

Table of Contents
COVER
TITLE PAGE
INTRODUCTION

OBTAINING RUST
GETTING THE SOURCE CODE
WHAT YOU WILL LEARN
PROVIDING FEEDBACK

1 Game of Life: The Basics
GAME OF LIFE: THE PROGRAM
STARTING WITH CARGO
PUTTING THE PIECES TOGETHER
GENERATING THE GAME GRID
DISSECTING MAIN
LOOKING AT MORE FUNCTION FUNCTIONS
COMPILING PROGRAMS
SUMMARY
ADDITIONAL RESOURCES

2 Extended Life
UNDERSTANDING OWNERSHIP
EXTENDING LIFE
READING FROM FILES
OUTPUTTING TO THE TERMINAL
SUMMARY
ADDITIONAL RESOURCES

3 Building a Library

file:///tmp/calibre_5.42.0_tmp_ysykbbwk/o15bqvln_pdf_out/OPS/cover.xhtml

REFERENCES
FIRST PASS
SECOND PASS
SUMMARY
ADDITIONAL RESOURCES

4 Hangman
OUR DATA
READING FILES AND SELECTING WORDS
THE REST OF THE STORY
SUMMARY
ADDITIONAL RESOURCES

5 In Concurrence
THE DINING PHILOSOPHERS
THE MAIN EVENT
THREADING IN THE MAIN
SUMMARY
ADDITIONAL RESOURCES

6 Clients and Servers
PLANNING
NETWORK PROGRAMMING
RUST TCP SERVER
SUMMARY
ADDITIONAL RESOURCES

7 Client-Side Applications
ENCRYPTION
REMOTE ACCESS CLIENT
SUMMARY
ADDITIONAL RESOURCES

8 Going Relational
APPLICATION ARCHITECTURES
DATABASES
WRITING A DATABASE PROGRAM
SUMMARY
ADDITIONAL RESOURCES

9 No(SQL) Going
ASSERTIONS
NOSQL
WORKING WITH MONGODB
SUMMARY
ADDITIONAL RESOURCES

10 Web Communications
STYLE GUIDES
HYPERTEXT TRANSFER PROTOCOL
CLIENT COMMUNICATION
SUMMARY
ADDITIONAL RESOURCES

11 Web Server
OFFENSIVE VS. DEFENSIVE PROGRAMMING
WEB APPLICATION COMMUNICATIONS
RUST ROCKET
SUMMARY
ADDITIONAL RESOURCES

12 Getting to the System
EXTENDING FUNCTIONALITY
WINDOWS REGISTRY
SYSTEM INFORMATION WITH RUST

PERSISTENCE (FOR FUN)
SUMMARY
ADDITIONAL RESOURCES

13 Device Programming
LOGGING
WORKING WITH RASPBERRY PI
SUMMARY
ADDITIONAL RESOURCES

14 Collecting Stuff
ARRAYS AND VECTORS
LINKED LISTS
SEARCH TREES
SUMMARY
ADDITIONAL RESOURCES

15 Odds and Sods
UNIT TESTING
RECURSION
MACHINE LEARNING
SUMMARY
ADDITIONAL RESOURCES

INDEX
COPYRIGHT
ABOUT THE AUTHOR
ABOUT THE TECHNICAL EDITOR
ACKNOWLEDGMENTS
END USER LICENSE AGREEMENT

List of Tables

Chapter 13
TABLE 13.1: Syslog facilities
TABLE 13.2: Severity table

Chapter 15
TABLE 15.1: Rust test plan

List of Illustrations
Chapter 1

FIGURE 1.1: Single-dimension array
FIGURE 1.2: Multidimensional array
FIGURE 1.3: Passing by reference in C

Chapter 2
FIGURE 2.1: Visual representation of variables
FIGURE 2.2: Assigning variables
FIGURE 2.3: Reference counting
FIGURE 2.4: Demonstration of an iterator
FIGURE 2.5: Life generation output

Chapter 3
FIGURE 3.1: Representation of a Dvd structure
FIGURE 3.2: Instance of a Dvd

Chapter 4
FIGURE 4.1: Notes on program design
FIGURE 4.2: Option enum
FIGURE 4.3: Embedded values

