

BEGINNING
RUST PROGRAMMING

INTRODUCTION . xix

CHAPTER 1 Game of Life: The Basics . 1

CHAPTER 2 Extended Life . 27

CHAPTER 3 Building a Library . 49

CHAPTER 4 Hangman . 71

CHAPTER 5 In Concurrence . 97

CHAPTER 6 Clients and Servers . 121

CHAPTER 7 Client-Side Applications . 141

CHAPTER 8 Going Relational . 165

CHAPTER 9 No(SQL) Going . 191

CHAPTER 10 Web Communications . 215

CHAPTER 11 Web Server . 241

CHAPTER 12 Getting to the System . 265

CHAPTER 13 Device Programming . 291

CHAPTER 14 Collecting Stuff . 321

CHAPTER 15 Odds and Sods . 347

INDEX . 375

BEGINNING

Rust® Programming

BEGINNING

Rust® Programming

Ric Messier

Beginning Rust® Programming

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-71297-8
ISBN: 978-1-119-71298-5 (ebk)
ISBN: 978-1-119-71287-9 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley
.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020937958

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Rust is a registered trademark of Mozilla Corporation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ABOUT THE AUTHOR

RIC MESSIER is an author, consultant, and educator who holds CCSP, GCIH, GSEC, CEH, and CISSP
certifications and has published several books on information security and digital forensics. With dec-
ades of experience in information technology and information security, Ric has held the varied roles
of programmer, system administrator, network engineer, security engineering manager, VoIP engineer,
consultant, and professor. He is currently a Principal Consultant with FireEye Mandiant.

ABOUT THE TECHNICAL EDITOR

JESSICA ROCCHIO has been in the information technology industry for over a decade and is currently
an incident response consultant at Mandiant. Over the last few years, she has worked with various
programming languages. She has spent most of her career in incident response, forensics, intelligence,
insider threats, and vulnerability management. Jessica has worked on a wide range of incidents,
including espionage, cybercrime, fraud, data theft, and insider threats.

ACKNOWLEDGMENTS

Without my tech editor, Jessica, and my project editor, Kim, I might not have made it through this
book, so many thanks to them!

CONTENTS

INTRODUCTION xix

CHAPTER 1: GAME OF LIFE: THE BASICS 1

Game of Life: The Program 2
Starting with Cargo 4
Putting the Pieces Together 5

Bringing In External Functionality 5
Namespaces 6

Generating the Game Grid 7
Dissecting Main 8

Defining Functions 8
Defining Variables 9

Datatypes 11
Arrays 12

Control Structures 14
Looking at More Function Functions 16

Returning Values 16
Passing Parameters 18

Scope 21
Compiling Programs 22
Summary 24
Exercises 25
Additional Resources 25

CHAPTER 2: EXTENDED LIFE 27

Understanding Ownership 28
Extending Life 30

Adding Modules 32
Working with Command-Line Arguments 34

Option Types 36
Reading from Files 39

Extracting Values 41
Populating from the Vector 42

Outputting to the Terminal 43
Using Colors 44
Printing Generations 44

COnTEnTS

xiv

Summary 46
Exercises 48
Additional Resources 48

CHAPTER 3: BUILDING A LIBRARY 49

References 50
First Pass 53

Traits and Implementations 56
Self-Identification 60
The Rest 60

Second Pass 62
The Driver 65

Summary 67
Exercises 69
Additional Resources 69

CHAPTER 4: HANGMAN 71

Our Data 74
The Traits 77
Implementations 79
Using the Option Enum 82
Finishing Up the Implementation 83

Reading Files and Selecting Words 84
Handling Errors Concisely 85
Generics and Bounds 87
A Vector of Lines 88

The Rest of the Story 90
Initialization 91
Playing the Game 92

Summary 94
Exercises 95
Additional Resources 95

CHAPTER 5: IN CONCURRENCE 97

The Dining Philosophers 98
Mutexes and Semaphores 101
Interprocess Communications 103

The Main Event 106
Unix Sockets 107
File and Directory Handling 109
Closures 112

COnTEnTS

xv

Threading in the Main 114
Creating Streams 115
Cryptographic Hashing 116
Creating Threads 117

