Environmental Science and Engineering

Raj Kumar Bhattacharya Nilanjana Das Chatterjee

River Sand Mining Modelling and Sustainable Practice

The Kangsabati River, India

Environmental Science and Engineering

Series Editors

Ulrich Förstner, Technical University of Hamburg-Harburg, Hamburg, Germany

Wim H. Rulkens, Department of Environmental Technology, Wageningen, The Netherlands

Wim Salomons, Institute for Environmental Studies, University of Amsterdam, Haren, The Netherlands

The ultimate goal of this series is to contribute to the protection of our environment, which calls for both profound research and the ongoing development of solutions and measurements by experts in the field. Accordingly, the series promotes not only a deeper understanding of environmental processes and the evaluation of management strategies, but also design and technology aimed at improving environmental quality. Books focusing on the former are published in the subseries Environmental Science, those focusing on the latter in the subseries Environmental Engineering.

More information about this series at http://www.springer.com/series/7487

Raj Kumar Bhattacharya · Nilanjana Das Chatterjee

River Sand Mining Modelling and Sustainable Practice

The Kangsabati River, India

Raj Kumar Bhattacharya Department of Geography Vidyasagar University Midnapore, West Bengal, India Nilanjana Das Chatterjee Department of Geography Vidyasagar University Midnapore, West Bengal, India

ISSN 1863-5520 ISSN 1863-5539 (electronic) Environmental Science and Engineering ISBN 978-3-030-72295-1 ISBN 978-3-030-72296-8 (eBook) https://doi.org/10.1007/978-3-030-72296-8

 ${\ensuremath{\mathbb C}}$ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my Grandmother, Late Uma Bhattacharya

Foreword

Healthy ecosystems are the most critical components of the natural environment that are indispensable for human wellbeing and sustainable development. However, the ever-expanding human aspirations, economic developments and urbanization have imposed immense pressure on the natural resources. Indiscriminate extraction of natural resources, especially the building materials, for meeting the rising demand in the construction sector has imposed dire concern to the environment. The river ecosystems are severely impacted by the environmental consequences as they are the first to hit the adversities of economic developments. Among the various kinds of human interventions, mining for aggregate materials like sand and gravel is the most disastrous as the activity threatens the very existence of the river ecosystems. At the same time, the continued supply of aggregate materials like sand and gravel is to be ensured to maintain the pace of developments and economic activity. Such continued human-environment interaction invokes the need for a balanced approach between sand and gravel extraction, and environmental protection. In this context, the effort of Dr. Rajkumar Bhattacharya and Prof. Nilanjana Das Chatterjee in bringing out the book "River Sand Mining, Modelling and Sustainable Practice-The Kangsabati River, India" receives considerable significance and relevance.

The book offers a wide spectrum of subject components covering almost all the essential aspects of river sand mining practice, by considering the case study of Kansabati River in India. Various chapters in this book are grouped under three parts. The first part comprises three chapters dealing with the global scenario, geomorphic threshold of sand mining and seiment budget assessment. The second part embodies four chapters delineating the sediment grain size characteristics, hydraulic variables of flow and sediment regime, channel morphology and ecology. The third part includes sand resources estimation, optimum utilization and identification of sustainable mining sites. This book provides a compelling evidence on the need of environmental conservation and sustainable resource extraction for developmental requirements.

I am sure the book will be very useful for academicians, researchers and students, and also a valuable source material for the decision/policymakers at different levels and the people at large. I congratulate the authors for bringing this crucial geo-environmental aspect to the focus and wish them all the very best.

melalil

Dr. D. Padmalal Scientist-G and Head, Hydrology Group, ESSO-National Centre for Earth Science Studies (NCESS) Ministry of Earth Science Government of India, Thiruvananthapuram, India

Preface

In this era of urbanization, worldwide demand for sand and gravel are increasing day by day to meet huge requirement of construction sector, land filling and transportation sector based infrastructural project etc. It results in over extraction of sand from channel bed, and hampers the natural renewal of sediment, geological setup and morphological processes of the riverine system. Many researchers have addressed that irrational sand and gravel mining are associated with channel hydraulics, morphology and riverine biota especially in alluvial channel. In contrary, optimum sand mining (SM) must be needed for the continuation of rational economic activity. But some crucial research questions are raised: (1) what is the optimal amount of SM in respect to resilience of stream hydraulics, morphological and river ecosystem variables, (2) how to determine the river health response in between pre and post mining stages or sites, and (3) how to propose sustainable SM sites following healthy premises of riverine process-response system (RPRS).

After the critical analysis between geomorphic threshold and geo-environmental consequences of instream SM, sediment budget (SB) is a crucial requirement for the determination of under, optimum and over SM with respect to natural sediment replenishment and sediment extraction. On the other hand, several validated geospatial models are adopted to find out the various responses of instream SM in accordance to pre-mining or sandbar, mining and post-mining stages or sites. Optimization models (Ops) of annual SM rate and environmental impact assessment (EIA) of mining consequences both are final assessment techniques for the determination of overall interrelationship between response factors and responding variables in upper, middle and lower reach, respectively. All of the applied methodologies predicted fruitful results that are summarized from channel geomorphological threshold to sustainable SM based proposed mining sites in this book.

In India, illegal SM (alluvial channel) and gravel mining (perennial channel) are one of the important anthropogenic issues that hamper the sustainable drainage system. SM consequences are more serious and disturbing in an alluvial reach of the Kangsabati River. Construction of Mukutmonipur dam (1958) on the river causes huge sediment deposition along the middle and downstream due to abruptly break of slope. Over extraction of instream and floodplain SM can be especially seen in Mohanpur and Kapastikri (middle and downstream) with a rate of extraction 474926.59 cu ft. out of 588155.6 cu ft. of Kangsabati River (2012–2016, DLRO Paschim Midnapore and Bankura, West Bengal).