Chapter 5

FIGURE 5.1: Dining philosophers
FIGURE 5.2: Visual representation of a mutex
FIGURE 5.3: Multithreaded program
FIGURE 5.4: Process memory sharing

Chapter 6
FIGURE 6.1: UML diagram of the client program
FIGURE 6.2: TCP/IP layers
FIGURE 6.3: Network transmission
FIGURE 6.4: Network envelope

Chapter 7
FIGURE 7.1: Creating ciphertext with a key
FIGURE 7.2: Diffie-Hellman key derivation

Chapter 8
FIGURE 8.1: Traditional web application design
FIGURE 8.2: Microservices design
FIGURE 8.3: Model-View-Controller
FIGURE 8.4: Model-View-Controller
FIGURE 8.5: MySQL Workbench with the query
FIGURE 8.6: Error hierarchy

Chapter 9
FIGURE 9.1: Design by contract diagram
FIGURE 9.2: Graph database
FIGURE 9.3: MongoDB database creation
FIGURE 9.4: Records in MongoDB

Chapter 10

FIGURE 10.1: C++ exception style rule
FIGURE 10.2: Rust style guide
FIGURE 10.3: Web server directory tree

Chapter 11
FIGURE 11.1: Simple web form
FIGURE 11.2: Web application architecture
FIGURE 11.3: API architecture

Chapter 12
FIGURE 12.1: Encapsulated data
FIGURE 12.2: Magic card box
FIGURE 12.3: Registry editor
FIGURE 12.4: Registry hive files
FIGURE 12.5: Value added to the Registry

Chapter 13
FIGURE 13.1: Windows Event Viewer
FIGURE 13.2: Windows Event Log entry
FIGURE 13.3: Reordered log entries
FIGURE 13.4: Windows Event Log entry
FIGURE 13.5: Error message in Windows Event
Log
FIGURE 13.6: Raspberry Pi
FIGURE 13.7: AMD processor with a fan
FIGURE 13.8: Raspberry Pi compared with a
traditional processor
FIGURE 13.9: Breadboard for a Raspberry Pi
FIGURE 13.10: Wiring an LED light

FIGURE 13.11: Push-button wiring
Chapter 14

FIGURE 14.1: Daily temperature including tenths.
FIGURE 14.2: Linked list.
FIGURE 14.3: Reordered linked list.
FIGURE 14.4: Stack diagram
FIGURE 14.5: Real-life stack
FIGURE 14.6: Binary tree before placement
FIGURE 14.7: Binary tree after placement

Chapter 15
FIGURE 15.1: Software development lifecycle
FIGURE 15.2: Relative cost of software defects
FIGURE 15.3: Boxes needing sorting
FIGURE 15.4: Factorial call stack
FIGURE 15.5: Towers of Hanoi
FIGURE 15.6: Find the plant

BEGINNING
Rust® Programming

Ric Messier

INTRODUCTION
Save me from another “hello, world” book. Don't make me
have to skim or skip through a half dozen chapters before I
can get to something that's going to be useful to me. Or
you, in this case. I can't tell you the number of
programming books I've purchased over the decades,
hoping to actually learn the language, only to end up just
not using the book because it wasn't presented in a way
that made a lot of sense to me. Instead of a dry explanation
of how the language is constructed so you can try to put it
all together in meaningful ways yourself, the purpose of
this book is to jump straight into writing hopefully
interesting or useful programs. Once we have the program,
we can take a look at how it's constructed. You'll be
learning by doing—or learning by example, if you prefer. I
hope you'll find this a more useful and practical way of
learning Rust.
Rust is an interesting language, as it turns out. Like so
many other languages, it claims a C-like syntax, which is
roughly correct but misses out on many important
elements. Where Rust really shines is where C has
introduced bad behavior in programming practices. This is
more apparent as more have been using C as a language.
Where C provides you with the gun and the bullets to shoot
yourself in the foot, Rust provides you with necessary
protections to keep you from injuring yourself or, from the
perspective of the application, keeps the application from
crashing. Rust is focused on protecting the memory space
of the program, in part to provide a better ability for
concurrent programming. After all, Rust is considered to be
a systems programming language, meaning it is intended

