% 34.969 37.994 4.1863 3.1714 5725.22

Qi −20% 35.036 38.096 3.8780 2.9830 4998.59

−10% 35.160 38.195 4.1369 3.1864 5561.73

Q1 = 160; Q2 = 200 35.284 38.292 4.3837 3.3807 6049.46

10% 35.405 38.384 4.6199 3.5669 6678.74

20% 35.522 38.472 4.8470 3.7459 7234.29

lookout, it is clear that increasing inventory holding cost directly affects the total
profit.

• From Table 2, it is clear that ordering cost (Oi) does not affect the selling price
(pi). So, the change of overall profit (TC) is negligible for that case.

• From Table 2, it is found that increasing with initial inventory stock level (Qi) the
selling price and time interval for both the items will increase. For this case, the
net profit will also increase rapidly.

• When the parametric value a1, a2 increase the value of selling price (pi) for both
the product will increase but the time length for each item (Ti) of the inventory
cycle will decrease. In this case, the overall profit (TC) also increases very rapidly
which is shown in Table 3.

• With increasing the value of the other parameter bi, ci the value of the selling
price (pi) decreases. So, the value of the total profit (TC) also decreases. For that
case, bi is more effective other than the parameter ci.

• The effect of change in overall profit (TC) with respect to the change in parameters
λi and αi are shown in Table 3 separately. It is observed that, as λi or αi increases,
the increment of total profit (TC) is not significant.
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Table 3 Sensitivity analysis with respect to different parameters

Parameter Percentage change in parameter p1 p2 T1 T2 T P

ai −20% 28.425 31.045 4.6555 3.5545 3630.42

−10% 31.873 34.697 4.5140 3.4647 4847.11

a1 = 120; a2 = 140 35.284 38.292 4.3837 3.3807 6049.46

10% 38.658 41.832 4.2626 3.3018 7238.05

20% 41.998 45.3201 4.1501 3.2276 8413.38

bi −20% 43.192 46.108 4.5789 3.5519 8548.57

−10% 38.885 41.887 4.4817 3.4666 7191.25

b1 = 3.0; b2 = 3.2 35.284 38.292 4.3837 3.3807 6049.46

10% 32.237 35.204 4.2869 3.2962 5079.12

20% 29.630 32.529 4.1929 3.2140 4246.66

ci −20% 35.718 38.989 4.4207 3.4289 6222.68

−10% 35.499 38.635 4.4019 3.4044 6134.79

c1 = 0.005; c2 = 0.008 35.284 38.292 4.3837 3.3807 6049.46

10% 35.074 37.959 4.3659 3.3579 5966.55

20% 34.868 37.638 4.3486 3.336 5885.94

λi −20% 35.275 38.291 4.4768 3.4654 6025.37

−10% 35.279 38.291 4.4296 3.4224 6037.45

λ1 = 0.1; λ2 = 0.15 35.284 38.292 4.3837 3.3807 6049.46

10% 35.288 38.293 4.3391 3.3405 6061.39

20% 35.293 38.294 4.2957 3.3015 6073.23

μi −20% 34.323 37.545 4.2037 3.2193 5608.43

−10% 34.830 37.944 4.2915 3.2984 5835.33

μ1 = 0.4; μ2 = 0.6 35.284 38.292 4.3837 3.3807 6049.46

10% 35.685 38.590 4.4802 3.4663 6250.93

20% 36.036 38.843 4.5810 3.5549 6439.94

θi −20% 35.594 38.454 4.6934 3.5441 6362.40

−10% 35.437 38.373 4.5311 3.4597 6239.93

θ1 = 0.08; θ2 = 0.05 35.284 38.292 4.3837 3.3807 6049.46

10% 35.134 38.212 4.2491 3.3066 6006.71

20% 34.987 38.131 4.1255 3.2369 5895.45

αi −20% 35.579 38.514 4.9575 3.8329 5921.67

−10% 35.418 38.394 4.6456 3.5871 5986.68

α1 = 1; α2 = 2 35.284 38.292 4.3837 3.3807 6049.46

10% 35.172 38.204 4.1598 3.2045 6109.82

20% 35.077 38.129 3.9658 3.0518 6167.71
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• When the value of parameter μi increases then the selling price (pi), time length
(Ti), and the total profit (TC) also increase. The physical phenomena of this
parameter suggest that demand proportional to the inventory of the firm.