Summary 118
Exercises 119
Additional Resources 119

CHAPTER 6: CLIENTS AND SERVERS 121

Planning 123
network Programming 125

Programming Sockets 128
Rust TCP Server 131

Handling Requests 134
Operating System Calls 137

Summary 139
Exercises 140
Additional Resources 140

CHAPTER 7: CLIENT-SIDE APPLICATIONS 141

Encryption 142
Encryption Algorithms 144
Going Hybrid 145
Encryption Algorithms 147
Transport Layer Security (TLS) 147
TLS Server 151

Remote Access Client 154
Creating the Connection 156
Validating Input 157
Regular Expressions 157
The Final Function 159

Summary 163
Exercises 164
Additional Resources 164

CHAPTER 8: GOING RELATIONAL 165

Application Architectures 166
n-Tier Applications 167
Microservices 169
Model-View-Controller 171

COnTEnTS

xvi

Databases 172
Structured Query Language 172
Server or Embedded 175
Accessing Databases 176

Writing a Database Program 177
Main and Modules 178
Database Functions 183

Adding Records 184
Listing Records 186

Summary 189
Exercises 190
Additional Resources 190

CHAPTER 9: NO(SQL) GOING 191

Assertions 192
Design by Contract 195

noSQL 198
Working with MongoDB 202

Inserting Data 202
Reading in Data from a File 206
Populating the Database 207
Retrieving Values 209

Summary 213
Exercises 214
Additional Resources 214

CHAPTER 10: WEB COMMUNICATIONS 215

Style Guides 216
Hypertext Transfer Protocol 219

Programmatic Communication 222
Web Communication Over TLS 227

Client Communication 229
Jumping Ahead 232
Jumping Back 237

Summary 238
Exercises 239
Additional Resources 240

COnTEnTS

xvii

CHAPTER 11: WEB SERVER 241

Offensive vs. Defensive Programming 242
Web Application Communications 245

Web Application Parameters 245
Asynchronous JavaScript and XML 248
Representational State Transfer 249

APIs in Node.js and Python 250
API Server in Rust 252

Rust Rocket 255
Summary 262
Exercises 262
Additional Resources 263

CHAPTER 12: GETTING TO THE SYSTEM 265

Extending Functionality 266
Windows Registry 272

Programmatic Access to the Registry 275
Using Rust to Access the Registry 277

System Information with Rust 282
Persistence (for Fun) 287
Summary 289
Exercises 290
Additional Resources 290

CHAPTER 13: DEVICE PROGRAMMING 291

Logging 292
Using syslog 292
Using Windows Event Logs 299

Working with Raspberry Pi 305
Lighting Lights 310
Reading GPIO 315

Summary 318
Exercises 319
Additional Resources 319

CHAPTER 14: COLLECTING STUFF 321

Arrays and Vectors 322
Linked Lists 329

Stacks 333

COnTEnTS

xviii

Queues 336
Sorting 337

Search Trees 340
Summary 345
Exercises 346
Additional Resources 346

CHAPTER 15: ODDS AND SODS 347

Unit Testing 348
Testing Types 350
Test Plans 351
Unit Tests 353

Recursion 360
Machine Learning 364

Chatbots 366
Neural Networks 369

Summary 371
Exercises 373
Additional Resources 373

INDEX 375

INTRODUCTION

Save me from another “hello, world” book. Don’t make me have to skim or skip through a half dozen
chapters before I can get to something that’s going to be useful to me. Or you, in this case. I can’t tell
you the number of programming books I’ve purchased over the decades, hoping to actually learn the
language, only to end up just not using the book because it wasn’t presented in a way that made a lot
of sense to me. Instead of a dry explanation of how the language is constructed so you can try to put
it all together in meaningful ways yourself, the purpose of this book is to jump straight into writing
hopefully interesting or useful programs. Once we have the program, we can take a look at how it’s
constructed. You’ll be learning by doing—or learning by example, if you prefer. I hope you’ll find this
a more useful and practical way of learning Rust.