for applications that are lower level than those that a user
directly interacts with.
In addition to protections provided to the programmer,
Rust has a reasonably active community that can be used
not only for support but also to get additional functionality
for your programs. There are a lot of third-party libraries.
These libraries can make your life easier by introducing
you to functionality without you needing to write it
yourself.
The idea behind this book is to introduce you to Rust in
context, rather than via snippets that, by themselves, don't
work. You need all the surround to fully understand what is
happening in the program. You'll find this out when you are
looking at example code sometimes. This is true with the
Rust documentation: it's like you need to fully understand
the language to understand the examples you are looking
at. This book doesn't take that approach. It assumes that
you don't know the language, so every line in every
program is explained in as much detail as is necessary to
pull it all apart, since Rust can be a dense language in
some ways. This means single lines can pack a lot of
meaning and functionality.
The one thing this book does not assume, though, is that
you are coming to programming completely fresh. You will
see examples for the programs written in Rust also
presented in other programming languages. This may be
helpful if you come from another language like C or Python,
for instance, but want to learn Rust. Seeing the approach in
a language you know before translating it into Rust may be
beneficial. If you don't know those other languages, you
can skip through those examples and jump to the
explanation of how to write a program for the problem
under discussion in Rust. You can still compare the other
languages to Rust as you are going through so you can

better understand Rust and how it is different from other
languages.

OBTAINING RUST
Rust is a collection of programs that you will use. While a
big part of it is the compiler, that's not the only program
that will get installed. First, of course, is the compiler,
rustc. This program will compile any Rust source code file,
but more than that, it will compile complete executables.
With some compiler programs, you have to compile source
code files individually and then perform a step called
linking, where you link all the source code files together
along with any needed libraries to create the executable. If
there is a reference to another source code file you have
written as a module, the Rust compiler will compile all the
modules and generate an executable without any additional
intervention.
In practice, though, you probably won't use the Rust
compiler directly. Instead, you'll use the cargo program.
You'll want to get used to using cargo because it not only
compiles your source code but also will manage any
external dependencies. You will probably have libraries that
are not part of the standard library. With languages like C
and Python, you'd typically need to go get the library
yourself and get it installed. You'd need to make sure it was
installed in the right place, and then, in the case of C, you'd
probably need to call the compiler in a way that made it
clear you wanted to link in the external library so all the
external references could get resolved and put into the
resulting executable.
Rust is also a newer program, which means there are
changes being made to it. You'll generally want to keep up-
to-date on the newest Rust compiler. Your third-party
libraries may be keeping up with the latest Rust changes,

and if you aren't up-to-date, your program won't compile.
You'll want the rustup utility to help manage your Rust
installation.
If you are working on a Linux distribution, you may be
inclined to use whatever package manager you have to
install Rust. There's a better-than-good chance that your
distribution has the Rust language in it. The problem is,
once you install using the package manager, you may be
held back by the package manager. The latest Rust
software may not be available to you. It's easier to just
install Rust without the Linux package manager. With
operating systems like macOS and Windows, you don't even
have a built-in package manager, so installing that way
wouldn't be an option anyway.
The best approach is to go to the Rust website (www.rust-
lang.org). For Unix-like operating systems, including Linux
and macOS, there is a command-line string you will
probably use to install. Because there is a chance this
approach may change, it's best to just go to the website to
get the right way. As of the writing of this book, the
command used to install Rust on those operating systems
follows. If you are on Windows, you can download an
installer from the Rust website:

curl --proto '=https' --tlsv1.2 -sSf
https://sh.rustup.rs | sh

Once you have the Rust toolchain installed, you can keep it
updated by using the command rustup update. This will
always get the latest version of the Rust toolchain and
make sure it is installed. You will also need to use a good
source code editor. There are several available that will
support Rust extensions, including Visual Studio Code,
Atom, and Sublime. You should make sure you have

http://www.rust-lang.org/

installed the Rust extensions, which will help you with
syntax highlighting and other features.

