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Preface
Precision components are increasingly in demand for
various engineering industries, such as biomedical
engineering, MEMS, electro‐optics, aerospace, and
communications. However, processing these difficult‐to‐
machine materials efficiently and economically is always a
challenging task, which stimulates the development and
subsequent application of vibration‐assisted machining
(VAM) over the past few decades. Vibration‐assisted
machining employs additional external energy sources to
generate high‐frequency vibration in the conventional
machining process, changing the machining (cutting)
mechanism, thus reducing the cutting force and cutting
heat and improving the machining quality. The effective
implementation of the VAM process depends on a wide
range of technical issues, including vibration device design
and setup, process parameter optimization, and
performance evaluation. The current awareness on VAM
technology is incomplete; although ample review/research
papers have been published, no single source provides a
comprehensive comprehending yet. Therefore, a book is
needed to systematically introduce this emerging
manufacturing technology as a subject.
The main objective of this book is to address the basics and
the latest advances in the VAM technology. The first
chapter provides a brief introduction to VAM technology,
including VAM process, benefits, and applications, as well
as its history and development, so that the reader would
have a general understanding of the subject. The second
and third chapters aim to present a detailed description of
the characteristics and design process for vibration
devices. Chapter 2 overviews the current proposed



vibration devices in the literature, and the features of each
type vibration devices are critically reviewed. Chapter 3
focuses on the implementation and design of vibration
devices and the corresponding design procedures are also
discussed. Chapters 4 and 5 are dedicated to the effect of
vibration and machining parameters on tool path/tool–
workpiece separation and the surface topography
generation. Chapters 4 and 5 are dedicated to the effect of
vibration and machining parameters on tool path/tool–
workpiece separation and its influence on the cutting
performance. Chapter 4 covers the kinematic analysis of
VAM, including the tool–workpiece separation type and the
corresponding equations during the processing. Chapter 5
investigates the mechanisms of tool wear and burr
generation under different tool–workpiece separation
situations. Chapter 6 and 7 investigate VAM process
through simulation modelling method. Chapter 6 models
the cutting force using both numerical and finite element
methods. Finite element modeling and analysis of VAM are
detailed in Chapter 7 to deeply understand the cutting
mechanism of VAM. The last chapter contains the modeling
of surface topography using homogeneous matrix
transformation and cutter edge sweeping technology, and
the results are verified by the machining experiments.
This book provides state of the art in research and
engineering practice in VAM for researchers and engineers
in the field of mechanical and manufacturing engineering.
This book can be used as a textbook for a final year elective
subject on manufacturing engineering, or as an
introductory subject on advanced manufacturing methods
at the postgraduate level. It can also be used as a textbook
for teaching advanced manufacturing technology in
general. The book can also serve as a useful reference for
manufacturing engineers, production supervisors, tooling



engineers, planning and application engineers, as well as
machine tool designers.
Some of the research findings in this book have arisen from
an EPSRC‐funded project “Development of a 3D Vibration
Assisted Machining System.” The authors gratefully
acknowledge the financial support of the Engineering and
Physical Sciences Research Council (EP/M020657/1).
The authors wish the readers an enjoyable and fruitful
reading through the book.

Lu Zheng, Wanqun Chen and Dehong Huo

February 2020



1
Introduction to Vibration‐Assisted
Machining Technology

1.1 Overview of Vibration‐Assisted
Machining Technology
1.1.1 Background
Precision components are increasingly in demand in
various engineering fields such as microelectromechanical
systems (MEMS), electro‐optics, aerospace, automotive,
biomedical engineering, and internet and communication
technology (ICT) hardware. In addition to the aims of
achieving tight tolerances and high‐quality surface finishes,
many applications also require the use of hard and brittle
materials such as optical glass and technical ceramics
owing to their superior physical, mechanical, optical, and
electronic properties. However, because of their high
hardness and usually low fracture toughness, the
processing and fabrication of these hard‐to‐machine
materials have always been challenging. Furthermore, the
delicate heat treatment required and composite materials
in aeronautic or aerospace alloys have caused similar
difficulties for precision machining.
It has been reported that excessive tool wear and fracture
damage are the main failure modes during the processing
of such materials, leading to low surface quality and
machining accuracy. Efforts to optimize a conventional
machining process to achieve better cutting performance
with these materials have never been stopped, and these
optimizations include the cutting parameters, tool



materials and geometry, and cutting cooling systems in the
past decades [1–6]. Generally, harder materials or wear‐
resistant coatings are applied, and tool geometry is
optimized to prevent tool cracking and to reduce wear on
wearable positions such as the flank face [5, 7–10].
Cryogenic coolants are used in the machining process, and
their input pressure has been optimized to achieve better
cooling performance [2, 4, 11]. However, although cutting
performance can be improved, the results are often still
unsatisfactory.
Efforts to enhance machining performance have revealed
that machining quality can be improved using the high‐
frequency vibration of the tool or workpiece. Vibration‐
assisted machining (VAM) was first introduced in the late
1950s and has been applied in various machining
processes, including both traditional machining (turning,
drilling, grinding, and more recently milling) and
nontraditional machining (laser machining, electro‐
discharge machining, and electrochemical machining), and
it is now widely used in the precision manufacturing of
components made of various materials. VAM adds external
energy to the conventional machining process and generate
high‐frequency, low‐amplitude vibration in the tool or
workpiece, through which a periodic separation between
the uncut workpiece and the tool can be achieved. This can
decrease the average machining forces and generate
thinner chips, which in turn leads to high processing
efficiency, longer tool life, better surface quality and form
accuracy, and reduced burr generation [12–17]. Moreover,
when hard and brittle materials such as titanium alloy,
ceramic, and optical glass are involved, the cutting depth in
the ductile regime cutting mode can be increased [18]. As a
result, the cutting performance can be improved and
unnecessary post‐processing can be avoided, which allows
the production of components with more complex shape



