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1

CO2 Capture – A Brief Review of Technologies and Its
Integration
Mónica García1, Theo Chronopoulos2, and Rubén M. Montañés3

1International Energy Agency- Greenhouse Gas R&D Programme (IEAGHG), Pure Offices, Hatherley Lane,
Cheltenham GL51 6SH, United Kingdom
2128/15 Hoxton Street, N1 6SH, London, United Kingdom
3Energy Technology, Chalmers University of Technology, Department of Space, Earth and Environment,
Hörsalsvägen 7B, Gothenburg SE-412 96, Sweden

1.1 Introduction: The Role of Carbon Capture

The Intergovernmental Panel for Climate Change (IPCC) recently released the spe-
cial report on 1.5C [1] and pointed out the need to implement all available tools
to cut down CO2 emissions. Energy efficiency, fuel switching, renewables, and car-
bon capture represent the largest impact on CO2 emission reduction in power and
industrial sectors. Carbon capture represents a contribution of 23% in the “Beyond
2 degrees scenario” (B2DS) modeled by the International Energy Agency (IEA)1

and has other interesting characteristics that increase its value beyond its cost: (i)
easiness to retrofit current power plants or industrial facilities,2 (ii) simplicity to
integrate that in the electricity grid and offer an interesting tool to cover the inter-
mittency of renewables, (iii) ideal to cut down industrial process emissions that
otherwise cannot suffer deep reductions, and (iv) current carbon budgets rely on
negative emissions to compensate the use of fossil fuels [1]. Carbon capture com-
bined with bioenergy (BECCS) can provide negative emissions at large scale in an
immediate future.

CO2 capture (also called CO2 sequestration or carbon capture) involves a group of
technologies aiming to separate CO2 from other compounds released during the pro-
duction of energy or industrial products, obtaining a CO2-rich gas that can be stored
or used for the obtention of valuable products. The main classification of CO2 cap-
ture technologies relies on where in the process the CO2 separation occurs. For the
power sector, it can be divided into pre-, oxy-, and post-combustion. For the indus-
trial sector, the classification is similar, although their integration would be different.
In addition, other new arrangements are emerging.

1 https://www.iea.org/etp/explore/ (visited in January 2019).
2 Under specific arrangements.
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1.2 CO2 Capture Technologies

1.2.1 Status of CO2 Capture Deployment

GCCSI reported in 2018 23 large-scale CCS facilities in operation or under construc-
tion globally, summing up 37 MtCO2 per year. This wide range of facilities shows the
versatility of CO2 capture processes.3

In the power sector, the United States is leading the implementation deployment,
although Europe has the highest CO2 capture capacity. The Boundary Dam project
(Canada) and Petra Nova (USA) are pioneers in reaching commercial scale. More-
over, based on the successful results of the Boundary Dam project, a CO2 capture
facility has been planned for the Shand power facility (Canada), incorporating not
only learnings from the Boundary Dam but also enhanced thermal integration and
tailored design. The results show a significant cost reduction [2]. Also in Canada, the
Quest project completes the list of Canadian CCS projects in operation [3] and The
National Energy Laboratory (NET) power project recently appeared in the United
States as a potential significant reduction on CO2 capture costs [4].

In the industrial sector, cement, steel, refining, chemicals, heavy oil, hydrogen,
waste-to-energy, fertilizers, and natural gas have been identified by the Carbon
Sequestration Leadership Forum (CSLF; https://www.cslforum.org) as the main
intensive emitter industries. As it is highlighted, the Norcem Brevik plant [5, 6],
LEILAC [7] (cement production), and Al Redayah (steel production) are on the way
to start running carbon capture systems in industrial facilities at pilot and large
scales.

1.2.2 Pre-combustion

Pre-combustion systems can be applied to natural gas combined cycles (NGCC)
or integrated gasification combined cycle (IGCC) (Figure 1.1), where a syngas,
comprising mainly CO and H2, feeds a gas turbine (GT) combined cycle system to
produce electricity. The potential advantages are higher conversion efficiencies of
coal to electricity and cheaper removal of pollutants [8]. The syngas, based on the
water shift reaction, can be converted into CO2 and H2O. This mixture is typically
separated with physical solvents (as described in Section 1.2.4), membranes, or sor-
bents. However, hybrid technologies can also be used. Depending on the technology,
further post-treatment would be needed to avoid degradation and loss of efficiency.

