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Engineering design is the synthesis of science and art for practical applications. Engineering Design
and Optimization of Thermofluid Systems is very much a subset of engineering as described by J.A.L.
Waddell, “Engineering is the science and art of efficient dealing with materials and forces ... it
involves the most economic design and execution ... assuring, when properly performed, the most
advantageous combination of accuracy, safety, durability, speed, simplicity, efficiency, and economy
possible for the conditions of design and service.”

The difference between science and the arts is not that they are different sides of the same
coin... or even different parts of the same continuum, but rather, they are manifestations of
the same thing. The arts and sciences are avatars of human creativity.

- Mae Jemison

After a certain high level of technical skill is achieved, science and art tend to coalesce in
esthetics, plasticity, and form. The greatest scientists are always artists as well.
— Albert Einstein

This book is dedicated to the everyday artistic engineers who unceasingly put into effect human
creativity to forge a better future for the generations to come.
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Preface

This book is primarily designed for senior undergraduate engineering students interested in
Engineering Design and Optimization of Thermofluid Systems. It invokes basic undergraduate
mathematics, thermodynamics, fluid mechanics, and heat transfer concepts. The book aims at
stimulating every keen mind to appreciate design and optimization of engineering thermofluid
systems.

David S-K. Ting
June 20, 2020
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Introduction

To develop a complete mind: Study the science of art; Study the art of science.
- Leonardo da Vinci

Chapter Objectives

Understand what design and optimization of thermofluid systems mean.
Differentiate engineering from science.

Discern development, design, and analysis.

Become familiar with the design process.

Be aware of the existing books on thermofluid system design and/or optimization.
Appreciate the organization and contents of the book.

Nomenclature

HVAC heating, ventilation, and air conditioning
Ly direct radiation on a horizontal surface
KISS keep it simple, stupid

LED light-emitting diode

PV photovoltaic

UWCAES underwater compressed air energy storage
X, X (design) variables or influencing parameters
Y a variable, the objective function

1.1 What Are Design and Optimization of Thermofluid Systems?
Design and optimization of thermofluid systems are

the design and, subsequently, optimization of the design of engineering systems involving
significant fluid flow, thermodynamics, and/or heat transfer.
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1 Introduction

To more fully understand Design and Optimization of Thermofluid Systems, we need to clearly
comprehend the four main terms:

1) design

2) optimization
3) thermofluid!
4) systems.?

Within this context,

1) design is the creation of an engineering system which will provide the desired result, and
2) optimization is taking the workable design one step further, attaining not just a better but the
best design.

There usually exist a few unavoidable constraints, putting practical limits within which the opti-
mal design is bounded. The optimal car may be the one performing the best in terms of mileage.
For a typical middle-class engineer with four mouths to feed, however, the price of the car may be
the deciding factor, limiting the selection to within a low-budget ceiling.

Example 1.1 Design a residential solar thermal energy storage system

Given
An engineering student living in a temperate climate region wishes to store the thermal energy
harnessed from the sun when it shines during the day, for residential use during the night.

Find
An appropriate storage system.

Solution

A workable design is running a glycol-water line from the solar thermal collector into an adequately
large insulated water tank. Glycol-water is appropriately employed to prevent freezing. The tem-
perature of the stored fluid has to be sufficiently high for the intended usage. Reasonable drops in
the temperature from the solar collector to the storage tank and to the delivery end use must be
accounted for, as some losses are inevitable.

The initial workable design, however, is probably not the best design as it may occupy the entire
basement. The use of phase-change material will probably keep the size in check. Molten salt is
also worth exploring, especially when dealing with larger utilization, such as a multiple-housing
residence. Comparing different existing options, such as off-the-shelf tank sizes and storage media
to achieve the best option is called optimization. Since the budget, as well as the available space for
the storage tank, are likely limited, the optimization of the residential solar thermal energy storage
system is thus subjected to budget, space, and other constraints.