• Increasing of parameter θi the overall profit (TC) will decrease. The economic
viewpoint of this observation shows that as increasing the deterioration rate the
profit will be minimized.

6 Conclusion

In this paper, we explored a short life period multi-item EOQ model where dete-
rioration is considered. A stock level-dependent, time-varying, and price-sensitive
deterministic demand have been considered to develop the model under a known
primary stock. To design themodel, the effect of nonlinear selling price and nonlinear
time-varying demand functions has been estimated. Our model is demonstrated and
illustratedwith one numerical examplewith a graphical explanation. Sensitivity anal-
ysis is shown to see the changes in overall profit with respect to the variant of several
parameters involved in this model. The contribution of this paper helps decision-
makers to increase the overall profit by understanding the market demand situation.
As a result, retailers may change their earlier selling price of the items to earn the
maximum profit.

This paper can be extended by incorporating various other concepts like inflation,
reliability, or some other fuzzy environments.
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On Estimation of Reliability Following
Selection from Pareto Populations

Ajaya Kumar Mahapatra, Brijesh Kumar Jha, and Chiranjibi Mahapatra

Abstract Let
∏

1,
∏

2, . . . ,
∏

k be k populations, where
∏

i follows a Pareto dis-
tribution with unknown scale parameters αi and common known shape parameters
βi ; i = 1, . . . , k. Independent random samples are drawn from each of these popula-
tions. Let Ti be the smallest observation in the ith sample. The natural selection rule
is to select the population with the largest Ti . Then, we consider the estimation of
the reliability function of the selected population. The uniform minimum variance
unbiased estimator is derived. A class of scale equivariant estimators have been pro-
posed. An inadmissibility result in regards to the class of scale equivariant estimators
is established generally

Keywords Selection rule · UMVUE · MLE · Scale equivariant estimators ·
Brewster–Zidek technique

1 Introduction

Let
∏

1,
∏

2, . . . ,
∏

k be as defined above with each of them corresponding to a prob-
ability density function/ probability mass function f (x |θi ), i = 1, . . . , k. A common
problem is to choose the population or a subset of populations having the best. The
populationmaybe regarded as the best according to some attributes such as the largest
mean, smallest variance, etc.An important practical problem is to estimate the param-
eters of the selected population or an attribute of the selected subset. These problems
are in general mentioned as “Estimation after selection”. Such problems have been
at first constructed and explored by Rubinstein [16]. Estimation of the quantile of a
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selected population has been considered by Sharma and Vellaisamy [17], Kumar and
Kar ([10–12]) and Vellaisamy [18]. Mishra and van derMeulen [15] have studied the
estimation after selection in general truncation distributions. The estimation of the
reliability function of a selected subset was studied by Kumar et al. [13] for the case
of two-parameter exponential distribution. It was assumed that the scale parameters
are known and the location parameters are unknown and unequal. They derived the
Uniform Minimum Variance Unbiased Estimator(UMVUE) for the survival func-
tion and proposed some natural estimators. These estimators are compared in terms
of their risks using Brewster and Zidek technique. Further, this estimator is also
improved by solving a differential inequality in the light of Vellaisamy and Punen
[19]. They have considered the estimation of the location parameter from a selected
subset of exponential distribution.

Income distributions were studied initially using Pareto distribution. Later on, it
was applied to reliability and life testing, industrial and engineering studies. Johnson
and Katz [8], Harris [7], Davis and Feldstein [4], Freiling [6], Berger andMandelbrot
[2], etc., have described several situations where the Pareto model is very useful.
This model has been found suitable to describe the allotment of service times in
regard to city maintenance, allocation of fallout of nuclear particles, etc. Kumar and
Gangopadhyaya [9] have taken up the case to estimate the scale parameter of the
chosen Pareto population. In this paper, we study the estimation of the reliability
function in the following selection. In Sect. 4, we have derived the UMVUE for the
reliability function of the selected Pareto population. In Sect. 5, an inadmissibility
result has been established generally for the estimators in the scale equivariant class.