Rust is an interesting language, as it turns out. Like so many other languages, it claims a C-like syn-
tax, which is roughly correct but misses out on many important elements. Where Rust really shines is
where C has introduced bad behavior in programming practices. This is more apparent as more have
been using C as a language. Where C provides you with the gun and the bullets to shoot yourself in
the foot, Rust provides you with necessary protections to keep you from injuring yourself or, from the
perspective of the application, keeps the application from crashing. Rust is focused on protecting the
memory space of the program, in part to provide a better ability for concurrent programming. After
all, Rust is considered to be a systems programming language, meaning it is intended for applications
that are lower level than those that a user directly interacts with.

In addition to protections provided to the programmer, Rust has a reasonably active community that
can be used not only for support but also to get additional functionality for your programs. There are
a lot of third-party libraries. These libraries can make your life easier by introducing you to function-
ality without you needing to write it yourself.

The idea behind this book is to introduce you to Rust in context, rather than via snippets that, by
themselves, don’t work. You need all the surround to fully understand what is happening in the
program. You’ll find this out when you are looking at example code sometimes. This is true with the
Rust documentation: it’s like you need to fully understand the language to understand the examples
you are looking at. This book doesn’t take that approach. It assumes that you don’t know the lan-
guage, so every line in every program is explained in as much detail as is necessary to pull it all apart,
since Rust can be a dense language in some ways. This means single lines can pack a lot of meaning
and functionality.

The one thing this book does not assume, though, is that you are coming to programming completely
fresh. You will see examples for the programs written in Rust also presented in other programming
languages. This may be helpful if you come from another language like C or Python, for instance, but
want to learn Rust. Seeing the approach in a language you know before translating it into Rust may
be beneficial. If you don’t know those other languages, you can skip through those examples and
jump to the explanation of how to write a program for the problem under discussion in Rust. You
can still compare the other languages to Rust as you are going through so you can better understand
Rust and how it is different from other languages.

IntroductIon

xx

OBTAINING RUST

Rust is a collection of programs that you will use. While a big part of it is the compiler, that’s not
the only program that will get installed. First, of course, is the compiler, rustc. This program will
compile any Rust source code file, but more than that, it will compile complete executables. With
some compiler programs, you have to compile source code files individually and then perform a step
called linking, where you link all the source code files together along with any needed libraries to
create the executable. If there is a reference to another source code file you have written as a module,
the Rust compiler will compile all the modules and generate an executable without any additional
intervention.

In practice, though, you probably won’t use the Rust compiler directly. Instead, you’ll use the cargo
program. You’ll want to get used to using cargo because it not only compiles your source code but
also will manage any external dependencies. You will probably have libraries that are not part of the
standard library. With languages like C and Python, you’d typically need to go get the library yourself
and get it installed. You’d need to make sure it was installed in the right place, and then, in the case
of C, you’d probably need to call the compiler in a way that made it clear you wanted to link in the
external library so all the external references could get resolved and put into the resulting executable.

Rust is also a newer program, which means there are changes being made to it. You’ll generally want
to keep up-to-date on the newest Rust compiler. Your third-party libraries may be keeping up with
the latest Rust changes, and if you aren’t up-to-date, your program won’t compile. You’ll want the
rustup utility to help manage your Rust installation.

If you are working on a Linux distribution, you may be inclined to use whatever package manager
you have to install Rust. There’s a better-than-good chance that your distribution has the Rust lan-
guage in it. The problem is, once you install using the package manager, you may be held back by the
package manager. The latest Rust software may not be available to you. It’s easier to just install Rust
without the Linux package manager. With operating systems like macOS and Windows, you don’t
even have a built-in package manager, so installing that way wouldn’t be an option anyway.

The best approach is to go to the Rust website (www.rust-lang.org). For Unix-like operating
systems, including Linux and macOS, there is a command-line string you will probably use to install.
Because there is a chance this approach may change, it’s best to just go to the website to get the right
way. As of the writing of this book, the command used to install Rust on those operating systems fol-
lows. If you are on Windows, you can download an installer from the Rust website:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Once you have the Rust toolchain installed, you can keep it updated by using the command rustup
update. This will always get the latest version of the Rust toolchain and make sure it is installed.
You will also need to use a good source code editor. There are several available that will support
Rust extensions, including Visual Studio Code, Atom, and Sublime. You should make sure you have
installed the Rust extensions, which will help you with syntax highlighting and other features.