Objective of SB in this work is to understand the stability status of channel segments through the assigning of sediment source and sink. Revised universal soil loss equation, sediment delivery distributed model, sediment extraction record datasets (2002–2016) are used to estimate the SB throughout the channel. SB revealed that instream mining leads to interruption of sediment grain size deposition processes along the channel bed incorporate with shear stress which is needed for particle movement. G-STAT, Grad-Stat, Sedlog and linear discrimination function are used to determine the mean, shorting, peakness and skewness of sediment grain size distribution. DuBoys equation and Shields formula are applied for assessment of shear stress and critical shear stress in threshold range between erosion and deposition in mining and sandbar sites. As a result, three different disruption or consequences are occurred i.e. hydrological, morphological and ecological consequences, respectively.

In term of stream hydrological consequences, well known established hydraulic equations along with Acker-White (1973) and Meyer-Peter-Muller methods (1948) are used to derive the hydraulic response on bedload transport and mining intensity, and also tries to determine the effects of mining intensity on bedload sediment transport and pit migration with the presence of instream shear force from sandbar to mining sites. In term of morphological consequences, digital shoreline analysis system based statistical models of end point rate and linear regression rate for estimating the riverbank shifting and resultant erosion-accretion rate, bank erosion hazard index for prediction of bank erosion vulnerability zone, geometrical indices for estimating of channel planform change, are used to compare geomorphic responses in mining and sandbar sites. In terms of ecological consequences, water quality index and habitat suitable index integrated with multiple logistic regressions are applied for the detection of water quality deterioration, three tier habitat transformation and degradation caused by instream SM.

Ops and EIA both have find out the over, optimum and under mining sites as well as to propose potential mining sites with the respect of threshold values of several variables. Based on field experience and scientific analysis, sustainable mining sites have been suggested following resilience state of river dynamic variables, assessed by Ops and EIA.

This book demonstrates the geospatial models along with Ops and EIA techniques for better understanding the resilience state of stream hydraulics, morphological and river ecosystem variables during pre-mining and post-mining using of micro-level datasets. In this context, this book attempts to apply many established models with real datasets in the case study of Kangsabati River. The pragmatic training of utilizing geospatial techniques would be helpful for the students, researchers, academicians, decision makers and practitioners to using those techniques for their own purpose at large scale. Preface

The exceptionality of this volume is its style of presenting the separate methodologies and models are adopted to validate the issue for each chapter along with citing case studies, which will grow up the interests of the scientific reader community. These modern techniques could be facilitated for that community due to present of detail models clarification along with analysis of enough comprehensive algorithms; as a result, they could apply those models as per their choices for the present of lucid writing style.

This book proposed specific practicable measures to minimize the environmental consequences of instream mining in respect to optimum SM. We will discuss how the threshold limits of each variable in stream hydraulics, morphological and river ecological regime, as well as find out the most affected variables. Consequently, all outputs will be very useful for the readers to create their own model in respect to RPRS.

Midnapore, India

Raj Kumar Bhattacharya Nilanjana Das Chatterjee

Acknowledgements

We are taking this opportunity to pay respect to the teachers in the Department of Geography, Vidyasagar University. We are highly obliged to Dr. D. Padmalal, Scientist-G and Head, Hydrology Group, ESSO-National Centre for Earth Science Studies (NCESS), Ministry of Earth Science, Government of India, who helped immeasurably towards the completion of this book. We do express gratitude to A. C. Dinesh, Geologist, Marine wing, GSI, Mangalore for providing many technical supports and useful suggestions. We are obligated to the Irrigation Department of West Bengal, D.L & L.R.O of Paschim Medinipur, and Bankura for their continuous co-operation and support. We are especially thankful to the administrative authorities of our sole institutions for extending their supports to access USIC laboratory, Departmental laboratory and library.

We are grateful to Mr. Kousik Das, UGC Junior research fellow, Vidyasagar University, for his constant technical support in preparing this research work. We also thank students of Geography department for their rigorous efforts during field visits.

Valuable editorial advice including thorough guidance from Doris Bleier, Publishing Editor of Springer Nature continuously helped us to enrich the content and improve the quality of this book. We are indebted to Mr. Chandra Sekaran Arjunan, Project Coordinator, Books, Springer, who took the responsibility of the project coordination and supervised the entire production process.

Last, but not least, we would like to thank our families for their continuous support, understanding the importance of the work and encouragement during the entire work.

> Raj Kumar Bhattacharya Nilanjana Das Chatterjee

Contents

1	River	Sand Mining and its Management: A Global Challenge	1			
	1.1	River Sand Mining	1			
	1.2	Past Work on River Sand Mining	2			
		1.2.1 Sand Mining and Channel Hydrology	2			
		1.2.2 Sand Mining and Channel Morphological	3			
		1.2.3 Sand Mining and Riverine Ecology	5			
	1.3	Past Work on River Sand Mining in India	6			
	1.4	Sand: Mineralogical Structure, Origin and Types	6			
	1.5	Environmental Sensitivity of Sand	7			
	1.6	Economic Significance of Sand	9			
	1.7	Global Challenge for Sustainable Sand Mining During				
		Twenty-First Century	13			
	1.8	Scope of the Present Study	15			
	1.9	Selection of the Study Area	16			
	Refer	ences	16			
2	Geomorphic Threshold and Sand Mining: A Geo-environmental					
	Study	/ in Kangsabati River	21			
	2.1	Introduction	21			
	2.2	Geomorphic Threshold and Instream Sand Mining				
		in Alluvial Channel.	23			
		2.2.1 Alluvial River Sand as Geomorphic Product	23			
		2.2.2 Sand Mining Exceeding Threshold Limits	25			
		2.2.3 Sand Mining Process and Consequences	26			
	2.3	An Alluvial Quarried Reach in Kangsabati River	29			
		2.3.1 Geo-environmental Setting of Kangsabati Catchment				
		Area	30			
		Kangsahati River	36			
			50			