The main theoretical advantage of pre-combustion is the production of hydrogen,
which will add value to the business model, and a lower energy penalty compared to
using the traditional chemical absorption within a post-combustion configuration.
However, large projects demonstrated that this difference is only 1–2%, as reported
by National Energy Technology Laboratory (NETL) [9].

The most notable pre-combustion project was the Kemper County IGCC plant in
the United States, which stopped its operation in 2017.This demonstration facility

3 The Global Status of CCS, GCCSI 2018 https://indd.adobe.com/view/2dab1be7-edd0-447d-
b020-06242ea2cf3b.

https://www.cslforum.org
https://indd.adobe.com/view/2dab1be7-edd0-447d-b020-06242ea2cf3b
https://indd.adobe.com/view/2dab1be7-edd0-447d-b020-06242ea2cf3b
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Figure 1.1 Diagram of pre-combustion capture for power generation in IGCC. Source:
Adapted from Jansen et al. [72].

would place this arrangement at high TRL, while other testing campaigns would
reach up to a TRL of 6.

1.2.3 Oxyfuel

In the oxyfuel process, the air is split into nitrogen and oxygen, generally using an
air separation unit (ASU), for the combustion of fuel with nearly pure oxygen. The
consequence is a higher flame temperature and a highly concentrated CO2 stream
(60–75%, wet and might contain impurities and incondensable components) that
can be further purified to meet the final use specifications. The CO2-rich gas is typi-
cally recirculated to manage the unstable flame and its high temperature. Nowadays,
the progress on oxyfuel combustion is focused on the reduction of air separation
costs and the enhancement of process configuration to reduce capture costs. Further
information can be found, for example, in Ref. [10]. Based on the current progress,
the most advanced arrangements can be assessed as TRL 7.

An advanced oxyfuel process, called the Allam cycle (Figure 1.2), is being tested
at large scale as part of the NET Power project in the United States [4]. This involves
oxyfuel combustion and a high-pressure supercritical CO2 working fluid in a highly
recuperated Brayton cycle, aiming to reduce CO2 capture costs and prove stable
operation. Based on that, there is a potential to progress to a TRL of 7 once the facility
is fully operational.

1.2.4 Post-combustion

Post-combustion refers to the group of technologies able to separate CO2 from the
flue gas emitted during the fuel combustion and/or other reactions in the industrial
sector. This indicates that those systems are mainly installed as additional equip-
ment downstream in new plants or during the retrofitting of the existing facilities.
The latter represents the main advantage of post-combustion technologies compared
to pre- or oxy-combustion, as a fundamental redesign or complex integration with
the existing facilities would be minimal.
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1.2.4.1 Adsorption
Adsorption refers to the uptake of CO2 molecules onto the surface of another
material. Based on the nature of interactions, adsorption can be classified into two
types: (i) physical adsorption and (ii) chemical adsorption. In physical adsorption,
the molecules are physisorbed because of physical forces (dipole–dipole, electro-
static, apolar, hydrophobic associations, or van der Waals) and the bond energy
is 8–41 kcal mol−1, while in chemical adsorption, the molecules are chemisorbed
(chemical bond; covalent, ionic, or metallic) and the bond energy is about
60–418 kcal mol−1 [11].

A theoretical advantage of adsorption against other processes is that the regener-
ation energy should be lower compared to absorption because the heat capacity of
a solid sorbent is lower than that of aqueous solvents. However, other parameters,
such as working capacity and heat of adsorption, should also be considered [12].
The higher the heat of adsorption, the stronger the interaction between the CO2
molecules and adsorbent-active sites and thus the higher the energy demand for
the regeneration. The potential disadvantages for adsorbents include particle attri-
tion, handling of large volumes of sorbents, and thermal management of large-scale
adsorber vessels.

Solid sorbents can be classified according to the temperature range where
adsorption is performed. Low-temperature solid adsorbents (<200 ∘C) include
carbon-based, zeolite-based, metal–organic framework (MOFs)-based, several
alkali metal carbonate-based, and amine-based solid adsorbents. Intermediate-
temperature (200–400 ∘C) solid adsorbents include hydrotalcite-like compounds or
anionic clays, while high-temperature (>400 ∘C) sorbents refer to calcium-based
adsorbents and several alkali ceramic-based adsorbents.