IntroductIon

xxi

GETTING THE SOURCE CODE

As you work your way through this book, you will see primarily complete programs that are
explained in context. You can certainly retype the programs from the book, and most are not that
long. There is some value in retyping because it helps to ingrain the code and approach to program-
ming used by Rust. However, it can be tedious to stare at a program and try to retype it. You may
want to just start with the source code. It’s all available on GitHub. GitHub is a source code reposi-
tory site using the git source code management software. It was originally written to be used with
the Linux kernel, as previous source code management software was not considered to be feature-rich
enough. While there is other software available, git is most widely used today because public reposi-
tories like GitHub use git. To get the source code for this book, you can use the following command:

git clone https://github.com/securitykilroy/rust.git

If you have a git client that you prefer to the command line, you can certainly use it. The command
line is going to be the most common approach to grabbing source code from a git server.

NOTE The files are also available at www.wiley.com/go/beginningrust.

WHAT YOU WILL LEARN

The approach in this book is to write complete programs that are useful in some way, even if they
are very simple starting points to more interesting programs. The idea is not to try to deconstruct
enormous programs, so each chapter will tackle important ideas, but the programs presented may be
limited. You will get important building blocks but maybe not large, complex programs. Each chapter
will present some essential ideas in Rust and, sometimes, programming in general. Many chapters
build on ideas from previous chapters. You can certainly read individual chapters since, in most cases,
the program is still explained in detail, not always assuming you have read previous chapters.

The book doesn’t exclusively cover the Rust programming language. Programming is about far more
than language syntax. There is much more to programming than just how a language is constructed.
This is especially true if you ever want to write software on a team—working with an open source
project or being employed as a programmer. You need to be aware of how larger programs are con-
structed and ways to write software in a way that is readable and maintainable, as well as ways to
write tests of your software. You can see the topics covered in each chapter here.

Chapter 1
We get started with a partially functional implementation of Conway’s Game of Life, a classic com-
puter science program. Along the way, you will learn how to use cargo to create a new program with
all the files and directories needed for cargo to build the program for you. You’ll also learn about
data types and some initial control structures, as well as creating functions in Rust.

https://www.wiley.com/go/beginningrust

IntroductIon

xxii

Chapter 2
The reason for making the program in Chapter 1, “Game of Life: The Basics,” only partly functional
is that the complete program is larger, and there are a lot of concepts to introduce to implement
everything. By the end of this chapter, you will have a fully functional program that will implement
Conway’s Game of Life. You will also learn about the use of a collection data type that is good for
dynamically sized collections. You will also learn about performing input/output to interact with the
user. One of the most important concepts in Rust is introduced in this chapter, and it will keep recur-
ring in several subsequent chapters. Ownership is foundational to Rust and is part of what makes
it a good language for systems programming. Rust is designed to be a safe language, unlike a lan-
guage like C.

Chapter 3
This chapter works with another essential concept in Rust—the struct. This is a complex data struc-
ture, defined entirely by the programmer. It underpins data abstraction in Rust, so it will be covered
across multiple chapters in different ways. You’ll also be working with writing to files as well as
working with JavaScript Object Notation (JSON), a common approach to store and transmit com-
plex data structures in a way that is self-describing. We’ll also extend the idea of ownership by talking
about lifetimes.

Chapter 4
The struct is an important concept in Rust because it provides a way to abstract data. Data abstrac-
tion is hiding the data behind a data structure and a set of functionality that acts on the data. This is
done using traits in Rust, and this chapter introduces those traits. We’ll spend a lot of time in subse-
quent chapters looking at traits in more detail. We’ll also talk about error handling, which is another
dense and important topic that will be covered in unfolding detail across several chapters. Addition-
ally, we’ll cover another control structure that allows you to make different decisions based on the
contents of an identifier. Identifiers in Rust are similar to variables in other languages, although there
are some subtle nuances, which is why it’s easier to refer to them as identifiers. We’ll also look at how
to take input from a user.