	2.4	Sand Mining Crossed the Threshold Limit in Middle	16	
	25	Conclusion	40	
	2.J Refer	ences	40	
	Refer			
3	Fluvi	al Sediment Budget and Mining Impact Assessment:		
	Use o	of RUSLE, SDR and Hydraulic Models	51	
	3.1	Introduction	51	
	3.2	Estimation of Sediment Source	52	
	3.3	Soil Loss Assessment Using of RUSLE	53	
	3.4	RUSLE Model Set Up	53	
	3.5	Case Study: Estimation of Mean Annual Soil Erosion		
		at Sub Basin Level of Kangsabati Basin Using RUSLE—A		
			55	
		3.5.1 Estimation of RULE Factors	30	
		3.5.2 Defineation of Potential MASE.	68	
		3.5.3 Relation Between Soil Erosion with Land Use/Land	74	
	26	Covers (LULC) and Basin Area	74	
	5.0 2.7	Cose Study: Assessing of Sediment Delivery Patie (SDP)	70	
	5.7	and Sediment Vield (SV) at Sub Basin Level of Kangsabati		
		Bosin A Case Study	77	
		2.7.1 Estimation of SDP Easters	79	
		3.7.1 Estimation of Soliment Delivery Patio (SDP)	70 97	
		3.7.2 Definition of Sediment Derivery Ratio (SDR)	84	
		3.7.4 Validation of SDR	86	
		3.7.5 Delineation of SV	88	
		3.7.6 Potential Annual SV at Sub-basin Level	90	
	3.8	Sink of Sediment Budget	90	
	3.9	Case Study: Assessing of Sediment Sink and Sediment Budget	20	
	5.7	in Kangsabati River	91	
		3.9.1 River Sand Mining in Kangsabati River	92	
		3.9.2 Estimation of Sediment Transport (O_T)	95	
		3.9.3 Estimation of Sediment Concentration (X)	96	
		3.9.4 Estimation of Sediment Budget in Eight Segments		
		of Kangsabati River	96	
	3.10	Conclusions 1	100	
	Refer	ences	101	
	C . P	and Casta Circ Analysis and Ministry Interaction		
4	Seam	nent Gram Size Analysis and Mining Intensity:	105	
		Introduction	105	
	4.1 1 2	Sand Mining Despanse on SCD	104	
	4.2		100	

Contents

	4.3	Sediment Grain Size Analysis	108
		the SGD 1	109
	4.4	Case Study: Accessing the Relationship Between Stream	
		Energy and Sediment Grain Size Distribution	
		in Kangsabati River Using GRAD Stat	109
		4.4.1 Preparation of Sampling Process	110
		4.4.2 Textural Characterization	110
		4.4.3 Bivariate Scatter Graphs of Grain Parameters	118
	4.5	Case Study: Estimation the Transporting Mechanism	
		and Depositional Environment in Kangsabati River Using	
		G-STAT (Grainsize Statistics) Software	122
		4.5.1 Cumulative Weight Percentage Diagrams of Sediment	
		Textural Ratio	124
		4.5.2 Analysis of Granulometric Properties Using Triangular	
		Diagram	124
		4.5.3 Analysis of Transport Mechanism and Mode of	
		Deposition Using CM Diagram	126
		4.5.4 Estimation of Tractive Current Deposits at Course	
		Level	128
	4.6	Linear Discriminate Function (LDF)	129
		4.6.1 Case Study: Derivation of Sediment Depositional	
		Environment in Kangsabati River Using LDF	132
		4.6.2 Bivariate Graph of Sediment Depositional Environment	
		During Pre Monsoon and Monsoon	133
	47	Grain Size Related to Bed Shear Stress (τ 0) and Critical	100
	1.7	Shear Stress (U*)	137
		 4.7.1 Case Study: Erosion and Deposition Process in Relation to Mining Intensity During Pre Monsoon and Monsoon 	157
		in Kangsabati River	138
		4.7.2 Erosion and Deposition Process in Relation to SGD	142
	4.8	Conclusion	142
	Suppl	lementary Table	143
	Refer	ences	145
5	Minii	ng Response on Alluvial Channel Flow and Sediment	
5	Tran	sport: Application of Hydro-Morphological Techniques	
	and H	Principal Component Analysis (PCA)	151
	5.1	Introduction 1	151
	5.2	Mining Genesis Turbulence Flow and Its Affected Hydraulic	
		Variables of Sediment Transport	153
		5.2.1 Measure of Hydraulic Variables of the Flow Regime	153
		5.2.2 Measure of Hydraulic Variables of the Sediment	
		Transport	156

	5.3	Case S	Study: Sand Mining Affected Interruption of Hydraulic	
		Variab	les in Flow Regime of Kangsabati River	159
		5.3.1	Hydraulic Variables of Flow Regime and Mining	
			Intensity	160
		5.3.2	Hydraulic Variables of Sediment Transport and Mining	
			Intensity	166
		5.3.3	Bivariate Relation Between Hydraulic Variables of Flow	
			Regime with Mining Intensity	173
		5.3.4	Bivariate Relation Between Hydraulic Variables of	
			Sediment Regime with Mining Intensity	176
	5.4	Compa	aratively Supremacy of Hydraulic Variables of Bedload	
		Transp	oort and Their Clustering Using Principal Component	
		Analys	sis (PCA)	179
		5.4.1	Principle of PCA	180
		5.4.2	Hydraulic Variables Set up for PCA	181
		5.4.3	Supremacy Execution Amongst the Hydraulic Variables	
			of Sediment Transport in Quarried River Kangsabati	
			Using PCA	182
	5.5	Deform	nation of Hydrodynamic Regime	187
	5.6	Conclu	lsion	188
	Supp	lementai	ry Table	193
	Refer	ences .		195
6	Sand	Mining	Consequences on Channel Mornhology: Practical	
Ŭ	Use o	f Digits	al Shoreline Analysis System (DSAS). Geometrical	
	Indic	es and	Compound Factor (CF)	199
	6.1	Introdu	iction	199
	6.2	Applic	ation of Hvdro-Morphological Techniques to Measure	
		the Mi	ning Induced Geomorphic Responses (GRs)	201
	6.3	Case S	Study: Mining Induced Geomorphic Responses and	
		Riveri	ne Land Cover Changes in Kangsabati River.	201
		6.3.1	Estimation and Prediction of Mining Affected River	
			Bank Erosion Using Digital Shoreline Analysis System	
			(DSAS)	202
		6.3.2	BLS and Erosion/Accretion Process	207
		6.3.3	Others Mining Induced GRs	231
		6.3.4	Channel Planform Change	240
		6.3.5	RLCs Change	241
	6.4	Prioriti	ization of Mining Induced Geomorphic Consequences	
		Using	Compound Factor (CF)	242
	6.5	Case S	Study: Mining Affected Geomorphic Prioritization at	
		Segme	nt Level in Kangsabati River	243
	6.6	Conclu	ision	247
	Refer	ences .		248