Usually, adsorption takes place in packed or fluidized beds, as can be seen in
Figure 1.3. For the packed bed case, the adsorbent is loaded into a column, the
flue gas flows through the void spaces between the adsorbent particles, and CO2
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Figure 1.3 The adsorption process: (a) difference of physisorption and chemisorption, (b) a
packed bed configuration, and (c) a fluidized bed configuration. Source: Adapted from
Global CCS Institute (https://www.globalccsinstitute.com/archive/hub/publications/29721/
co2-capture-technologies-pcc.pdf).
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Figure 1.4 Comparison of TSA and PSA for the regeneration of solid adsorbents. H = high;
L = low. Source: Adapted from Rackley [73].

gets adsorbed onto the surface of the particles. In fluidized beds, the flue gas flows
upward through a column above the minimum fluidization velocity and the adsor-
bent particles are as such suspended in the gas flow. Regardless of the process config-
uration, the adsorbent selectively adsorbs CO2 from the flue gas and is subsequently
regenerated to complete the cyclic adsorption process.

Cyclic adsorption processes alternate between the adsorption and desorption
modes of operation. Based on the intensive variable that is cycled, the adsorption
processes are broadly classified as pressure swing adsorption (PSA) or temperature

https://www.globalccsinstitute.com/archive/hub/publications/29721/co2-capture-technologies-pcc.pdf
https://www.globalccsinstitute.com/archive/hub/publications/29721/co2-capture-technologies-pcc.pdf
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swing adsorption (TSA), as can be seen in Figure 1.4. If the cycle switches between
adsorption at atmospheric pressure and desorption under vacuum, then it is called
vacuum swing adsorption (VSA). Pressure vacuum swing adsorption (PVSA)
cycles have an adsorption step above atmospheric pressures and desorption under
vacuum [13].

In a packed bed configuration, regeneration is accomplished by heating the
CO2-loaded adsorbent to liberate CO2. During this time, the flue gas is diverted to
a second packed bed, which continues to adsorb CO2 from the gas. By alternating
the flue gas between two packed beds that alternatively undergo absorption and
regeneration in a cycle, CO2 can be continually removed from the flue gas. In a
fluidized bed, the sorbent is circulated between an absorber vessel where it contacts
the flue gas and a regenerator vessel where it is heated to liberate gaseous CO2.

Usually, the PSA process is preferred to other cyclic operations when the pro-
cess is carried out at elevated pressures. Otherwise, when the concentration of the
adsorbate is low (0–15 vol%), or when the process is at low pressure, other options
such as TSA may need to be considered. For a low-concentration adsorbate, the PSA
technology may result in a much longer desorption step, whereas for low-pressure
processes, the installation should also include additional vacuum pumps and com-
pressors, both resulting in a more complicated process, increased capital cost, and
reduced efficiency [8]. A potential option that could overcome these issues is vacuum
pressure swing adsorption (VPSA).

TSA can work both for low and elevated pressures; however, it is usually preferred
when the adsorption step is carried out at a low temperature. Consequently, the
main advantage of TSA over PSA is its ability to separate efficiently strong-bonded
adsorbates onto adsorbents, as for the case of chemisorption. However, a major
drawback of TSA is the high energy intensity of the desorption process compared to
PSA. Other alternatives to TSA include microwave swing adsorption (MSA) [14] and
electric swing adsorption (ESA) [15] that could offer potential energy savings and
faster heating rates; however, these technologies are still at low technology readiness
level (TRL).

Generally, TSA is usually preferred for post-combustion CO2 capture at low
temperature and atmospheric pressure, while PSA usually is the right choice for
pre-combustion CO2 capture at elevated temperatures, as in the case for an IGCC
plant configuration. As a post-combustion arrangement, PSA and TSA are assessed
as TRL 6.

