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Engineering design is the synthesis of science and art for
practical applications. Engineering Design and
Optimization of Thermofluid Systems is very much a subset
of engineering as described by J.A.L. Waddell, “Engineering
is the science and art of efficient dealing with materials and
forces … it involves the most economic design and
execution … assuring, when properly performed, the most
advantageous combination of accuracy, safety, durability,
speed, simplicity, efficiency, and economy possible for the
conditions of design and service.”

The difference between science and the arts is not that
they are different sides of the same coin… or even
different parts of the same continuum, but rather, they
are manifestations of the same thing. The arts and
sciences are avatars of human creativity.

– Mae Jemison
After a certain high level of technical skill is achieved,
science and art tend to coalesce in esthetics, plasticity,
and form. The greatest scientists are always artists as
well.

– Albert Einstein
This book is dedicated to the everyday artistic engineers
who unceasingly put into effect human creativity to forge a
better future for the generations to come.



Preface
This book is primarily designed for senior undergraduate
engineering students interested in Engineering Design and
Optimization of Thermofluid Systems. It invokes basic
undergraduate mathematics, thermodynamics, fluid
mechanics, and heat transfer concepts. The book aims at
stimulating every keen mind to appreciate design and
optimization of engineering thermofluid systems.

David S‐K. Ting
June 20, 2020
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1 
Introduction
To develop a complete mind: Study the science of art; Study the art of science.

– Leonardo da Vinci

Chapter Objectives

Understand what design and optimization of thermofluid systems mean.
Differentiate engineering from science.
Discern development, design, and analysis.
Become familiar with the design process.
Be aware of the existing books on thermofluid system design and/or
optimization.
Appreciate the organization and contents of the book.

Nomenclature
HVAC heating, ventilation, and air conditioning
Idir direct radiation on a horizontal surface
KISS keep it simple, stupid
LED light‐emitting diode
PV photovoltaic
UWCAES underwater compressed air energy storage
X, x (design) variables or influencing parameters
Y a variable, the objective function

1.1 What Are Design and Optimization of
Thermofluid Systems?
Design and optimization of thermofluid systems are

the design and, subsequently, optimization of the design of engineering systems
involving significant fluid flow, thermodynamics, and/or heat transfer.

To more fully understand Design and Optimization of Thermofluid Systems, we
need to clearly comprehend the four main terms:

1. design
2. optimization
3. thermofluid1



4. systems.2

Within this context,

1. design is the creation of an engineering system which will provide the desired
result, and

2. optimization is taking the workable design one step further, attaining not just a
better but the best design.

There usually exist a few unavoidable constraints, putting practical limits within
which the optimal design is bounded. The optimal car may be the one performing
the best in terms of mileage. For a typical middle‐class engineer with four mouths
to feed, however, the price of the car may be the deciding factor, limiting the
selection to within a low‐budget ceiling.
 



Example 1.1 Design a residential solar thermal
energy storage system

Given

An engineering student living in a temperate climate region wishes to store the
thermal energy harnessed from the sun when it shines during the day, for
residential use during the night.

Find

An appropriate storage system.

Solution

A workable design is running a glycol‐water line from the solar thermal
collector into an adequately large insulated water tank. Glycol‐water is
appropriately employed to prevent freezing. The temperature of the stored
fluid has to be sufficiently high for the intended usage. Reasonable drops in the
temperature from the solar collector to the storage tank and to the delivery
end use must be accounted for, as some losses are inevitable.
The initial workable design, however, is probably not the best design as it may
occupy the entire basement. The use of phase‐change material will probably
keep the size in check. Molten salt is also worth exploring, especially when
dealing with larger utilization, such as a multiple‐housing residence.
Comparing different existing options, such as off‐the‐shelf tank sizes and
storage media to achieve the best option is called optimization. Since the
budget, as well as the available space for the storage tank, are likely limited,
the optimization of the residential solar thermal energy storage system is thus
subjected to budget, space, and other constraints.

Example 1.1 hints that a workable design does not necessarily need to be the best
design. In fact, it typically is not. When the project is adequately large and there
are (financial) backings for it, optimization is invoked to deduce the best design.
Furthermore, for a company to compete in mass‐selling of such systems,
progressively better designs which are cheaper to manufacture are necessary. By
and large, there will be budgetary, space, and other constraints. Other constraints
for a thermal storage tank can be a maximum workable storage temperature,
particular charging and discharging rates, etc. In some sense, moving from a
feasible design to an optimum design is like progressing from an “ad hoc art and/or
experience” to a “systematic scientific artistic endeavor.”