2 Deriving the UMVUE

Independent random samples Xi1, Xi2, . . . , Xin, i = 1, . . . , k are drawn from k pop-
ulations

∏
1,

∏
2, . . . ,

∏
k , respectively. Let these observations from the respective

populations have an associated probability density function fi (.), given by the Pareto
model.

fi (x) =
{

βα
β

i
xβ+1 , if αi ≤ x < ∞, αi > 0, β > 0,
0, elsewhere, for i = 1, 2, . . . , k.

(1)

Let us assume overall that the scale parameters α1, α2, . . . , αk are completely
unknown and the common shape parameter β is known. Let Ti = min(Xi1, Xi2, . . . ,

Xin). Then the statistic T = (T1, T2, . . . , Tk) is complete and sufficient. It is also
the maximum likelihood estimator (MLE) of α = (α1, α2, . . . , αk), i = 1, . . . , k. It
may be seen that Ti follows a Pareto distribution with shape parameter nβ and scale
parameter αi , i = 1, . . . , k. It is given by
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gi (y) =
{

nβα
nβ
i

ynβ+1 , if αi ≤ y < ∞,

0, elsewhere, for i = 1, 2, . . . , k.
(2)

The reliability function of the population
∏

i is given by

Ri (t) = P(Xi j > t) =
(αi

t

)β

, αi < t. (3)

Our goal is to choose the population associated with the highest reliability Ri (t),
i = 1, . . . , k. The probability density of Ti has monotone likelihood ratio property
in (αi , Ti ), i = 1, . . . , k. A logical selection rule is to select the population

∏
i if

Ti = max(T1, . . . , Tk), i = 1, . . . , k. Optimality properties in this regard have been
scrutinized by Bahadur and Goodman [1], Lehmann [14] and Eaton [5]. Let T(1) ≤
T(2),≤ T(k) stand for the ordered values of T ′

i s. We want to estimate

RJ (t) =
k∑

j=1

(α j

t

)β

I j , (4)

where

I j =
{
1, if Tj = T(k), j = 1, . . . , k;
0, otherwise.

(5)

An unbiased estimator δ of RJ (t) satisfies E(δ − RJ (t)) = 0. To derive the UMVUE
of RJ (t), we need the following lemmas.

Lemma 2.1 Let X be a random variable with pdf gi (.), given by

gi (x) =
{

nβα
nβ
i

xnβ+1 if αi ≤ x < ∞
0 otherwise, for i = 1, . . . , k.

(6)

Suppose that U(x) be a real-valued function defined on R, such that
(a) Eα(U (x)) < ∞ ∀α ∈ �,

(b) The integral
∫ ∞
x U (t)P(t, β)dt exists and is finite,

where P(x, β) = n
βn−1xnβ+1 for 0 < x < ∞,

(c) limx→∞[xβ
∫
U (t)P(t, β)dt] = 0.

Then the function

V (x) = xβU (x) − βxβ−1

P(x, β)

∫ ∞

x
U (t)P(t, β)dt

satisfies

EαV (x) = αβEαU (x) (7)
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Proof The proof follows using integration by parts to the second expression. The
following lemma is a generalization of the above lemma.

Lemma 2.2 Let T1, T2, . . . , Tk be k independent random variables with pdf gi (.) as
defined in (4.2).
Suppose that U1(t),U2(t), . . . ,Uk(t) be k real-valued function defined on R, such
that
(a) Eα(Ui (T )) < ∞ ∀αi > 0, i = 1, . . . , k.
(b) The integral

∫ ∞
ti

U (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx exists and is finite,
where P(x, β) = n

βn−1xnβ+1 for 0 < ti < ∞,

(c) Then the function

Vi (T ) = tβi Ui (T ) − βtβ−1
i

P(ti , β)

∫ ∞

ti

U (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx

satisfies
EαVi (T ) = αi

βEαUi (T )

Next, since RJ (t) = ∑k
j=1

α j
β

tβ I j , define

Ui (t) =
{

1
tα if Tj = T(k)

0 otherwise
(8)

then we can write E(RJ (t)) = ∑k
i=1 αi

βE[Ui (t)], from lemma (4.2) we have

E[
k∑

i=1

Vi (T )] = E[
k∑

i=1

αi
βUi (T )]

which is the unbiased estimator of RJ (t).

Theorem 2.1 The UMVUE of RJ (t) is given by R̂U
J (t) = 1

n

(
T(k)

t

)β

[

n − 1 − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

.