Adsorption equilibria, kinetics, and regeneration ability are key factors to evaluate
the performance of an adsorbent. Fast adsorption/desorption kinetics, influenced by
functional groups present, as well as the pore size and distribution in the support,
are essential for an efficient CO2 adsorption process and control of the cycle time
and the required amount of adsorbent. Other selection criteria include high CO2
selectivity, mechanical strength after multi-cycling, chemical stability/tolerance to
impurities, high availability, and, lastly, low costs.
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Figure 1.6 Chemical looping combustion. MexOy/MexOy−1 denotes the recirculation
oxygen carrier material. Source: Adapted from Abanades et al. [17]. © Elsevier.

1.2.4.2 High-Temperature Solids Looping Technologies
The most common types of high-temperature solids looping technologies are cal-
cium and chemical looping combustion. Calcium looping uses CaO as a sorbent,
which produces CaCO3 at approximately 650 ∘C (Figure 1.5). Chemical looping is
a two-step conversion process where the fuel reacts with almost pure O2 as in the
oxyfuel process, while a metal oxide acts as an oxygen carrier and reacts with the
fuel, obtaining CO2 and water (Figure 1.6). In both cases, the metal oxide or CaO is
regenerated.

Note that calcium looping can be considered as post-combustion or pre-
combustion, while chemical looping can be considered as oxy-combustion or
pre-combustion depending on the configuration [16].

Because of the high operation temperature, the advantage of this process is the
potential recovery of energy for steam production, which can be used for additional
power production and reduce the efficiency penalty in the power plant.
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Calcium looping has shown a significant evolution over the past 15 years from
lab scale to pilot testing, reaching a TRL of 6. The main research focus to cut
down the costs over the next years is on the sorbent, reactors (configurations and
interconnections), and process designs [17]. If used in the industrial sector, calcium
looping can be beneficially integrated in the cement production facility because
of the use of solids from the capture system in the production. In this regard,
the CLEANKER project aims to scale up a calcium looping process in a cement
production environment, which will increase the TRL of this technology up to 7.4

Chemical looping has reached a TRL of 6 as oxyfuel arrangement while a TRL of 3
as pre-combustion system. The main research areas on chemical looping are focused
on the reactor design, oxygen carrier development, and prototype testing. Moreover,
more than a thousand materials have been tested at the laboratory scale. At a larger
scale (0.3–1 MW), the accumulated operational experience is more than 7000 hours
[17]. A detailed review of the main process routes under development within the
chemical looping systems is included in Ref. [17].

1.2.4.3 Membranes
Membranes are porous structures able to separate different gases at different
rates because of their different permeation [8]. These can be used not only in
post- and pre-combustion processes but also in oxyfuel for oxygen separation.
In post-combustion, the main interest in these systems is their low energy
requirements compared to the traditional chemical absorption process.

The energy needs are reduced to those from the compressor and vacuum pump.
Moreover, membrane systems are easy to start and operate, have no emissions associ-
ated, and are modular, offering installation advantages [8]. However, the separation
mechanism of membranes is based on the difference of CO2 partial pressure. In
post-combustion, because of the relative low CO2 concentration in the flue gas to

Feed

Compressor Heat exchanger

Heat exchanger

Membrane

Retentate

Vaccum pump

Permeate

Figure 1.7 Scheme of a single-stage membrane system. Source: Adapted from Mores et al.
[18].

4 http://www.cleanker.eu.

http://www.cleanker.eu
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Table 1.1 Advantages of each type of membrane [21].

Type of membrane Advantages

Ceramic Good selectivity–permeability
Easier to manufacture larger areas

Polymeric Good thermal stability and mechanical strength
Hybrids Aiming to show the advantages of both ceramic and

polymeric membranes

Source: Adapted from Wang et al. [21].

be treated (approximately 4–12% for power plants), this driving force would not be
enough to achieve high CO2 capture ratios through simple configurations. How-
ever, membranes could offer advantages for partial capture arrangements and gen-
erally more complex arrangements are used to reach a full capture rate (90%). In
pre-combustion, because of the higher partial pressure of CO2 in the gas to be treated,
membranes can be more effective. In any case, the gas containing CO2 must be
cooled down to meet the temperature limitations of the membrane [18] and that
could be a drawback (Figure 1.7).