Figure 1.1 Workable versus optimal design of electricity‐driven household light
bulbs. Source: Photos taken by X. Wang and Y. Yang.
A familiar design versus optimization exemplification is the three types of light bulb
for everyday usage, see Figure 1.1. The incandescent light bulb is a workable
design, and it has been satisfying our need since Thomas Edison invented it in
1879. Much later, the fluorescent light bulb is optimized in terms of energy usage
and cost. For this reason, the compact fluorescent light bulb has finally squeezed
out its archetype after being in the market for a couple of decades, the duration for
the price to drop to a competitive level. Over the long run, the LED (light‐emitting
diode) light bulb is the best, because the money saved due to its low wattage and
very long life span far exceed the high initial cost. In short, the incandescent light
bulb, with a typical life span of 1,000–2,000 hours, is a workable design. The
compact fluorescent light bulb, which lasts on the ballpark of 10,000 hours and
uses around 75% less energy, is currently the optimum design. The LED light bulb,
which outlasts the fluorescent by up to 50,000 hours while using 90% less energy,
is the fruit of the latest design and optimization endeavor, and it is expected to be
the new optimum design in a few years, as its manufacturing cost drops.

1.2 Differentiating Engineering from Science
The challenging tasks associated with thermofluid systems' design and optimization
are only to be executed by individuals well educated and trained in engineering, i.e.
competent engineers. But what is engineering? How does it differ from science?
Science may be defined as the systematic knowledge of the physical world that is
testable, repeatable, and predictable. Concisely,

Science is the systematic knowledge of the physical world.

Simply put,
Engineering is putting science into practice.



Figure 1.2 The millennia‐old spoked wheel for horse chariots (created by S.
Akhand). Shown are four‐spoke chariot wheels resembling those found in the Red
Sea, which are attributed to the powerful Egyptian army, as recorded in Exodus,
Chapter 14.
By and large, engineering was initiated for, and still is, the exploitation of science
to create practical systems to make life easier for society. In relation to the context
of the material covered in this book,

Engineering is the science and art of efficient dealing with materials and forces
… it involves the most economic design and execution … assuring, when properly
performed, the most advantageous combination of accuracy, safety, durability,
speed, simplicity, efficiency, and economy possible for the conditions of design
and service.

J.A.L. Waddell
Let us look briefly at the millennia‐old wheels, sketched in Figure 1.2. Horse
chariots date further back than the Old Testament, where the Pharaohs were
largely feared because of their vast number of powerful horse chariots. Durable
wood was the material adopted, and the forces at play included the load on the
chariot and the required torque. As per “economic design and execution,” the wood
has to be readily available locally, or relatively accessible and affordable to acquire
from a not‐too‐distant land, or from subject nations as tributes under one's
dominance. Accuracy may be viewed as the wood that does not expand or contract
excessively with moisture and/or changes in the weather. Safety and durability may
be perceived as keeping the soldiers from falling off as they charge the chariots



forward into partially‐rocky or muddy fields3 at great speeds. Note that speed, to a
large extent, decides the fate of the riding warriors. Simplicity and efficiency can
easily be inferred from the spoke design, including the number of spokes. This
becomes particularly obvious when contrasted with the predecessor of the spoked
wheels, the clumsy, spoke‐less, solid wood wheels; see Figure 1.3. For war chariots,
securing sharp weapons on the outer side the (spoked) wheel further illustrates
ingenious, effective design for the intention.
Further to the differentiation between science and engineering, a scientist is an
expert in science, whereas an engineer creatively converts the scientific findings
into useful applications. A good scientist indiscriminately strives to improve all
kinds of knowledge, irrespective of any potential usage, of the physical world. An
applied scientist undertakes only applications‐oriented scientific endeavors. This
includes an engineering researcher who develops ideas that advance the frontiers
of knowledge but may not be applied for a number of years. In other words, good
engineers are not short‐sighted; the prospective applications need not be
immediately cognizable. Engineers may be regarded as professionals who design
and develop, creatively converting theoretical concepts into useful applications on
a daily basic. What exactly do engineers do? They link theory with practical
applications. Bona fide engineers possess an extensive theoretical knowledge, the
ability to think creatively, and a knack for obtaining practical results. The materials
covered in this book aim at fostering the forging of amateur engineering students
into fully‐fledged creative engineers. While thermofluids is the subject of coverage,
much of the knowledge delineated in this book, especially the core element,
optimization, can equally be employed to improve solid mechanics and also process
and production line processes. The aforementioned wheels for horse chariots
clearly fall under the solid mechanics, not thermofluids, stream. Designing sound
wheels for muddy thoroughfares, however, would encompass solid mechanics,
thermofluids, and dynamics.