Example 1.1 hints that a workable design does not necessarily need to be the best design. In
fact, it typically is not. When the project is adequately large and there are (financial) backings for
it, optimization is invoked to deduce the best design. Furthermore, for a company to compete in
mass-selling of such systems, progressively better designs which are cheaper to manufacture are

1 The term thermofluid encompasses thermodynamics, fluid mechanics, and heat transfer.
2 A system is an orderly collection of integrated parts forming a unitary whole. An internal combustion engine is a
familiar everyday engineering system.



1.2 Differentiating Engineering from Science |3

Figure 1.1 Workable versus optimal design of electricity-driven household light bulbs. Source: Photos
taken by X. Wang and Y. Yang.

necessary. By and large, there will be budgetary, space, and other constraints. Other constraints for
a thermal storage tank can be a maximum workable storage temperature, particular charging and
discharging rates, etc. In some sense, moving from a feasible design to an optimum design is like
progressing from an “ad hoc art and/or experience” to a “systematic scientific artistic endeavor.”

A familiar design versus optimization exemplification is the three types of light bulb for everyday
usage, see Figure 1.1. The incandescent light bulb is a workable design, and it has been satisfying
our need since Thomas Edison invented it in 1879. Much later, the fluorescent light bulb is opti-
mized in terms of energy usage and cost. For this reason, the compact fluorescent light bulb has
finally squeezed out its archetype after being in the market for a couple of decades, the duration
for the price to drop to a competitive level. Over the long run, the LED (light-emitting diode) light
bulb is the best, because the money saved due to its low wattage and very long life span far exceed
the high initial cost. In short, the incandescent light bulb, with a typical life span of 1,000-2,000
hours, is a workable design. The compact fluorescent light bulb, which lasts on the ballpark of
10,000 hours and uses around 75% less energy, is currently the optimum design. The LED light
bulb, which outlasts the fluorescent by up to 50,000 hours while using 90% less energy, is the fruit
of the latest design and optimization endeavor, and it is expected to be the new optimum design in
a few years, as its manufacturing cost drops.

1.2 Differentiating Engineering from Science

The challenging tasks associated with thermofluid systems’ design and optimization are only to be
executed by individuals well educated and trained in engineering, i.e. competent engineers. But
what is engineering? How does it differ from science? Science may be defined as the systematic
knowledge of the physical world that is testable, repeatable, and predictable. Concisely,

Science is the systematic knowledge of the physical world.
Simply put,

Engineering is putting science into practice.
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Figure 1.2 The millennia-old spoked wheel for horse chariots (created by S. Akhand). Shown are
four-spoke chariot wheels resembling those found in the Red Sea, which are attributed to the powerful
Egyptian army, as recorded in Exodus, Chapter 14.

By and large, engineering was initiated for, and still is, the exploitation of science to create prac-
tical systems to make life easier for society. In relation to the context of the material covered in this
book,

Engineering is the science and art of efficient dealing with materials and forces ... it involves
the most economic design and execution ... assuring, when properly performed, the most
advantageous combination of accuracy, safety, durability, speed, simplicity, efficiency, and
economy possible for the conditions of design and service.

J.A.L. Waddell

Let us look briefly at the millennia-old wheels, sketched in Figure 1.2. Horse chariots date fur-
ther back than the Old Testament, where the Pharaohs were largely feared because of their vast
number of powerful horse chariots. Durable wood was the material adopted, and the forces at play
included the load on the chariot and the required torque. As per “economic design and execution,”
the wood has to be readily available locally, or relatively accessible and affordable to acquire from
a not-too-distant land, or from subject nations as tributes under one’s dominance. Accuracy may
be viewed as the wood that does not expand or contract excessively with moisture and/or changes
in the weather. Safety and durability may be perceived as keeping the soldiers from falling off as
they charge the chariots forward into partially-rocky or muddy fields® at great speeds. Note that
speed, to a large extent, decides the fate of the riding warriors. Simplicity and efficiency can easily
be inferred from the spoke design, including the number of spokes. This becomes particularly obvi-
ous when contrasted with the predecessor of the spoked wheels, the clumsy, spoke-less, solid wood
wheels; see Figure 1.3. For war chariots, securing sharp weapons on the outer side the (spoked)
wheel further illustrates ingenious, effective design for the intention.