There are two main characteristics to define a membrane material for CO2 capture:
permeability, which will impact on the CO2 separation ratio and selectivity, which
will define the CO2 concentration in the output gas. From a techno-economic per-
spective, the optimum values for selectivity and permeability would be a function
of the gas to be treated, as studied in Ref. [19]. The ratio of the permeability to the
thickness of the membrane will be of high importance as that will characterize the
permeance (commonly measured as gas permeation units [GPU]). To maximize the
permeance without impacting the mechanical stability, the membranes are typically
a dense layer supported by a porous layer [20].

The membrane materials can be divided into ceramic, polymeric, and hybrid
(Table 1.1). Moreover, the design of the membrane-based system will be a key factor
on the separation process. Firstly, the membrane module will be the key factor. The
main modules for polymeric membranes are described as a spiral wound, a hollow
fiber, and an envelope [21].

The majority of the membranes used currently for post-combustion are based
on polymeric materials [20], and a large list of polymers have been studied in the
literature, including polyimides, polysulfones, and polyethylene oxide. The most
advanced processes have reached currently a TRL of 6. Because of the modularity
membranes offer, although sometimes predicted, it is not clear if there will be a fast
development toward higher TRLs [21].

1.2.4.4 Chemical Absorption
The basic configuration of chemical absorption (Figure 1.8) includes the reaction of
a liquid solvent with CO2 in a column called absorber at a relatively low temperature,
40–60 ∘C, and its desorption in another column called desorber or stripper, generally
at a high temperature, 100–140 ∘C. It must be noted that process modifications and
solvent enhancements might modify those process conditions.
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The absorption of CO2 into liquid solvents takes place by three phenomena: chem-
ical reaction, physical absorption, and diffusivity. Depending on the compound and
the conditions, one phenomenon will be predominant over the others.

Chemical solvents are more attractive candidates for typical post-combustion pro-
cesses, with relatively low partial pressures of CO2 (10–15% in coal power plants and
4–8% for gas-fired power plants). Chemical absorption follows a standard configura-
tion such as in Figure 1.8. However, new configurations have appeared to enhance
the process, increase the efficiency, and/or decrease the capture costs.

Chemical absorption with amines is by far the most advanced carbon capture pro-
cess and the only one that reached a TRL of 9 [2]. The most tested solvent is aqueous
monoethanolamine (MEA) solution, although it does not represent any more the
benchmark solution as consolidated alternatives show enhanced properties. Two
large-scale facilities have used enhanced systems, the Boundary Dam Capture plant
[2] and Petra Nova. One of the main pathways to get more efficient chemical absorp-
tion processes and cut down costs is the development of new solvents. However,
many solvents are emerging and only few have been tested at large scale, maintain-
ing the TRL of other new systems still low. A review of commercial solutions and
relevant projects can be found, for example, in Ref. [22]. The main criteria for the
selection of a solvent are included in Table 1.2.

Primary amines are of high interest because of their fast reaction with CO2. How-
ever, the main drawback is their high energy consumption for the solution regener-
ation. Several alternatives are emerging to decrease such penalty, the most common
one being the use of tertiary amines. However, the CO2 absorption in tertiary amines
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Table 1.2 Desired solvent properties and its impact on the absorption process [75].

Solvent property Impact on the absorption process

High capacity and low heat of
absorption

It is linked to the energy requirements
per ton of CO2, but the absorption
capacity is connected to heat
(thermodynamics) and independent
variation is limited

High mass transfer and chemical
kinetics

It reduces equipment size or the
capacity by operating near the
equilibrium limit

Low viscosity It reduces the pumping costs and
potentially increases the mass transfer
and the heat transfer rate

Low degradation tendency It reduces the solvent make-up and the
regenerator can operate at higher
pressure/temperature, increasing the
thermal efficiency

Low toxicity/environmentally
friendly

It becomes more important if toxic
by-products are released during
volatility losses

Cost and availability It will impact on reaching commercial
scale

Low fouling tendency It will impact on the operation

Source: Adapted from Mathias et al. [75].

is much slower. Consequently, other alternatives are emerging, such as the use of
blends combining primary and tertiary amines (commonly called “promoted ter-
tiary amines” or “activated tertiary amines”). Numerous alternatives have emerged
during the past years; perhaps it is difficult to establish the best alternative.