GETTING THE SOURCE CODE
As you work your way through this book, you will see
primarily complete programs that are explained in context.
You can certainly retype the programs from the book, and
most are not that long. There is some value in retyping
because it helps to ingrain the code and approach to
programming used by Rust. However, it can be tedious to
stare at a program and try to retype it. You may want to
just start with the source code. It's all available on GitHub.
GitHub is a source code repository site using the git source
code management software. It was originally written to be
used with the Linux kernel, as previous source code
management software was not considered to be feature-
rich enough. While there is other software available, git is
most widely used today because public repositories like
GitHub use git. To get the source code for this book, you
can use the following command:

git clone https://github.com/securitykilroy/rust.git

If you have a git client that you prefer to the command line,
you can certainly use it. The command line is going to be
the most common approach to grabbing source code from a
git server.

NOTE   The files are also available at
www.wiley.com/go/beginningrust.

WHAT YOU WILL LEARN

https://www.wiley.com/go/beginningrust

The approach in this book is to write complete programs
that are useful in some way, even if they are very simple
starting points to more interesting programs. The idea is
not to try to deconstruct enormous programs, so each
chapter will tackle important ideas, but the programs
presented may be limited. You will get important building
blocks but maybe not large, complex programs. Each
chapter will present some essential ideas in Rust and,
sometimes, programming in general. Many chapters build
on ideas from previous chapters. You can certainly read
individual chapters since, in most cases, the program is still
explained in detail, not always assuming you have read
previous chapters.
The book doesn't exclusively cover the Rust programming
language. Programming is about far more than language
syntax. There is much more to programming than just how
a language is constructed. This is especially true if you ever
want to write software on a team—working with an open
source project or being employed as a programmer. You
need to be aware of how larger programs are constructed
and ways to write software in a way that is readable and
maintainable, as well as ways to write tests of your
software. You can see the topics covered in each chapter
here.

Chapter 1
We get started with a partially functional implementation of
Conway's Game of Life, a classic computer science
program. Along the way, you will learn how to use cargo to
create a new program with all the files and directories
needed for cargo to build the program for you. You'll also
learn about data types and some initial control structures,
as well as creating functions in Rust.

Chapter 2

The reason for making the program in Chapter 1, “Game of
Life: The Basics,” only partly functional is that the complete
program is larger, and there are a lot of concepts to
introduce to implement everything. By the end of this
chapter, you will have a fully functional program that will
implement Conway's Game of Life. You will also learn about
the use of a collection data type that is good for
dynamically sized collections. You will also learn about
performing input/output to interact with the user. One of
the most important concepts in Rust is introduced in this
chapter, and it will keep recurring in several subsequent
chapters. Ownership is foundational to Rust and is part of
what makes it a good language for systems programming.
Rust is designed to be a safe language, unlike a language
like C.

Chapter 3
This chapter works with another essential concept in Rust
—the struct. This is a complex data structure, defined
entirely by the programmer. It underpins data abstraction
in Rust, so it will be covered across multiple chapters in
different ways. You'll also be working with writing to files
as well as working with JavaScript Object Notation (JSON),
a common approach to store and transmit complex data
structures in a way that is self-describing. We'll also extend
the idea of ownership by talking about lifetimes.

Chapter 4
The struct is an important concept in Rust because it
provides a way to abstract data. Data abstraction is hiding
the data behind a data structure and a set of functionality
that acts on the data. This is done using traits in Rust, and
this chapter introduces those traits. We'll spend a lot of
time in subsequent chapters looking at traits in more
detail. We'll also talk about error handling, which is

another dense and important topic that will be covered in
unfolding detail across several chapters. Additionally, we’ll
cover another control structure that allows you to make
different decisions based on the contents of an identifier.
Identifiers in Rust are similar to variables in other
languages, although there are some subtle nuances, which
is why it's easier to refer to them as identifiers. We'll also
look at how to take input from a user.

Chapter 5
This chapter covers concurrent programming, sometimes
called parallel programming. This is where a program ends
up breaking into multiple, simultaneous execution paths.
There are a lot of challenges with concurrent
programming, not least of which is the way the different
execution paths communicate with one another to keep
data and timing synchronized. We'll also look at how to
interact with the operating system to get information from
the filesystem. And we'll take an initial pass at encryption,
although this is not the last time encryption will be
covered.