Chapter 5
This chapter covers concurrent programming, sometimes called parallel programming. This is where
a program ends up breaking into multiple, simultaneous execution paths. There are a lot of challenges
with concurrent programming, not least of which is the way the different execution paths communi-
cate with one another to keep data and timing synchronized. We’ll also look at how to interact with
the operating system to get information from the filesystem. And we’ll take an initial pass at encryp-
tion, although this is not the last time encryption will be covered.

IntroductIon

xxiii

Chapter 6
We’ll start on network programming, although this will also be spread across additional chapters.
There are a lot of different ways to write programs for network communication because there are so
many protocols that are used over networks. We’ll look at some additional interactions with the oper-
ating system in this chapter as well. This is the first of a pair of chapters that are linked. In this chap-
ter, we implement a network server that requires a client to talk to it. This chapter also talks about
different ways to design your program so you’ll have thought about all the elements and features the
program needs before you start writing it.

Chapter 7
This is the chapter that covers the client that communicates with the server from the previous chapter.
We will also cover using encryption to communicate over the network. Additionally, we’ll use regular
expressions, which can be a powerful pattern-matching system. While they have a lot of other uses,
we’re going to use regular expressions in this chapter to help us make sure we have the right input
from the user.

Chapter 8
This is the first chapter that talks about database communications. This chapter covers the use of
relational databases, which are traditional ways to store structured information. If you’ve seen the
use of MySQL, PostgreSQL, Microsoft SQL Server, Oracle, SQLite, or other databases, you’ve seen
relational databases in action. You may be working with a database server or an embedded database.
This chapter will cover those two techniques so you will be able to talk to a server or store data in a
searchable way in a local file.

Chapter 9
Relational databases have been around for decades; but the way forward is using other database
types, since data isn’t always so well structured that you know exactly what properties will be associ-
ated with it. Additionally, there may be documents involved that need to be dealt with. This chapter
covers the use of NoSQL databases, which are databases that use something other than traditional
relational techniques to store and retrieve data. This chapter also covers assertions, which are ways to
ensure that data is in the state it is expected to be in before being handled by a function. This is a way
of protecting the program, allowing it to fail gracefully.

Chapter 10
Many applications are moving to the web. This means you need to be able to write programs that can
communicate over web-based technologies, including the HTTP protocol. This chapter will cover not
only how to write web client programs but also extracting data from web pages and asynchronous

IntroductIon

xxiv

communication, where you may send a request and not wait for the response but still be able to han-
dle the response when it comes back. This chapter also covers how to use style guides to make your
programs more consistent and readable.

Chapter 11
Where the last chapter talked about writing web-based clients, this program presents a couple of
different ways to write a web server. This is useful if you want to write an application programming
interface (API) that can be consumed by clients remotely. This gives Rust the ability to be on the
server end of a multitier web application as well as on the client side. Additionally, this chapter will
talk about considering offensive and defensive programming practices to make your programs more
resilient and more resistant to attack. This includes the idea of design by contract, guaranteeing that a
program acts exactly the way it is expected to.

Chapter 12
Rust is considered a systems programming language, so we will investigate how to interact with
the system. We’ll start by writing programs to extend data structures, including some built-in data
structures. We’ll also take a look at how to interact with the Windows Registry to store and retrieve
information. Finally, we’ll introduce functionality to get information about the system, including
process listings.

Chapter 13
We’re going to take the systems programming idea and talk about an essential aspect of programming
that is often overlooked; whether you are writing a system service or something that is user-focused,
you should always be generating logs. We’ll take a look at how to write to both syslog as well as
the Windows Event Log. On top of that, we’ll take a look at how to write directly to hardware on a
Raspberry Pi using the General Purpose Input Output (GPIO) header on the single-board computer.

Chapter 14
Early in the book, we covered data collections in the form of arrays and vectors. Data collections are
such a useful feature, though, that we spend this chapter on different types of data collections, includ-
ing linked lists, queues, stacks, and binary search trees.