Contents

and G	Nining	g Consequences on Habitat Ecology, Water Quality
anu c Meth	ods	Diversity: Implementing of HSI, WILK, WQI and ANN
7 1	Introd	uction
7.2	Three	Tier Habitat (TTH) Degradation or Alternation
	and Sa	and Mining
7.3	Establ	ishment of Habitat Suitability Index (HSI) for TTH
	Degra	dation or Alternation
7.4	Applic	cation of Multiple Logistic Regression (MLR)
	for As	ssessment of Sand Mining Impact
	7.4.1	MLR Model Set Up
	7.4.2	Basic Principle of MLR
	7.4.3	MLR Set Up for TTH Alteration or Degradation
7.5	Case S	Study: Multi Habitat Suitable Parameters Based TTH
	Altera	tion or Degradation in Quarried Kangsabati River
	7.5.1	Factor Affecting on Habitat Suitability
	7.5.2	Validation of Habitat Suitability Model
	7.5.3	Result of Habitat Suitable Parameters
	7.5.4	HSI of Koeleria Macrantha During Pre Mining
		and Post Mining Phase
	7.5.5	HSI of Cynodon Dactylon During Pre Mining
		and Post Mining Phase
	7.5.6	Validation of HSI of Koeleria Macrantha
		and Cynodon Dactylon Species
7.6	Water	Quality Deterioration.
	7.6.1	Determination of Water Quality in Mined River Using
		Water Quality Index (WQI)
	7.6.2	Relative Weighted Arithmetic WQI Set Up
	7.6.3	Application of Artificial Neural Network (ANN) Model
		and MLR to Explain the Impact of Sand Mining
		on Water Quality
	7.6.4	Case Study: Water Quality Assessment in Quarried
		Kangsabati River
1.1	Assess	sment of Sand Mining Impact on Instream Biota Using
	Biodiv	rersity Index
	/./.1	Case Study: Assessment of Instream Biota in Kangsabati
	770	Kiver.
	1.1.2	Correlations of Estimated Water Quality Parameters and
		пятеат внога

Ontin	mable	n Model and ELA	21
			21
ð.1	Introd		21
8.2	Audit	of River Sand	21
0.0	8.2.1		31
8.3	Case	Study: Utilizing Sand Audit Report to Estimate the	
	Amou	int of River Sand Resource for Mining Plan of the	2.1
	Kangs	Sabati River	3
	8.3.1	Estimation of Sand Resources in Possible Mining	21
	0 2 2		31
	8.3.2	Allocation of Mineable Sand in Possible Mining Sites	52
	8.3.3	Bed Level Lowering Estimates the Recorded	~
~ .	- ·	and Non-recorded Sand Mining	32
8.4	Optim	al Sand Utilization	3.
	8.4.1	Optimal Model Related Theories	3.
	8.4.2	Optimal Model Premises Hypothesis	32
	8.4.3	Optimization Model Establishment	32
8.5	Case	Study: Optimal Sand Extraction or Sand Mining	
	Plan f	or Kangsabati River	3
8.6	Enviro	onmental Impact Assessment (EIA) for Propose	
	Sand	Mining Sites	3.
	8.6.1	Methodological Set Up for EIA Through Analytical	
		Hierarchy Process (AHP)	3.
	8.6.2	Methodological Set Up for EIA Through Rapid Impact	
		Assessment Matrix (RIAM)	3.
8.7	Case S	Study: EIA of Instream Sand Mining for Allocating	
	of Sus	stainable Sand Mining Sites of the Kangsabati River	3
	8.7.1	Impact on Riverine Environment	3
	8.7.2	EIA for Proposing of Sustainable Sand Mining	
		Sites in Upper Course	34
	8.7.3	EIA for Proposing of Sustainable Sand Mining	
		Sites in Middle Course	34
	8.7.4	EIA for Proposing of Sustainable Sand Mining	
		Sites in Lower Course	3:
8.8	Concl	usion	3:
8.9	Key S	Suggestions for Sustainable Sand Mining	3
8.10	Gener	al Conclusion	30
Suppl	ementa	ry Tables	3