A potential substitute of traditional solvents is the use of compounds that, at
unloaded or loaded conditions, separate into two phases, called biphasic solvents.
There are two types of biphasic solvents, namely, liquid–liquid or solid–liquid,
depending on the phases in solution. The main advantage is that only one phase
needs to be regenerated, and consequently, the stripper size is reduced, and the
energy consumption is potentially lower. Consequently, numerous biphasic solvents
have been studied in the literature (e.g. in Ref. [23]).

Another strategy is to add enzymes, such as carbonic anhydrase (CA) [24]. CA
increases the kinetic constant of the absorption of CO2 in aqueous amine and dilute
carbonate solutions by catalyzing the CO2 hydration. The impact will depend on
the compounds in solution, as the regeneration of the enzyme regeneration rate will
vary. The challenges enzymes offer are their pH and thermal stability, lifetime, and
sensitivity to pollutants such as SOx and NOx.

At lower development stage, solvents can be encapsulated in thin polymer shells
and be considered as a bed of capsules containing the solvent. Capsules must be per-
meable enough to allow carbon dioxide to get in contact with the solvent but strong
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enough to resist the high regeneration temperatures during a number of cycles [25].
The benefit of this configuration is to increase the surface area of the solvent in con-
tact with the flue gas and avoid issues related to viscosity and precipitation.

Recently, ionic liquids (ILs) are of great interest. These are composed of ions and
are at liquid state below 100 ∘C. If the melting point is below the room tempera-
ture, these are referred as room temperature ionic liquids (RTILs). These solvents
are recognized by their low vapor pressure, high thermal and chemical stability,
nonflammability, and high viscosity. These properties open new possibilities for the
solvent regeneration at different pressures and temperatures, which can be opti-
mized accordingly. Some ILs show a high absorption capacity, although the viscosity
could be decremental for the mass transfer.

Physical solvents are characterized for the high physical solubility of CO2 in these
and are especially interesting for flue gas with high CO2 content [26]. There are
commercial processes based on this principle, such as Rectisol®, Selexol®, Purisol®,
Morphysorb®, and Fluor®, particularly effective at high concentrations of acid gas,
high pressure, and low temperature [27] and are characterized by their low vapor
pressure, low toxicity, and low corrosion [15].

An emerging pathway is the use of hybrid solvents, solutions containing amine/s
and organic compound/s with or without the presence of water, the former called as
water-lean solvents. The goal is to maintain an enhanced physical absorption by sub-
stituting partial/totally the water content and maintaining a considerable chemical
reaction by keeping the amine in the solution. It is known that at low concentration
of the amine(s), the physical solubility plays an important role and the diffusivity can
also become an important factor in viscous solutions. The enhanced solubility of CO2
in organic solvents, compared to water, has been widely studied in the past [28–31],
and this presents advantages in its application in chemical absorption. During the
desorption, the main energy penalty is due to the water evaporation. Decreasing the
water content will decrease this energy penalty. Partial and total substitution of water
by organic solvents has been considered as an alternative to decrease the steam con-
sumption in the desorber. However, as studied in Ref. [32], the absorption kinetics
would just be favorable, compared with aqueous amine solutions, at certain condi-
tions of pressure and temperature in the absorber. The total substitution of water
in water-lean solvents will limit the reactions that take place in solution: hydroly-
sis will not occur and the carbamate and bicarbamate ions will be nonexistent [33].
However, the net benefit in the energy consumption when using water-lean solvents
is not yet clear, as discussed in Ref. [34].

1.2.4.4.1 Advances on Process Configurations
As mentioned previously, chemical absorption is the most advanced technology,
reaching commercial status (TRL 9). However, there are still barriers that slow down
its application in industrial and power sectors. Cost is one of the challenges to over-
come and energy consumption has a strong contribution. The development of new
solvents and improvements on the process flow sheet and/or its integration in the
industrial or power facility could reduce this energy consumption.
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The common process modifications can be divided as in Ref. [35]: (i) absorption
enhancement, (ii) heat integration, and (iii) heat pumps. Perhaps these can also
be classified by their purpose, as in Ref. [36]: (i) increase of rich solvent load-
ing, (ii) reduction of the specific reboiler duty, or (iii) combination of both. The
enhancement on the absorption and desorption processes and its impact on costs
will depend on other factors such as the solvent and the facility. The modifications
on the stripper to reduce energy consumption are being considered for the next
generation of post-combustion processes’ configurations with advanced solvents
(e.g. as in Ref. [37]).