Chapter 15
There are some fun and useful ideas that are left over and covered in this chapter. First, recursion is a
common way to tackle programming problems, so we take a look at how to address some problems
using recursion. We’ll also look at how to use Rust to write machine learning programs using third-
party libraries. Finally, we will be writing unit tests in Rust, which are ways to ensure that a function
does what it is meant to do. This can also be a way to try to break a function. A library included in
Rust makes it easy to write tests, which should be a practice always used when writing programs.

IntroductIon

xxv

PROVIDING FEEDBACK

We hope that Beginning Rust Programming will be of benefit to you and that you create some amaz-
ing programs with Rust. We’ve done our best to eliminate errors, but sometimes they do slip through.
If you find an error, please let our publisher know. Visit the book’s web page, www.wiley.com/
go/beginningrust, and click the Errata link to find a form to use to identify the problem.

Thanks for choosing Beginning Rust Programming.

https://www.wiley.com/go/beginningrust
https://www.wiley.com/go/beginningrust

1
Game of Life: The Basics

IN THIS CHAPTER, YOU WILL LEARN THE FOLLOWING:

➤➤ How to create a new project using Cargo

➤➤ How to use variables in Rust

➤➤ How to use basic functions in Rust, including returning values and
passing parameters

➤➤ How basic control mechanisms work

In 1970, British mathematician John Horton Conway devised a game using cellular automata.
In October of that year, Martin Gardner wrote about the game in his monthly column Math-
ematical Games in Scientific American. It’s a game with simple rules, which can be played on
paper, but honestly, it’s more fun to write programs that implement the game. We’re going to
start the dive into Rust by writing a simple implementation of Conway’s Game of Life. First
we’ll talk about the rules so that when we get to implementing it, you’ll know what you are
looking at.

Imagine a two-dimensional space that consists of cells on both the horizontal and vertical axes.
Maybe it’s just easier to think about graph paper—row upon row and column upon column of
little boxes. Each of these little boxes contains, or at least has the potential to contain, a living
creature—a single-celled organism living in a single cell. The game is evolutionary, meaning we
cycle through one generation after another, determining whether each cell lives or dies based on
the rules of the game. Speaking of those rules, they are as follows:

➤➤ If a cell is currently alive but it has fewer than two neighbors, it will die because of lack
of support.

➤➤ If a cell is currently alive and has two or three neighbors, it will survive to the next
generation.

2 ❘ CHAPTER 1 Game of Life: The Basics

➤➤ If a cell is currently alive and has more than three neighbors, it dies from overpopulation
(lack of resources).

➤➤ If a cell is currently dead but has exactly three neighbors, it will come back to life.

To turn this game into code, we need to do a couple of things. First, we need a game grid where all
of our little cells are going to live. Second, we need a way to populate the game grid with some living
cells. An empty game board won’t lead to anything good. Once we have a game board, we can run
generations using these rules.

The following is the complete program that will create the game board and also run the checks for
whether different cells live or die. Don’t worry—you don’t have to take it all in at once. We’ll go
through it step-by-step as we introduce you to Rust.

GAME OF LIFE: THE PROGRAM

The program in this section will create the game board for Conway’s Game of Life and populate it
with an initial generation. This portion of this program will be more than enough to get us started
talking about how to begin a Rust program. However, this is not a complete program in the sense
that it won’t fully implement a useful Conway’s Game of Life. It’s primarily missing the output and
generational functions.

extern crate rand;
use std::{thread, time};

fn census(_world: [[u8; 75]; 75]) -> u16
{
 let mut count = 0;

 for i in 0..74 {
 for j in 0..74 {
 if _world[i][j] == 1
 {
 count += 1;
 }
 }
 }
 count
}
fn generation(_world: [[u8; 75]; 75]) -> [[u8; 75]; 75]
{
 let mut newworld = [[0u8; 75]; 75];

 for i in 0..74 {
 for j in 0..74 {
 let mut count = 0;
 if i>0 {
 count = count + _world[i-1][j];
 }