List of Figures

Fig. 1.1	Sand mining consequences in several aspects. <i>Sources</i> Prepared by author, based on the ideas of Victor and Ampofo (2013) and Kamboj et al. (2017)	3
Fig. 1.2	Hierarchical mineral stability series under weathering process. Source Modified by the authors, based on Goldich (1938)	8
Fig. 1.3	Sand classification flowcharts. <i>Source</i> Modified by the authors, based on Gavriletea (2017)	9
Fig. 1.4	Sand sensibility: a breeding, feeding, hiding and spawning sufficiency of fish community. <i>Source</i> Modified by the authors, based on Hauer et al. (2018), b supply of nutrients into channel bed hyporheic zone. <i>Source</i> Modified by the authors, based on McClain et al. (1998), c alteration of hyporheic zone. <i>Source</i> Authors	11
Fig. 1.5	Worldwide sediment discharge loads (1993, 2011). <i>Source</i> Prepared by the authors, based on Gleick (1993) and Milliman and Farnsworth (2011)	11
Fig. 1.6	Global sand market (1995–2018): a export and import trade value in six continents (Million \$), b trade forecasts of sand (\$). <i>Source</i> Prepared by the authors, based on distributor map and trade forecasts preparing by Observatory of Economic	
Fig. 2.1	Complexity (http://oec.world/emn/profile/hs92/sand) Geomorphic threshold and erosion-deposition process: a threshold related with sediment load, b threshold related with slope. <i>Source</i> Prepared by the authors, based on Lane's balance relationship amongst sediment load, grain size,	12
Fig. 2.2	channel slope and discharge (1955) Sand mining induced geomorphic threshold limit in alluvial channel. <i>Source</i> Prepared by the authors following Rinaldi	24
	et al. (2005), Rovira et al. (2005)	26

Fig. 2.3	Crossing the geomorphic threshold limits: a huge	
	sedimentation (sand extraction < natural replenishment),	
	b intensive sand mining (sand extraction > natural	
	replenishment). Source Prepared by the authors based on the	
	ideas of Lane (1955), Kondolf (1994, 1997)	30
Fig. 2.4	a Kangsabati basin area. Source Authors. b Entire sub-basins	
	in Kangsabati basin. Source Authors	32
Fig. 2.5	Geological set up. Source Authors are prepared from	
C	Geological Survey of India map sheet 73I, J and N	
	(http://www.portal.gsi.gov.in)	34
Fig. 2.6	Geomorphic set up of the Kangsabati basin. <i>Source</i> Authors	
118.2.0	are prepared from morphological map West Bengal	34
Fig 27	Fight different channel segments in Kangsabati River. Source	54
11g. 2.7	Authors	27
	Competition abarratemistics and land cover along with different	57
Fig. 2.8	Geometric characteristics and fand cover along with different	20
F '. 2 0	closs sectional position in Knatra segment. Source Authors	20
Fig. 2.9	Geometric characteristics and land cover along with different	
	cross sectional position: a Raipur segment, b Laigarn segment.	40
-	Source Authors	40
Fig. 2.10	Geometric characteristics and land cover along with different	
	cross sectional position in Dherua segment. <i>Source</i> Authors	41
Fig. 2.11	Geometric characteristics and land cover along with different	
	cross sectional position: a Mohanpur segment, b Kapastikri	
	segment. Source Authors	43
Fig. 2.12	Geometric characteristics and land cover along with different	
	cross sectional position: a Panskura segment, b Rajnagar	
	segment. Source Authors	45
Fig. 2.13	Threshold limit of sand mining consequences in eight	
	segments. Source Authors.	47
Fig. 3.1	Schematic diagrams of sediment budget with the following of	
-	source to sink system of riverine sediment. Source Prepared by	
	the authors, based on Rhine sediment budget (Frings et al.	
	2014; Grimaud et al. 2018)	52
Fig. 3.2	RUSLE methodological flow chart. Source Modified by	
U	authors, based on Bhattacharva et al. (2020b).	54
Fig. 3.3	Isohvets map and rainfall erosivity factor in the study area:	
119. 5.5	a 2002 b 2016 Source Modified by authors based on	
	Bhattacharva et al. (2020a h)	57
Fig 34	Soil parameter: a spatial distribution map b K factor Source	57
1 Ig. <i>5</i> .4	Modified by authors based on Bhattacharya et al	
	(2020_2 h)	50
Eig 25	Luzua, U)	57
rig. 3.3	Estimation slope parameter in Kangsabati basin: a LS factor, b flow accumulation a flow direction d m factor and a^{0}	
	b now accumutation, c now direction, a in factor and e b	()
	Tactor. Source Authors	02

xxii

Fig. 3.6	LULC pattern and estimation of c factor: a LULC during 2002,	
	b C factor during 2002, c LULC during 2016 and d C factor	
	during 2016. Source Modified by authors, based on	
	Bhattacharya et al. (2020b)	66
Fig. 3.7	Potentiality of MASE distribution in Kangsabati basin: 3.6 a	
-	MASE in 2002 and 3.6b MASE in 2016. Source Authors	69
Fig. 3.8	Spatial distribution of soil loss in different LULC at sub-basin	
	level: a during 2002, b during 2016. <i>Source</i> Authors	75
Fig. 3.9	Relationship between basin area and soil loss: a 2002, b 2016.	76
Fig 3 10	Flow chart of SDR model <i>Source</i> Modified by authors based	10
119. 5.10	on Bhattacharva et al. (2020b)	78
Fig 3 11	Travel time in Kangsabati basin <i>Source</i> Modified by authors	/0
115. 5.11	hased on Bhattacharva et al. (2020a)	79
Fig. 3.12	Surface roughness in Kangsabati basin: a 2002: h 2016	17
115. 5.12	Source Modified by authors, based on Bhattacharva et al	
	(2020_2)	81
Fig. 3.13	Flow velocity in the entire basin: a 2002 and b 2016	01
Fig. 5.15	Source Modified by authors based on Rhattacharya et al	
	(2020_2)	82
Fig = 2.14	Elow length of all sub tributaries. Source Modified by authors	62
Fig. 5.14	has a phattacherya at al. (2020a)	02
Eig. 2.15	Sadiment delivery ratio (SDR): a 2002 h 2016	85
Fig. 5.15	Securities Madified by sythema based on Distractory at al	
	(2020_{0})	05
Fig. 2.16	Spatial distribution of SDP in different LULC at sub basin	65
Fig. 5.10	level: a during 2002 b during 2016 Source Authors	87
Eig 2 17	Velidetion of SDP following model results: a SDP velideted	07
Fig. 5.17	in 2002 h SDR validated in 2016. Severe Authors	00
$E_{i\alpha} = 2.19$	SV distribution in study areas a SV during 2002 h SV during	00
Fig. 5.18	2016 Source Modified by outborn based on Phottochemic	
	2010. Source Modified by autions, based on Bhattacharya	20
E 2 10	Conductivity of the indifferent expression of the Kennesheti	89
Fig. 5.19	sand mining sites in different segments along the Kangsabati	
	Denshure accurate Secure Present he authors have a DI	
	Panskura segment. Source Prepared by authors, based on DL	02
E'. 2.20	& DLR, 2010–2015	93
Fig. 3.20	Sand mining sites along the Kangsabati river: a Monanpur,	
	b Kapastikri. Source Prepared by authors, based on DL &	0.4
F: 0.01	DLR, 2010–2015	94
Fig. 3.21	Shifted of registered long term sand mining sites (2002–2016).	
	Source Prepared by authors, based on DL & DLR,	0.5
F: 0.00	2010–2015	95
F1g. 3.22	Entire sediment budget analysis in Kangsabati basin.	6-
	Source Authors	- 97