1.2.5 Others CO2 Capture/Separation Technologies

Other CO2 capture/separation technologies such as electrochemical, cryogenic sep-
aration, liquefaction, microbial/microalgae, or direct air separation are described in
the literature.

Hybrid technologies have been studied in the past years, aiming to achieve higher
capture rates and/or sum up the advantages of each CO2 capture technology. The
hybrid processes can be classified into absorption-based, adsorption-based,
membrane-based, and cryogen-based hybrid processes. The integration of
membranes into the absorption process (such as in the membrane contractor
arrangement), catalysis process, and cryogenic process has progressed over the past
years. However, the majority of the results are based on simulations or small-scale
testing campaigns, and the real value of using two technologies is not clear [38].

Within the range of emerging technologies, electrochemical separation has had
a fast development over the past years and, potentially, will continue in this path-
way. The following Section 1.2.5.1 will be focused on fuel cells because of the grow-
ing expectation on this electrochemical separation technology for its integration in
power plants.

1.2.5.1 Fuel Cells
Fuel cells convert chemical energy of a gaseous fuel directly into electricity and
heat. The fuel is oxidized electrochemically, which leads to lower exergy losses com-
pared to direct combustion. In general, fuel cells are classified by the electrolyte
material and their operating temperature (Figure 1.9). Low-temperature fuel cells
(100–250 ∘C) include alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs),
and proton exchange membrane fuel cells (PEMFCs), while high-temperature fuel
cells (600–900 ∘C) refer to Molten carbonate fuel cells (MCFCs) and solid oxide fuel
cells (SOFCs). Because of the high temperature at which MCFCs and SOFCs operate,
natural gas reformation and the subsequent shift reaction can be performed in the
fuel cell itself. MCFCs and SOFCs are most appropriate for stationary power produc-
tion at scales ranging from a few hundred kilowatts up to a few megawatts because
of their high electrical efficiencies and the ability for cogeneration of electricity and
heat [39]. Moreover, SOFCs and MCFCs are more fuel flexible and are not poisoned
by carbon monoxide and carbon dioxide.
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Figure 1.9 Two main options for CO2 capture using fuel cells. (a) The FC oxidizes a fuel
taking oxygen from air and later separating CO2 from the anode effluent. (b) The MCFC
concentrates the CO2 in flue gas from a conventional power plant from the cathode inlet to
the anode outlet, while also oxidizing a portion of additional fuel. Source: Adapted from
[11].

When MCFCs/SOFCs are fueled with natural gas or syngas, CO2 capture can be
implemented at different points, for example, after the fuel cell (“post-anode cap-
ture”). Alternatively, H2 can be produced by reforming/partial oxidation of natural
gas or coal gasification upstream the fuel cell and CO2 can be removed after syngas is
shifted by means of physical solvents, membranes, or adsorbents – “pre-anode CO2
capture,” similar to pre-combustion.

Fuel cells generally operate with an approach that is similar to the “oxyfuel”
concept, oxidizing fuel with oxygen extracted from air while generating power
and releasing concentrated effluents at the anode outlet (Figure 1.9). This kind
of power cycles generally require an integration with custom-tailored gas turbine
cycles, often operating at unconventional turbine inlet temperatures and pressure
ratios, either using natural gas as a fuel or coal through integrated gasification
fuel cell (IGFC) concepts. Because most fuel is oxidized in the fuel cell to allow a
high CO2 capture efficiency, the fuel cell (FC) generates the majority of the cycle
power output. The alternative option offered by MCFCs is shown at the bottom of
Figure 1.9, where the fuel cell can operate “draining” CO2 from the cathode inlet
stream, receiving the flue gases of a conventional power plant. In this configuration,
the fuel cell operates with a post-combustion approach, although also oxidizing a
minor portion of additional fuel with the same “oxyfuel” features discussed above.

The parameters affecting the selection of operating conditions of the SOFC/MCFC
are stack size, heat transfer rate, voltage output and cell life, load requirement, and