Proof We have

Vi (t) = tβi Ui (t) − βtβ−1
i

P(ti , β)

∫ ∞

ti

Ui (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx

= tβi
tβ

I (ti ≥ max
i 	= j

t j ) − βtβ−1
i

P(ti , β)

∫ ∞

ti

I (ti ≥ max
i 	= j

t j )
P(x, β)

tβ
dx

=
[

tβi − βtβ−1
i

P(ti , β)

∫ ∞

ti

P(x, β)dx

]
I (ti ≥ maxi 	= j t j )

tβ
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⇒ E
( k∑

i=1

Vi (T )
)

= 1

tβ

[

T β

(k) −
( k−1∑

i=1

βT β

i

P(Ti , β)

) ∫ ∞

T(k)

P(x, β)dx

]

= 1

n

(T(k)

t

)β
[

n − 1 −
k−1∑

i=1

( Ti
T(k)

)nβ+β
]

,

which is the UMVUE of RJ (t).

3 An Inadmissibility Result

In this section,wewill try to find out the formof an equivariant estimator of RJ (t). For
this, let us consider the scale group of transformationsG = {gc : gc(x) = cx, c > 0}.
Under this transformation α → cα, RJ → cβRJ . Hence, the decision problem is
invariant under this transformation in regards to the quadratic loss, given by

L(R̂J (t), RJ (t)) =
(
R̂J (t) − RJ (t)

RJ (t)

)2

,

where R̂J (t) is any estimator of RJ (t). An estimator h(T ) is said to be equivariant if

h(cT1, cT2, . . . , cTk) = cβh(T1, T2, . . . , Tk).

Let c = 1
Tk
, we have

h

(
T1
Tk

,
T2
Tk

, . . . ,
Tk−1

Tk
, 1

)

= 1

T β

k

h(T )

⇒ h(T ) = T β

k h(Z), (9)

where Z = (Z1, Z2, . . . , Zk−1), Zi = Ti
Tk

, for i = 1, . . . , k − 1 and let z = (z1, z2,
. . . , zk−1) be any observed value of Z .

It can be easily seen that the UMVUE is a scale equivariant estimator. We now
use the Brewster–Zidek technique for improving upon the equivariant estimators.

The risk of h(T ) for estimating Ri (t), for i = 1, 2, . . . , k is given by

R(T β

k h(Z), Ri (t)) = E[T β

k h(Z) − Ri (t)]2 = EZ [ET |Z (T β

k h(Z) − Ri (t))
2|Z ]

Differentiating the above equation with respect to h(Z). We see that the inner con-
ditional expectation is minimized by
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h∗
β(z) = Ri (t)

E(T β

k |Z = z)

E(T 2β
k |Z = z)

(10)

In order to find out the expectation above, we need the conditional density of Tk
given Z = z. It is given by

knβ α
knβ
i

t knβ+1
k zi knβ

,
αi

zi
≤ tk < ∞, and

αi+1

αi
≤ zi < ∞. (11)

(See also Kumar and Kar [9].
Hence

h∗
β(Z) = kn − 2

kn − 1

(
α j

tαi

)β

zi
β, i 	= j.

If we fix j and vary i such that i 	= j , we have

ĥβ(z) = sup h∗
β(Z) = kn − 2

kn − 1

(
max(z1, . . . , zk−1, 1)

t

)β

also inf h∗
β(z) = 0. (12)

Summarizing the above results the following theorem is concluded immediately.

Theorem 3.1 Let �(Z) be an estimator of R as defined in (5.1), then define an
estimator �∗(Z) by

�∗(Z) =
{

�(Z), if �(Z) < ĥβ(Z),

ĥβ(Z), otherwise.
(13)

Then, �∗(Z) is an improved estimator of �(Z) provided P{�(Z) ≥ ĥβ(Z)} > 0.

Remark 3.1 It can be seen that Theorem 3.1 will also hold good even for the usual
squared error loss function. This is because the proof ofBrewster–Zidek [3] technique
was established on the orbits of Z = z.

Remark 3.2 For n > 2, then the estimator R̂c
J = 1

n

(
T(k)

t

)β
[

c − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

uniformly dominates R̂U
J (t) = 1

n

(
T(k)

t

)β
[

n − 1 − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

for n2−2n−1
n−1 ≤

c < n − 1.