Fig. 3.23	Sediment budget status in the eight segments of Kangsabati River <i>Source</i> Authors	98
Fig. 4.1	Sediment grain size related with erosion/deposition. <i>Source</i> Authors are digitised from Hjulström-Sundborg diagram	20
	(1935)	107
Fig. 4.2	Sediment sample sites in Kangsabati River. <i>Source</i> Prepared by the authors.	111
Fig. 4.3	SGD in every class weight during pre monsoon and monsoon: a upper course, b middle course, c lower course. <i>Source</i> Prepared by the authors	116
Fig. 4.4	Grain size versus sorting: a Pre monsoon, b monsoon season. Source Prepared by the authors.	110
Fig. 4.5	Grain size versus skewness: a Pre monsoon, b monsoon season. <i>Source</i> Prepared by the authors	121
Fig. 4.6	Grain size versus kurtosis: a Pre monsoon, b monsoon season. Source Prepared by the authors.	123
Fig. 4.7	Sediment distributions (phi) in upper course sample sites of Kangsabati River: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	125
Fig. 4.8	Sediment distributions (phi) in middle course sample sites of Kangsabati River: a pre monsoon, b monsoon. <i>Source</i>	125
Fig. 4.9	Sediment distributions (phi) in lower course sample sites of Kangsabati River: a pre monsoon, b monsoon. <i>Source</i>	125
Fig. 4.10	Prepared by the authors Triangular diagrams at course level: a upper, b middle, c lower, d trend of textural distribution. <i>Source</i> Prepared by the	126
Fig. 4.11	CM diagrams predict mode of sediment transport in upper	127
Fig. 4.12	CM diagrams predict mode of sediment transport in middle	129
Fig. 4.13	CM diagrams predict mode of sediment transport in lower course: a pre monsoon, b monsoon. <i>Source</i> Prepared by the	129
Fig. 4.14	Tractive current deposits in upper course: a pre monsoon, b monsoon. Source Prepared by the authors	130
Fig. 4.15	Tractive current deposits in middle course: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	130
Fig. 4.16	Tractive current deposits in lower course: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	131
Fig. 4.17	Relationship between discriminate functions of Y1 and Y2: a pre monsoon, b monsoon. <i>Source</i> Prepared	
	by the authors	133

List of Figures

Fig. 4.18	Relationship between discriminate functions of Y2 and Y3: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	134
Fig. 4.19	Relationship between discriminate functions of Y3 and Y4: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	125
Fig. 4.20	Available and critical shear stress at course level: a pre monsoon, b monsoon. <i>Source</i> Prepared by the authors	133
Fig. 5.1	Mining pit induced turbulent flow near Rangamati (middle course). <i>Source</i> Authors	166
Fig. 5.2	Nature of sediment transport along the upper course: a mode of sediment transport in sandbar site near Lalgarh (upper course), b huge bed extraction reduces sediment transport in mining sites near Sarenga, c trapping of sediment and nutrients in pits near Bikampur. <i>Source</i> Authors	168
Fig. 5.3	Hydrodynamic interruption along the middle course: a transitional flow based ripple mark near Mohanpur (middle course), b mining induced anarbrancing flow creates numerous braid channels near Kankabati, c sediment traps in recirculation zone of pit sites near Debangai (middle course). <i>Source</i> Authors	169
Fig. 5.4	Interruption of bedload transport along the lower course: a particle fall velocity based sediment accumulation near Kapastikri bifurcation point, b mining induced pool sites near Singhaghai ghat, c turbulent flow affected bank erosion in pit sites near Narajole. <i>Source</i> Authors	171
Fig. 5.5	Bivariate correlation among hydraulic variables of flow regime in sandbar, mining and pit sites: a discharge versus channel flow, b velocity versus channel flow, c Manning coefficient versus channel flow, d velocity versus roughness coefficient. <i>Source</i> Authors	174
Fig. 5.6	Bivariate correlation among hydraulic variables of sediment transport in sandbar, mining and pit sites: a particle diameter versus Sediment transport, b shear stress versus Bedload transport, c shear velocity versus Bedload transport, d sediment concentration versus Sediment transport. <i>Source</i> Authors.	178
Fig. 5.7	Class wise categorization of stream hydraulics using the Z scores of PC1 and PC2 Prinsscore along the upper course.	185
Fig. 5.8	Class wise categorization of stream hydraulics using the Z scores of PC1 and PC2 Prinsscore along the middle course.	105
	Source Authors	186

