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1
CO2 Capture – A Brief Review of
Technologies and Its Integration

Mónica García1, Theo Chronopoulos2, and Rubén M.
Montañés3
1International Energy Agency‐ Greenhouse Gas R&D
Programme (IEAGHG), Pure Offices, Hatherley Lane,
Cheltenham, GL51 6SH, United Kingdom
2128/15 Hoxton Street, N1 6SH, London, United
Kingdom
3Energy Technology, Chalmers University of Technology,
Department of Space, Earth and Environment,
Hörsalsvägen 7B, SE‐412 96, Gothenburg, Sweden

1.1 Introduction: The Role of Carbon
Capture
The Intergovernmental Panel for Climate Change (IPCC)
recently released the special report on 1.5C [1] and pointed
out the need to implement all available tools to cut down
CO2 emissions. Energy efficiency, fuel switching,
renewables, and carbon capture represent the largest
impact on CO2 emission reduction in power and industrial
sectors. Carbon capture represents a contribution of 23%
in the “Beyond 2 degrees scenario” (B2DS) modeled by the
International Energy Agency (IEA)1 and has other
interesting characteristics that increase its value beyond its
cost: (i) easiness to retrofit current power plants or
industrial facilities,2 (ii) simplicity to integrate that in the
electricity grid and offer an interesting tool to cover the
intermittency of renewables, (iii) ideal to cut down



industrial process emissions that otherwise cannot suffer
deep reductions, and (iv) current carbon budgets rely on
negative emissions to compensate the use of fossil fuels [1].
Carbon capture combined with bioenergy (BECCS) can
provide negative emissions at large scale in an immediate
future.
CO2 capture (also called CO2 sequestration or carbon
capture) involves a group of technologies aiming to
separate CO2 from other compounds released during the
production of energy or industrial products, obtaining a
CO2‐rich gas that can be stored or used for the obtention of
valuable products. The main classification of CO2 capture
technologies relies on where in the process the CO2
separation occurs. For the power sector, it can be divided
into pre‐, oxy‐, and post‐combustion. For the industrial
sector, the classification is similar, although their
integration would be different. In addition, other new
arrangements are emerging.

1.2 CO2 Capture Technologies
1.2.1 Status of CO2 Capture Deployment
GCCSI reported in 2018 23 large‐scale CCS facilities in
operation or under construction globally, summing up
37 MtCO2 per year. This wide range of facilities shows the
versatility of CO2 capture processes.3

In the power sector, the United States is leading the
implementation deployment, although Europe has the
highest CO2 capture capacity. The Boundary Dam project
(Canada) and Petra Nova (USA) are pioneers in reaching
commercial scale. Moreover, based on the successful
results of the Boundary Dam project, a CO2 capture facility



has been planned for the Shand power facility (Canada),
incorporating not only learnings from the Boundary Dam
but also enhanced thermal integration and tailored design.
The results show a significant cost reduction [2]. Also in
Canada, the Quest project completes the list of Canadian
CCS projects in operation [3] and The National Energy
Laboratory (NET) power project recently appeared in the
United States as a potential significant reduction on CO2
capture costs [4].
In the industrial sector, cement, steel, refining, chemicals,
heavy oil, hydrogen, waste‐to‐energy, fertilizers, and
natural gas have been identified by the Carbon
Sequestration Leadership Forum (CSLF;
https://www.cslforum.org) as the main intensive emitter
industries. As it is highlighted, the Norcem Brevik plant [5,
6], LEILAC [7] (cement production), and Al Redayah (steel
production) are on the way to start running carbon capture
systems in industrial facilities at pilot and large scales.

1.2.2 Pre‐combustion
Pre‐combustion systems can be applied to natural gas
combined cycles (NGCC) or integrated gasification
combined cycle (IGCC) (Figure 1.1), where a syngas,
comprising mainly CO and H2, feeds a gas turbine (GT)
combined cycle system to produce electricity. The potential
advantages are higher conversion efficiencies of coal to
electricity and cheaper removal of pollutants [8]. The
syngas, based on the water shift reaction, can be converted
into CO2 and H2O. This mixture is typically separated with
physical solvents (as described in Section 1.2.4),
membranes, or sorbents. However, hybrid technologies can
also be used. Depending on the technology, further post‐
treatment would be needed to avoid degradation and loss
of efficiency.

https://www.cslforum.org/


The main theoretical advantage of pre‐combustion is the
production of hydrogen, which will add value to the
business model, and a lower energy penalty compared to
using the traditional chemical absorption within a post‐
combustion configuration. However, large projects
demonstrated that this difference is only 1–2%, as reported
by National Energy Technology Laboratory (NETL) [9].
The most notable pre‐combustion project was the Kemper
County IGCC plant in the United States, which stopped its
operation in 2017.This demonstration facility would place
this arrangement at high TRL, while other testing
campaigns would reach up to a TRL of 6. 

Figure 1.1 Diagram of pre‐combustion capture for power
generation in IGCC.

Source: Adapted from Jansen et al. [72].

1.2.3 Oxyfuel
In the oxyfuel process, the air is split into nitrogen and
oxygen, generally using an air separation unit (ASU), for
the combustion of fuel with nearly pure oxygen. The
consequence is a higher flame temperature and a highly
concentrated CO2 stream (60–75%, wet and might contain
impurities and incondensable components) that can be
further purified to meet the final use specifications. The



CO2‐rich gas is typically recirculated to manage the
unstable flame and its high temperature. Nowadays, the
progress on oxyfuel combustion is focused on the reduction
of air separation costs and the enhancement of process
configuration to reduce capture costs. Further information
can be found, for example, in Ref. [10]. Based on the
current progress, the most advanced arrangements can be
assessed as TRL 7.
An advanced oxyfuel process, called the Allam cycle
(Figure 1.2), is being tested at large scale as part of the
NET Power project in the United States [4]. This involves
oxyfuel combustion and a high‐pressure supercritical CO2
working fluid in a highly recuperated Brayton cycle, aiming
to reduce CO2 capture costs and prove stable operation.
Based on that, there is a potential to progress to a TRL of 7
once the facility is fully operational.

1.2.4 Post‐combustion
Post‐combustion refers to the group of technologies able to
separate CO2 from the flue gas emitted during the fuel
combustion and/or other reactions in the industrial sector.
This indicates that those systems are mainly installed as
additional equipment downstream in new plants or during
the retrofitting of the existing facilities. The latter
represents the main advantage of post‐combustion
technologies compared to pre‐ or oxy‐combustion, as a
fundamental redesign or complex integration with the
existing facilities would be minimal.



Figure 1.2 Process schematic of a simplified commercial
scale natural gas Allam cycle.

Source: Adapted from Allam et al. [4].

1.2.4.1 Adsorption
Adsorption refers to the uptake of CO2 molecules onto the
surface of another material. Based on the nature of
interactions, adsorption can be classified into two types: (i)
physical adsorption and (ii) chemical adsorption. In
physical adsorption, the molecules are physisorbed because
of physical forces (dipole–dipole, electrostatic, apolar,
hydrophobic associations, or van der Waals) and the bond
energy is 8–41  kcal  mol−1, while in chemical adsorption, the
molecules are chemisorbed (chemical bond; covalent, ionic,
or metallic) and the bond energy is about 60–418  kcal  mol−1

[11].
A theoretical advantage of adsorption against other
processes is that the regeneration energy should be lower
compared to absorption because the heat capacity of a
solid sorbent is lower than that of aqueous solvents.
However, other parameters, such as working capacity and