Further to the differentiation between science and engineering, a scientist is an expert in science,
whereas an engineer creatively converts the scientific findings into useful applications. A good
scientist indiscriminately strives to improve all kinds of knowledge, irrespective of any potential

3 It is worth mentioning that these powerful chariots can become handicapped on muddy and/or hilly ground. For
this reason, foot soldiers prevail in mountainous battlefields.
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Figure 1.3 A sketch of, presumably, the world’s oldest wheel, the Ljubljana Marshes Wheel, found in the
Ljubljana Marshes in 2002 (Gasser, 2003). It has been radiocarbon-dated to before 3100 sce. Source: Y. Yang.

usage, of the physical world. An applied scientist undertakes only applications-oriented scientific
endeavors. This includes an engineering researcher who develops ideas that advance the frontiers
of knowledge but may not be applied for a number of years. In other words, good engineers are not
short-sighted; the prospective applications need not be immediately cognizable. Engineers may be
regarded as professionals who design and develop, creatively converting theoretical concepts into
useful applications on a daily basic. What exactly do engineers do? They link theory with practical
applications. Bona fide engineers possess an extensive theoretical knowledge, the ability to think
creatively, and a knack for obtaining practical results. The materials covered in this book aim at
fostering the forging of amateur engineering students into fully-fledged creative engineers. While
thermofluids is the subject of coverage, much of the knowledge delineated in this book, especially
the core element, optimization, can equally be employed to improve solid mechanics and also pro-
cess and production line processes. The aforementioned wheels for horse chariots clearly fall under
the solid mechanics, not thermofluids, stream. Designing sound wheels for muddy thoroughfares,
however, would encompass solid mechanics, thermofluids, and dynamics.

1.3 Development, Design, and Analysis

Development is the initial phase of an intended venture, where different methods through which
a project may be realized are explored, analyzed, compared, and tested. Once the basic method is
decided, design takes place. Design is the establishment of the exact way the various relating parts
are to be put together so that the entire system functions properly. It generally involves the employ-
ment of concepts from engineering science coupled with a creative touch to make it work, and
work elegantly. As such, to design is to create, devise, and/or forge artistically. To design is to invoke

5
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fundamental principles to an open-ended problem to procure one or more possible solutions. This
is different from analysis, which is the application of fundamental principles to a well-defined prob-
lem to attain the solution. Note that there is a lack of openness and creativity in analysis.

1.4 The Design Process

In general, the design process may be roughly divided into the following steps.

1) Identify the need. What is the problem we have to solve? Keep in mind that engineers are
problem-solvers.
Let us assume the need is the stabilization of an intermittent renewable energy grid.
2) Conception. Establish an insight into the desirable end result and define the project.
The end result is a stable grid which balances supply with demand.
Energy storage can be utilized to mitigate the intermittence of the existing renewable energy
grid.
3) Synthesis. Synthesize one or more possible ways to accomplish the end result.
Pumped hydro, compressed air, underwater compressed air, flywheel, battery, hydrogen, etc., or
a combination of some of these are all possible solutions. Assume that we wish to explore the
underwater compressed air option as there is a body of water available, but not the elevation to
permit pumped hydroelectric storage. Put the major pieces such as the motor, the compressor,
the piping network, the underwater accumulator, the expander, and the generator together.
Note that to realize this, the engineer should have acquired the required knowledge essential
to the pieces of the engineering system puzzle involved.
4) Operation conditions and limits. Outline the operating conditions and spell out the constraints.
Estimate the values of the major parameters. Storage capacity: how much energy storage is
needed? What are the required storing and discharging rates? Storage duration: how long
should the energy be stored? How much money can be spent? How deep is the water?
5) Analysis. Analyze the conceptual solution to deduce its feasibility. If it is infeasible, evaluate
alternative plan(s). Analytical, numerical, or experimental analyses may be invoked.
Perform the basic thermodynamics and fluid mechanics analyses. For example, are the available
depth and volume of water adequate?
Construct and test a pilot-scale system. Perform a parametric study, if appropriate and feasible.