Fig. 5.9	Class wise categorization of stream hydraulics using the Z scores of PC1 and PC2 Prinsscore along the lower course.	
	Source Authors	187
Fig. 5.10	Channel bed disruption from Anicut dam to Debangai of	
	Kapastikri segment in 2012: a river bed disruption,	
	b longitudinal bed slope. <i>Source</i> Authors	188
Fig. 5.11	Channel bed disruption from Anicut dam to Debangai of	
	Kapastikri segment in 2016: a river bed disruption,	
	b longitudinal bed slope. <i>Source</i> Authors	189
Fig. 5.12	Channel bed disruption from Lalgarh Govt. College to Lalgarh	
U U	bridge of Lalgarh segment during 2012: a river bed disruption,	
	b longitudinal bed slope. <i>Source</i> Authors	190
Fig. 5.13	Channel bed disruption from Lalgarh Govt. College to Lalgarh	
0	bridge of Lalgarh segment in 2016; a river bed disruption.	
	b longitudinal bed slope. <i>Source</i> Authors	191
Fig. 5.14	River bed lowering in respect of mining intensity and	
U	replenishment rate: a Kapastikri Segment, b Lalgarh segment.	
	Source Authors	192
Fig. 6.1	Conceptual schematic diagrams of mining induced channel	
0	hydromorphic responses. <i>Source</i> Modified by the authors,	
	based on Calle et al. (2017)	200
Fig. 6.2	Eight different segments are demarcated for the micro-level	
8. •	estimation of riverbank shifting in Kangsabati River. Source	
	Authors	204
Fig. 6.3	Bank line shifting derived by LRR model: a distribution of	
8. •.•	intersection positions at both side from the common baseline.	
	b the spatial trend and magnitude of bank line shifting along	
	the transect (No. 101) from the baseline toward left and right	
	sides of river banks at Mohanpur segment. <i>Source</i> Authors	206
Fig. 6.4	EPR and LRR model predicted long term (2000–2020) lateral	
8	bank line shifting including photographs snapped during the	
	field survey depicting bank shifting driven river bank erosion	
	in eight segments: a Khatra, b Raipur, c Lalgarh, d Dherua.	
	e Mohanpur, f Kapastikri, g Panskura, h Rainagar, Source	
	Authors.	211
Fig. 6.5	LRR model based bank line shifting in eight segments during	
8. •.•	2000–2020: a left bank, b right bank, <i>Source</i> Authors	216
Fig. 6.6	EPR based bank line shifting in eight segments during	
8	2000–2020: a left bank, b right bank, <i>Source</i> Authors	218
Fig. 6.7	Year wise intensity of shifting in predicted backlines (2020,	
0	2030) and actual bank lines (2000, 2006, 2010, 2016 and	
	2020) at left bank: a Khatra, b Raipur, c Lalgarh, d Dherua.	
	e Mohanpur, f Kapastikri, g Panskura. h Rainagar. Source	
	Authors.	220

	٠	٠
XXV	1	1

Fig. 6.	 8 Year wise intensity of shifting in predicted backlines (2020, 2030) and actual bank lines (2000, 2006, 2010, 2016 and 2020) at right bank: a Khatra, b Raipur, c Lalgarh, d Dherua, e Mohanpur, f Kapastikri, g Panskura, h Rajnagar. Source 	
Fig. 6.	 Authors Mining responses and its induced land cover dynamics in eight segments: a Khatra, b Raipur, c Lalgarh, d Dherua, e Mohanpur, f Kapastikri, g Panskura, h Rajnagar. Source 	225
	Authors.	233
Fig. 6.	10 Sand mining induced pool-riffle alteration: a pool-riffle sequence during mining, b alteration of pool- riffle sequences during post mining. <i>Source</i> Authors are prepared from pool riffle sequences giving by Day (2014).	220
Fig. 6.	11 Mining induced bed level lowering: a Lalgarh, b Mohanpur,	238
Fig. 6.	 c Kapastikri. <i>Source</i> Authors	239
	<i>Source</i> Authors	245
Fig. 7.	1 Schematic diagram of sand mining induced direct and indirect impact on river ecology. <i>Source</i> modified by the authors, based on Koehnken et al. (2020)	252
Fig 7	2. Conceptual evaluation of sand mining induced three tier	232
1 18. 7.	habitat destruction/alteration. <i>Source</i> authors	253
Fig. 7.	3 Habitat suitability of <i>Koeleria macrantha</i> during pre and post mining: a Khatra, b Raipur, c Lalgarh, d Dherua, e Mohanpur,	
	f Kapastikri, g Panskura and h Rajnagar. <i>Source</i> Authors	265
Fig. 7.	4 Habitat suitability of <i>Cynodon dactylon</i> during pre and post mining: a Khatra, b Raipur, c Lalgarh, d Dherua, e Mohanpur,	
	f Kapastikri, g Panskura and h Rajnagar. Source Authors	273
Fig. 7.	 5 ROC for habitat suitability of <i>Koeleria macrantha</i> a Khatra, b Raipur, c Lalgarh, d Dherua, e Mohanpur, f Kapastikri, 	
E. 7	g Panskura and h Rajnagar. <i>Source</i> authors	280
гı <u>g</u> . /.	b Roc for habitat suitability of <i>Cynoaon aactyton</i> a Khatra,	
	σ Panskura and h Rainagar <i>Source</i> authors	281
Fig. 7.	7 Frame work of basic principle of ANN. <i>Source</i> modified by the	201
Fig 7	Sample sites from sandher mined and nits of Kangsahati	280
1'ig. /.	River Source authors	280
Fig. 7	9 ANN structure: a sandbar. b mined sites. c pits	209
8. /.	Source authors	297
Fig. 7.	10 Pearson correlation matrix between WQI and PP: a sandbar,	
-	b mining, c pits. <i>Source</i> authors	299