Chapter 6
We'll start on network programming, although this will also
be spread across additional chapters. There are a lot of
different ways to write programs for network
communication because there are so many protocols that
are used over networks. We'll look at some additional
interactions with the operating system in this chapter as
well. This is the first of a pair of chapters that are linked. In
this chapter, we implement a network server that requires
a client to talk to it. This chapter also talks about different
ways to design your program so you’ll have thought about
all the elements and features the program needs before you
start writing it.

Chapter 7
This is the chapter that covers the client that
communicates with the server from the previous chapter.
We will also cover using encryption to communicate over
the network. Additionally, we'll use regular expressions,
which can be a powerful pattern-matching system. While
they have a lot of other uses, we're going to use regular
expressions in this chapter to help us make sure we have
the right input from the user.

Chapter 8
This is the first chapter that talks about database
communications. This chapter covers the use of relational
databases, which are traditional ways to store structured
information. If you've seen the use of MySQL, PostgreSQL,
Microsoft SQL Server, Oracle, SQLite, or other databases,
you've seen relational databases in action. You may be
working with a database server or an embedded database.
This chapter will cover those two techniques so you will be
able to talk to a server or store data in a searchable way in
a local file.

Chapter 9
Relational databases have been around for decades; but the
way forward is using other database types, since data isn't
always so well structured that you know exactly what
properties will be associated with it. Additionally, there may
be documents involved that need to be dealt with. This
chapter covers the use of NoSQL databases, which are
databases that use something other than traditional
relational techniques to store and retrieve data. This
chapter also covers assertions, which are ways to ensure
that data is in the state it is expected to be in before being

handled by a function. This is a way of protecting the
program, allowing it to fail gracefully.

Chapter 10
Many applications are moving to the web. This means you
need to be able to write programs that can communicate
over web-based technologies, including the HTTP protocol.
This chapter will cover not only how to write web client
programs but also extracting data from web pages and
asynchronous communication, where you may send a
request and not wait for the response but still be able to
handle the response when it comes back. This chapter also
covers how to use style guides to make your programs
more consistent and readable.

Chapter 11
Where the last chapter talked about writing web-based
clients, this program presents a couple of different ways to
write a web server. This is useful if you want to write an
application programming interface (API) that can be
consumed by clients remotely. This gives Rust the ability to
be on the server end of a multitier web application as well
as on the client side. Additionally, this chapter will talk
about considering offensive and defensive programming
practices to make your programs more resilient and more
resistant to attack. This includes the idea of design by
contract, guaranteeing that a program acts exactly the way
it is expected to.

Chapter 12
Rust is considered a systems programming language, so we
will investigate how to interact with the system. We'll start
by writing programs to extend data structures, including
some built-in data structures. We'll also take a look at how

to interact with the Windows Registry to store and retrieve
information. Finally, we'll introduce functionality to get
information about the system, including process listings.

Chapter 13
We're going to take the systems programming idea and talk
about an essential aspect of programming that is often
overlooked; whether you are writing a system service or
something that is user-focused, you should always be
generating logs. We'll take a look at how to write to both
syslog as well as the Windows Event Log. On top of that,
we'll take a look at how to write directly to hardware on a
Raspberry Pi using the General Purpose Input Output
(GPIO) header on the single-board computer.

Chapter 14
Early in the book, we covered data collections in the form
of arrays and vectors. Data collections are such a useful
feature, though, that we spend this chapter on different
types of data collections, including linked lists, queues,
stacks, and binary search trees.

Chapter 15
There are some fun and useful ideas that are left over and
covered in this chapter. First, recursion is a common way to
tackle programming problems, so we take a look at how to
address some problems using recursion. We'll also look at
how to use Rust to write machine learning programs using
third-party libraries. Finally, we will be writing unit tests in
Rust, which are ways to ensure that a function does what it
is meant to do. This can also be a way to try to break a
function. A library included in Rust makes it easy to write
tests, which should be a practice always used when writing
programs.