Example 1.2 Design a daily routine for maximizing life span

Given
Alarge pool of data correlating exercise and diet with life span of a typical human being is available.

Find
The healthiest (longest) life span of an average human being, based on the available data.

Solution

1) The objective function, Y = life span.

2) Y = (X, X,), where X, is the number of hours of exercise per week, and X, is the amount of
food in kilograms consumed every week.

3) In the considered case, X; = x;, and thus, Y = f(x,, x,).
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Figure 1.4 Life span as a function of exercise and diet. Source: Y. Yang.

4) 0<x; <63hours, 0 <x, <77kg.
The premise is that only someone who is dead is doing absolutely no exercise. Also, no one can
work out for more than 63 hours (9 hours per day) every week. Furthermore, an average human
being has to eat at least some food every day to stay alive, and no one can consistently consume
more than 77 kg (11 kg per day) of food every week. In other words, an individual is expected to
expire outside of these limits.
After compiling the available data, curve (surface) fitting leads to

Y =117-0.05 [(x1 —15)" + (x, - 30)2]

This is plotted in Figure 1.4.

We see that the longest life span is 117 years, i.e., Y = 117 years at x; = 15 hours and x, = 30 kg.

It is noted that in this design, which happens to be the optimization of human life span, type and
intensity of the exercise and contents of the food have not been considered. Other design parame-
ters, such as quantity and quality of sleep, also demand our attention. The mental, psychological,
or spiritual aspects also come into play, not to mention our typical complaint regarding our many
problems associated with the inheritance of some bad genes.

One could protest that 117 years is simply too old to be considered as a good optimum, and dyeing
of hair, along with cosmetic surgery etc., can only uplift the facade. This is very much in line with
the view of Steve Jobs, who argued that “Design is not just what it looks like and feels like. Design
is how it works.” The sound functioning of the life span optimization stratagem is built into this
groove. In other words, if a 100+year-old person can perform a couple of hours of sound exercise,
along with savoring a couple of kilograms of victuals every day, the individual must also have no
problem conducting the regular washroom business, and thus, the living being is not old but lively.
Pointedly, the design is working!

7
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In real life, it is not always feasible to optimize the design, especially under the pressure of money
and time, both are essential for the survival of the company. Nevertheless, engineers should adopt
the habit of striving for quality in their designs. Steve Jobs correctly said, “Be a yardstick of quality.
Some people aren’t used to an environment where excellence is expected.”

Example 1.3 Stabilize the intermittent renewable energy grid

Given

The increase in renewable energy into the power grid causes a heightened grid stability challenge.
To rephrase it, the sporadic supply of natural energy, such as that harnessed by a wind turbine,
mismatching with irregular demand introduces unprecedented challenges.

Find
A solution to mitigate the grid intermittence.

Solution
Possible steps in the design and optimization process are:

1) Identify the need.
To stabilize the intermittent renewable energy grid.
2) Develop a conceptual solution.
Battery, compressed air, hydrogen, flywheel?
3) Estimate values of major parameters.
How much energy/power? For how long (storing, releasing)? How much will it cost?
4) Construct, test, and modify.
Try out a scaled model.
5) Management and financial review.
Financially feasible? Environmentally acceptable?
The cost may depend on the size and the volume (numbers of units to be sold), and the length
of the payback period.
6) Refine and optimize parameters.
Efficiency is a major concern, how and how much can we improve; availability/cost of materials
used, size, number of accumulators, etc.?
7) Field test for meeting performance, reliability, and safety goals.
UWCAES (underwater compressed air energy storage) prototype, identifying shortcomings,
opportunities for improvement.
8) Manufacture and market.
Sampling/monitoring users’ experiences — failure rates, failure modes, life expectancy, etc.