Proof Consider the risk difference RD1 of the above two estimators. So,
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RD1 = E[(R̂U
J (t), RJ )

2 − (R̂c
J (t) − RJ (t))

2]
= E[(R̂U

J (t) + R̂c
J (t))((R̂

U
J (t) − R̂c

J (t)))]
− E[2RJ (t)((R̂U

J (t) − R̂c
J (t)))].

We have R̂U
J (t) + R̂c

J (t) = 1

n

(T(k)

t

)β
[

n − 1 + c − 2
k−1∑

i=1

( Ti
T(k)

)nβ+β
]

,

R̂U
J (t) − R̂c

J (t) = n − 1 + c

n

(T(k)

t

)β

and E[RJ (t)(R̂J (t) − R̂c
J (t))] = 1

tβ
E

[
n − 1 − c

n

k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]

Taking Ui (T ) = Ti
β I (Ti ≥ maxi 	= j Tj ), from Lemma 2.2, we have

E
[ k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]
=

k∑

i=1

E
[
Ti

2β I (Ti ≥ max
i 	= j

Tj )

− βTi
nβ+β

∫ ∞

Ti

I (x ≥ maxi 	= j Tj )

xnβ−β+1 dx
]

= E

[ T 2β
(k)

n − 1

(
n − 2 −

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

. (14)

With the help of (14), we are in a position to compute RD1.

RD1 = 1

tβ

[
n − 1 − c

n2
E

{
T 2β

(k)

(
n − 1 + c − 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)}

− 2
n − 1 − c

n(n − 1)
E

{
T 2β

(k)

(
n − 2 − 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)}]

= 1

tβ
n − 1 − c

n2(n − 1)
E

[

T 2β
(k)

(
1 + 2n − n2 + c(n − 1) + 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

. (15)

We see that for n2−2n−1
n−1 ≤ c < n − 1 andn > 2, then RD1 > 0.Hence the conclusion

follows immediately.

Remark 3.3 The natural estimator R̂∗
J (t) = (

T(k)

t )β is inadmissible.

Proof Consider the counterpart of theUMVUEfor the component problem ˆRAU
J (t) =

n−1
n (

T(k)

t )β . We claim that this estimator dominates uniformly the natural estimator
for n > 2. The risk difference between these two estimators RD2 is given by
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RD2 = E[(R̂∗
J (t), RJ (t))

2 − ( ˆRAU
J (t) − RJ (t))

2]
= E[(R̂∗

J (t) + ˆRAU
J (t))((R̂∗

J (t) − ˆRAU
J (t)))

− E[2RJ (t)((R̂∗
J (t) − ˆRAU

J (t)))]
We have R̂∗

J (t) + ˆRAU
J (t) = 2n − 1

n

(T(k)

t

)β

,

R̂∗
J (t) − ˆRAU

J (t) = 1

n

(T(k)

t

)β

and E[RJ (t)(R̂∗
J (t) − ˆRAU

J (t))] = 1

tβ
E

[
1

n

k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]

Proceeding similarly as above, we have

RD2 = 1

tβ
2n − 1

n2(n − 1)
E

[

T 2β
(k)

(
n + 1 + 2n

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

> 0. (16)

Hence the conclusion follows.

Remark 3.4 The estimator ˆRAU
J (t) = n−1

n (
T(k)

t )β is inadmissible.

Proof For the component problem, let us consider the counterpart of the best scale

equivariant estimator, given by, R̂S
J (t) = n−2

n−1 (
T(k)

t )β . Here also we see that the esti-

mator R̂S
J (t) dominates uniformly ˆRAU

J for n > 2. We compute the risk difference
RD3, which is given by

RD3 = E[(R̂U
J (t), RJ (t))

2 − (R̂S
J (t) − RJ (t))

2]

= 1

tβ
1

n2(n − 1)2
E

[

T 2β
(k)

(
1 + 2n(n − 1)

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

> 0. (17)

Hence the conclusion follows.

Conclusion: Under the mean squared error criterion the estimator R̂S
J dominates

R̂U
J , which once again improves upon the natural estimator R̂∗

J . Hence R̂U
J is pre-

ferred. One should not prefer R̂J unless one is not interested in the class of unbiased
estimators. Also we have R̂c

J which dominates R̂J .