PROVIDING FEEDBACK
We hope that Beginning Rust Programming will be of
benefit to you and that you create some amazing programs
with Rust. We've done our best to eliminate errors, but
sometimes they do slip through. If you find an error, please
let our publisher know. Visit the book's web page,
www.wiley.com/go/beginningrust, and click the Errata link to
find a form to use to identify the problem.
Thanks for choosing Beginning Rust Programming.

https://www.wiley.com/go/beginningrust

1
Game of Life: The Basics

IN THIS CHAPTER, YOU WILL LEARN THE
FOLLOWING:

How to create a new project using Cargo
How to use variables in Rust
How to use basic functions in Rust, including
returning values and passing parameters
How basic control mechanisms work

In 1970, British mathematician John Horton Conway
devised a game using cellular automata. In October of that
year, Martin Gardner wrote about the game in his monthly
column Mathematical Games in Scientific American. It's a
game with simple rules, which can be played on paper, but
honestly, it's more fun to write programs that implement
the game. We're going to start the dive into Rust by writing
a simple implementation of Conway's Game of Life. First
we'll talk about the rules so that when we get to
implementing it, you'll know what you are looking at.
Imagine a two-dimensional space that consists of cells on
both the horizontal and vertical axes. Maybe it's just easier
to think about graph paper—row upon row and column
upon column of little boxes. Each of these little boxes
contains, or at least has the potential to contain, a living
creature—a single-celled organism living in a single cell.
The game is evolutionary, meaning we cycle through one
generation after another, determining whether each cell

lives or dies based on the rules of the game. Speaking of
those rules, they are as follows:

If a cell is currently alive but it has fewer than two
neighbors, it will die because of lack of support.
If a cell is currently alive and has two or three
neighbors, it will survive to the next generation.
If a cell is currently alive and has more than three
neighbors, it dies from overpopulation (lack of
resources).
If a cell is currently dead but has exactly three
neighbors, it will come back to life.

To turn this game into code, we need to do a couple of
things. First, we need a game grid where all of our little
cells are going to live. Second, we need a way to populate
the game grid with some living cells. An empty game board
won't lead to anything good. Once we have a game board,
we can run generations using these rules.
The following is the complete program that will create the
game board and also run the checks for whether different
cells live or die. Don't worry—you don't have to take it all in
at once. We'll go through it step-by-step as we introduce
you to Rust.

GAME OF LIFE: THE PROGRAM
The program in this section will create the game board for
Conway's Game of Life and populate it with an initial
generation. This portion of this program will be more than
enough to get us started talking about how to begin a Rust
program. However, this is not a complete program in the
sense that it won't fully implement a useful Conway's Game

of Life. It's primarily missing the output and generational
functions.

extern crate rand;
use std::{thread, time};

fn census(_world: [[u8; 75]; 75]) -> u16
{
 let mut count = 0;

 for i in 0..74 {
 for j in 0..74 {
 if _world[i][j] == 1
 {
 count += 1;
 }
 }
 }
 count
}
fn generation(_world: [[u8; 75]; 75]) -> [[u8; 75]; 75]
{
 let mut newworld = [[0u8; 75]; 75];

 for i in 0..74 {
 for j in 0..74 {
 let mut count = 0;
 if i>0 {
 count = count + _world[i-1][j];
 }
 if i>0 && j>0 {
 count = count + _world[i-1][j-1];
 }
 if i>0 && j<74 {
 count = count + _world[i-1][j+1];
 }
 if i<74 && j>0 {
 count = count + _world[i+1][j-1]
 }
 if i<74 {
 count = count + _world[i+1][j];
 }
 if i<74 && j<74 {
 count = count + _world[i+1][j+1];
 }
 if j>0 {
 count = count + _world[i][j-1];

 }
 if j<74 {
 count = count + _world[i][j+1];
 }

 newworld[i][j] = 0;

 if (count <2) && (_world[i][j] == 1) {
 newworld[i][j] = 0;
 }
 if _world[i][j] == 1 && (count == 2 || count
== 3) {
 newworld[i][j] = 1;
 }
 if (_world[i][j] == 0) && (count == 3) {
 newworld[i][j] = 1;
 }
 }
 }
 newworld
}

fn main() {
 let mut world = [[0u8; 75]; 75];
 let mut generations = 0;

 for i in 0..74 {
 for j in 0..74 {
 if rand::random() {
 world[i][j] = 1;
 } else {
 world[i][j] = 0;
 }
 }
 }
}