Iterate as needed.

A good engineer should never forget common sense. Sketching the disposition of physical parts
and possible relative positions is generally a valuable aid. The KISS (Keep It Simple, Stupid) design
philosophy is always a helpful guide. As the case may be, it seems like some advanced thinking is
required to keep it simple. Richie Norton stated that, “Simplicity is complex. It’s never simple to
keep things simple. Simple solutions require the most advanced thinking.” There is an upper limit,
beyond which we would be overdoing it. This is nicely put by Albert Einstein, “Make everything
as simple as possible, but not simpler.”
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1.5 Existing Books on Thermofluid System Design and/or
Optimization
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1.6 Organization of the Book

Money talks and, thus, basic engineering economics is conveyed in Chapter 2. Common ther-
mofluid devices such as valves, ducts, pipes, and fittings are reviewed in Chapter 3. Chapter 4
presents the fundamentals of heat exchangers. The focus is on the most prevailing indirect-contact
heat exchangers. To enable modeling, the system under consideration must be accurately described
by mathematical equations. Therefore, equations are covered in Chapter 5, where pertinent curve
fittings are highlighted. Once the mathematical model is established, we move on to thermofluid
system simulation in Chapter 6. Most prevalent, robust sequential, and simultaneous solution
methods are expounded. With the functioning of the system simulated, the problem can be formu-
lated for optimization. Chapter 7 delineates the formulation of the concerned system, clearly defin-
ing the objective function and relevant constraints. For differentiable objective functions, the cal-
culus approach discussed in Chapter 8 can nail the optimum via rigorous differentiation. For con-
strained problems, the Lagrange Multiplier can convey the sensitivity of the solution with respect
to modest relaxation of, or changes in, the constraint. The beef of the curriculum is Chapter 9,
where the standard search approaches are detailed. With the bullet-proof Exhaustive Search as the
base, versatile single-variable elimination methods, Dichotomous Search, the Fibonacci search and
the Golden Section search are explained. For multi-variable problems, Lattice Search, Univariate
Search, Steepest Ascent/Descent methods are viable for unconstrained problems. Penalty-function
and Search-along-a-constraint methods can be resorted to for constrained multi-variable problems.
For thermofluid systems, the objective function and the constraints can often be expressed as sums
of polynomials. As elaborated in Chapter 10, geometric programming is especially suited for solv-
ing this kind of problems. A few large-scale, real-world, as well as some envisioned, projects are
included in the Appendix.

Problems

1.1 Hot water storage
Assume that the necessary storage energy for Example 1.1 is 2 kJ and water is the medium.
How big is the required storage tank?

1.2 Water temperature leaving a solar thermal collector
The solar radiation is 1500 W/m?2. Water (c, ~4.2kJ/kg-K) at 12°C enters a solar thermal
collector at 0.1kg/s. The available surface area for collecting the solar radiation is 20 m?.
What is the (ideal, maximum) temperature of the water leaving the solar collector?

1.3 Sizing a solar thermal water tank

Assume the daily solar irradiance (direct radiation on a horizontal surface), Iy, for Los
Angeles is equal to that of May 1, 1990 as summarized in Table 1.1.

Table 1.1 Solar irradiance for Los Angeles on May 1, 1990.

Time 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

I, [kI/h-m?] 109 915 1332 2108 2480 2889 2521 1821 837 128
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1.5

1.6

1.7

1.8

Problems

Design a solar thermal system (collector) to supply 0.003 m3/s of 50°C hot water between
9:00 a.m. and 3:00 p.m., where the makeup water is at 20°C. What is the required collector
area? If the maximum available collector area is 200 m?, what is the size of the required hot
water storage tank?