features [14]. Nevertheless, there are still many
opportunities for technological improvement, and ample
scope exists for better scientific understanding and
exploration.
VAM may be classified in two ways. The first classification
is according to the dimensions in which vibration occurs:
1D, 2D, or 3D VAM. The other classification is based on the
vibration frequency range, for example, in ultrasonic VAM
and non‐ultrasonic VAM. Ultrasonic VAM is the most
common type of VAM. It works at a high vibration
frequency (usually above 20  kHz), and a resonance
vibration device maintains the desired vibration amplitude.
Most of its applications are concentrated in the machining
of hard and brittle materials because of the fact that high
vibration frequency dramatically improves the cutting
performance of difficult‐to‐machine materials. Meanwhile
non‐ultrasonic VAM uses a mechanical linkage to transmit
power to make the device expand and contract, and this
can obtain lower but variable vibration frequencies (usually
less than 10  kHz). It is easier to achieve closed‐loop control
because of the low range of operating frequency, which
makes it uniquely advantageous in applications such as the
generation of textured surface.

1.1.2 History and Development of Vibration‐
Assisted Machining
The history of vibration technology in VAM can be traced
back to the 1940s. During the period of World War II, the
high demand for the electrically controlled four‐way spool
valves mainly used in the control of aircraft and gunnery
circuits stimulated the development of servo valve
technology [19]. Because of their wide frequency response
and high flow capacity, electrohydraulic vibrators were
successfully developed and applied in VAM in the 1960s
with positive effects in enhanced processing quality and



efficiency [20]. With the further development of technology,
electromagnetic vibrators featuring higher accuracy and a
wide range of frequency and amplitude generation were
developed based on electromagnetic technology, and these
were successfully applied to various VAM processes [21].
The need for complex hydraulic lines was eliminated, and
greater tolerance for the application environment was
allowed, which also leads to smaller devices. As a result, a
transmission line or connecting body can be attached to the
vibrator to achieve a wide range of vibration frequencies
and amplitude adjustments [22]. In the 1980s, the maturity
of piezoelectric transducer (PZT) piezoelectric ceramic
technology had brought a new choice for the vibrator. A
piezoelectric ceramic stack could be sandwiched under
compressive strain between metal plates, and this has
advantages including compactness, high precision and
resolution, high frequency response, and large output force
[23]. Various shapes of piezoelectric ceramic elements can
be used to make different types of vibration actuators,
which indicate that the limitations of traditional vibrators
were overcome and the application of VAM technology for
precision machining was broadened. In addition, it helped
in the development of multidimensional VAM equipment.
Elliptical VAM has received extensive attention since it was
first proposed in the 1990s. Although this process has many
advantages compared to its 1D counterpart in terms of
reductions in cutting force and prolongation of tool life, it
requires higher performance in the vibrator, producing a
more accurate tool tip trajectory [24–28]. Piezoelectric
actuators with high sensitivity can fulfill the requirements
of vibration devices and promote the development of
elliptical VAM technology.

1.2 Vibration‐Assisted Machining
Process



This section briefly introduces commonly used VAM
processes, including milling, drilling, turning, grinding, and
polishing. Different vibration device layouts are required to
implement these vibration‐assisted processes and to
achieve advantages over the corresponding conventional
machining processes.

1.2.1 Vibration‐Assisted Milling
Milling is one of the most common machining processes
and is capable of fabricating parts with complex 3D
geometry. However, uncontrollable vibration problems
during the cutting process are quite serious and can affect
processing stability, especially in the micro‐milling process,
leading to excessive tolerance, increased surface
roughness, and higher cost. Vibration‐assisted milling is a
processing method that combines the external excitation of
periodic vibrations with the relative motion of the milling
tool or workpiece to obtain better cutting performance. In
addition to the same advantages as other VAM processes,
complex surface microstructures can also be obtained
because of the combination of a unique tool path and
external vibration. Currently, the application of vibration‐
assisted milling mainly focuses on the one‐dimensional
direction. The vibration may be applied in the feed
direction, cross‐feed direction, or axial direction, and tool
rotational vibrations may also be applied [14]. Little
research has been carried out on 2D vibration‐assisted
milling because of the difficulty of developing two‐
dimensional vibration platforms (motion coupling and
control difficulty), and the vibration mode of these 2D
vibration devices mainly involves elliptical vibration and
longitudinal torsional vibration.

1.2.2 Vibration‐Assisted Drilling