STARTING WITH CARGO
Although you can certainly use just the Rust compiler, rustc,
Rust comes with a utility that can be used to create the
files and directory structure necessary to build a program

that could go beyond a single file if needed. To get started,
we can run cargo new life to create everything we need
initially.
What you will get is a directory named src, which contains
a single file, main.rs. Initially, you will have a simple hello,
world program in that file, which means there is at least
one line of code you will need to delete if you want to do
something interesting. The file does, though, contain the
bones of a main function. If you are familiar with C
programming, you are familiar with the main function. This
is the entry point for your program. When the compiler
runs, the resulting executable will point to the chunk of
code that results from whatever is in your main function.
This function is essential for your program to do anything,
because the compiler will look for it in order to know where
to link the entry point (which is just an address in the .text
segment of the resulting assembly language code).
In addition to the src directory and the main.rs file, where
you will be doing all your development work initially, there
is a Cargo.toml file. This is the configuration file used by
Cargo, written in Tom's Obvious, Minimal Language
(TOML). It's an easy language to use, and Cargo will put
almost everything you will need into it. We will eventually
get into making changes to it, but what you will see initially
is metadata about the resulting executable, including your
name, your email address, and the version number.
Everything is in text, as you can see here in what was
created when I ran cargo new life :

[package]
name = "life"
version = "0.1.0"
authors = ["Ric Messier <kilroy@mydomain.com>"]

[dependencies]

You will get something that looks slightly different, of
course, since you have neither my name nor my email
address. The version will be 0.1.0 initially, and if you
actually use life as the name of your program, you will get
that configured in your Cargo.toml file. Cargo takes care of
all that for you.

NOTE   Don't get too fancy with your naming. This is
going to be the name given to the executable that
results from building your program. If you get too fancy
and try using something like camel case, Cargo will
complain. It expects simple naming. If you are
unfamiliar, camel case is mixing upper and lowercase
letters, usually with the uppercase letter coming in the
middle of the word, as in myProgram.

Cargo is also used to build your project. To build your
executable, you just run cargo build. By default, Cargo will
build a debug version, which will be dropped into the
target/debug folder. If you want a release version rather
than a debug version, you have to run cargo build --release.
This will place your executable into the target/release
directory. You can run your program from there, should the
build succeed. You will get more than the executable in the
target directories.
Here, you can see the contents of the debug directory from
a build of the Life program:

DEBUG DIRECTORY LISTING
kilroy@milobloom:~/Documents/rust/life/target$ cd debug
kilroy@milobloom:~/Documents/rust/life/target/debug$ ls
build examples life life.dSYM
deps incremental life.d native

The file named life is the executable, and the debug
symbols are in the file named life.dSYM. This is useful in the

case where you need to perform debugging using a
debugger that will make use of these symbols to keep track
of where in the program it is so that it can show not only
the assembly language representation of the program but
also the source code, which is likely far more meaningful
than assembly language to most people. For our purposes,
you won't need the debug symbols, unless you really want
them, since I'll have done all the debugging to ensure all
the code compiles and runs on the version of Rust that is
current as of this writing.

PUTTING THE PIECES TOGETHER
Once you have created your new project using Cargo, you
can start adding code, typically to the main.rs file.
Everything we're doing going forward will be in the main.rs
file unless specified otherwise. We'll go through the
program a little at a time to explain it all. We're going to try
to keep the bouncing around the program to a minimum,
though there will be a little of that. To begin with, though,
we'll start at the top of the file.

Bringing In External Functionality
No matter what kind of program you're writing, you'll likely
need to bring in functionality from outside your own code.
There are a couple of different ways to do that. We can talk
about both of them here since both are in use in our Life
program. The relevant code fragment is shown here. You
will notice that a few different things are going on here
that may be slightly different from what you're used to in
other programming languages.

extern crate rand;
use std::{thread, time};