Battery storage for a solar photovoltaic system

Assume the daily solar irradiance (direct radiation on a horizontal surface), I, for Los
Angeles is equal to that in Table 1.1. Design a solar photovoltaic (PV) system using common
commercial PV panels to supply a total of 10 kJ of electricity in a day. How many panels are
needed? What is the required area? If the maximum available collector area is 200 m?, and
a minimum of 1 kW of power is needed between 9:00 a.m. and 3:00 p.m., what is the size of
the required battery storage?

Improve the horse chariot wheels
You are asked to improve the design of a horse chariot such as that for the powerful biblical
pharaoh. How would the performance of the horse chariot vary with the number of spokes,
say, from 2 to 200 spokes? What is the proper sequence concerning development, design,
optimization, and research? What do you call the process of varying the number of spokes
in an effort to improve performance?

Thermoelectric wristwatch

Design a wristwatch that runs on thermoelectric power based on the temperature differ-
ence between the human body and the ambient temperature. Follow the steps delineated
in this chapter. Estimate the needed power and size the thermoelectric power generator
accordingly. See Synder (2019) for an overview of this sexy technology.

Sleeping Beauty’s life span

Suppose additional data on sleeping hours and life span is available, modify the equation in
Example 1.2 to include x;, the number of hours of sleep per month. Create a new equation
so that the same maximum life span is achieved at x; = 240 hours.

Water transport network

Water from a reservoir is to be transported at 0.07 m3/s via a 15-cm diameter commercial
steel pipe piping network with three flanged elbows and to be discharged into the open
atmosphere at 25m above the free surface of the water in the reservoir. A pump is to be
located at 5m below the free water surface. What is the required head which needs to be
supplied by the pump?

Hint: Invoke the conservation of energy for pipe flow. The equations can be found in
Chapter 3 on Thermofluid Devices, where fluid transport in a piping network is recapped.
For example, from the inlet of the pump to the discharge outlet into the open atmosphere
at 25m above the free surface of the water in the reservoir, conservation of energy can be
written as

P,/pg+ hU*/g+2, +h . =P,/pg+ U2 /g +2,+h (1.1)

pump
where P is pressure, p is density, g is gravity, U is average velocity, z is elevation, h,, is
head supplied by the pump, h; is head loss associated with the piping network. The head

loss consists of the major head loss in the straight pipe sections and the minor head loss

11
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1.10

1.11

112

associated with the fittings. The major head loss can be deduced from
hL =f (Lpipe/D) (l/zUz/g) (1-2)

where f is the friction factor, and D is the diameter of the pipe. The minor losses can be
estimated from

hL,minor = KL 1/2U2/g (1.3)

where K is the loss coefficient.

Storing energy underwater

An underwater air accumulator is needed to store 70 kJ of energy during the low-demand
hours when there is plenty of wind to harness energy from a wind turbine. Provide two
workable options in terms of the size of the accumulator and the depth at which it is
placed underwater. See Wang et al. (2016) to appreciate the background of this promising
technology.

Cool a solar photovoltaic panel to boost efficiency

The energy conversion efficiency of a solar photovoltaic (PV) panel is known to decrease as
the PV cell temperature increases (Wu et al., 2018; Fouladi et al., 2019; Yang et al., 2019).
Devise a passive turbulence generator which can effectively lower the cell temperature by
2°C, at solar noon on July 1, in Windsor, Ontario, Canada, or the location where you reside,
assuming that the wind is prevailing at 7 m/s over the PV panel.

Renewable water desalination system

Design a workable renewable energy system for remote water desalination for a typical fam-
ily of four in Bathurst Inlet, Nunavut, Canada. Soni et al. (2017) estimated a typical case for
India with approximately 100 liters of water consumption per capita per day. They presented
a simple four-stage still for the water desalination process based on reduced vapor pressure.
Their wind and solar driven system for a solar flux of 850 W/m? for six hours a day and
1-5m/s wind can meet the fresh water needs of rural and urban communities.

Seasonal thermal storage for a heating greenhouse

Design a seasonal thermal energy storage system for heating a one-acre greenhouse in South
Western Ontario, or another temperate location. For the South Western Ontario setting, see
Semple et al. (2017).
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