List of Figures

Fig. 8.1	Schematic diagrams of sediment storage zone in the particular	
	stretch of a channel. Source Modified by the authors, based on	
	Padmalal and Maya (2014)	317
Fig. 8.2	Linear function in between quantity and price of aggregate	
	sand resources relationship. Source Modified by the authors,	
	based on Zhai et al. (2020)	328
Fig. 8.3	Inverse proportion function relationship in between quantity	
	and price of aggregate sand resources relationship. Source	
	Modified by the authors, based on Zhai et al. (2020)	328
Fig. 8.4	General functional relationship in between quantity and price	
	of aggregate sand resources relationship. Source Modified by	
	the authors, based on Zhai et al. (2020)	329
Fig. 8.5	Relationship in between demand and supply amount of river	
	sand resource: a $q_i^* > v_{maximum}$, b $q_i^* = v_{maximum}$, c	
	$q_i^* < v_{maximum}$. Source Modified by the authors, based on Zhai	
	et al. (2020)	331
Fig. 8.6	Sand mining statuses during 2011–2014: a Lohatikri,	
	b Relapal, c Gumripal, d Lilukhola, e Kankabati, f Debangai.	
	Source Authors are prepared from Kangsabati sand mining	
	database, DL and LRO of Paschim Mednipore, Bankura	
	(2010–2014)	334
Fig. 8.7	Hierarchical set up of criteria and alternatives. <i>Source</i>	
	Modified by the authors, based on Saaty (2008)	337
Fig. 8.8	Proposed sustainable mining sites in upper course: a Khatra,	
-	b Raipur, c Lalgarh. <i>Source</i> Authors	351
Fig. 8.9	Proposed sustainable mining sites in middle course: a Dherua,	
-	b Mohanpur. <i>Source</i> Authors	355
Fig. 8.10	Proposed sustainable mining sites along the lower course:	
	a Kapastikri, b Panskura, c Rajnagar. <i>Source</i> Authors	359

xxviii

List of Tables

Table 2.1	Geological succession beds in the Kangsabati basin	33
Table 2.2	Characteristics of eight different channel segments	36
Table 2.3	Average width-depth ratio and maximum depth distribution in	
	different segments	39
Table 2.4	Land cover patterns in different segments of Kangsabati	
	River	47
Table 3.1	Estimation of soil erodibility factor or K factor using soil	
	taxonomy	60
Table 3.2	RUSLE parameter and soil loss in twenty seven sub basin	
	during 2002 and 2016	70
Table 3.3	SDR and SY in twenty seven sub basin during 2002	
	and 2016	72
Table 4.1	Descriptive statistical analysis for the SGD during pre	
	monsoon season	114
Table 4.2	Descriptive statistical analysis for the SGD during monsoon	
	season	115
Table 4.3	Summary of grain size statistical parameters (in percentage	
	of the total number at each location) and sediment type during	117
T.1.1. 4.4	pre monsoon season.	11/
Table 4.4	summary of grain size statistical parameters (in percentage	
	of the total humber at each location) and sedment type during	110
Table 4.5	Summary of estimated environments using discriminate	110
1 auto 4.5	functions	136
Table 4.6	Descriptive statistic of shear stress and critical shear stress	150
1 4010 4.0	during pre-monsoon season	139
Table 47	Descriptive statistic of shear stress and critical shear stress	157
1 4010 1.7	during monsoon season	139
Table 5.1	Hydraulic variables of flow and sediment regime during pre	137
2.0010 0.11	monsoon	162

Table 5.2	Hydraulic variables of flow and sediment regime during	162
Table 5.3	Hydraulic variables of flow and sediment regime during post	105
	monsoon	164
Table 5.4	Correlation coefficient and significance level of dependent and independent hydraulic variables of flow and sediment	
	regime	177
Table 5.5	Database arrangement for executing PCA	182
Table 5.6	Flow and sediment regime hydraulic factors loadings of	
	Principal Components for upper course dataset	183
Table 5.7	Flow and sediment regime hydraulic factors loadings of	
	Principal Components for middle course dataset	183
Table 5.8	Flow and sediment regime hydraulic factors loadings of	
	Principal Components for lower course dataset	184
Table 6.1	Image used in estimation of bank line shifting, erosion and	
	accretion	203
Table 6.2	LRR predicted left bank line shifting rate (erosion and	
	accretion) during 2000–2016 in eight different segments	209
Table 6.3	LRR predicted right bank line shifting rate (erosion and	
	accretion) during 2000–2016 in eight different segments	210
Table 6.4	EPR model based average rate (m/year) of periodic shifting of	
	left and right banks at eight different segments	217
Table 6.5	Prediction of erosion and accretion across the left bank	224
Table 6.6	Prediction of erosion and accretion across the right bank	229
Table 6.7	DSAS model based bank line shifting results of RMSE and	
	student's t test for different segments during 2000–2016	230
Table 6.8	Riverine land cover patterns at segment level during 2002	232
Table 6.9	Riverine land cover patterns at segment level during 2016	232
Table 6.10	Channel planform change (sinuosity index, braiding index,	
	braid channel ratio) and pool-riffle alteration during	
	2002–2016	238
Table 6.11	Mining induced geomorphic consequence prioritization in	
	eight different segments using CF value.	244
Table 7.1	Derivation of coefficient with significance values of input	
	variables layer on Koeleria macrantha' and Cynodon dactylon	
	species dominance in different segments using MLR	263
Table 7.2	Sand mining affected areas in habitat suitability of Koeleria	
14010 //2	macrantha' and Cynodon dactylon	271
Table 7.3	Classification accuracy of HSI on Koeleria macrantha'	271
1000 7.5	and Cynodon dactylon in three segments	270
Table 7.4	Model summary of hinary multiple logistic regression analysis	- 1 -
Гаоте 7.т	in three different segments	280
Table 7.5	Physiochemical information of instream water in sandbar	202
14010 1.5	sites	290
	01000	

List of Tables

Table 7.6	Physiochemical information of instream water in mining	201
Table 7.7	Physiochemical information of instream water in nit sites	291
Table 7.8	Iteration results of the proposed ANN model	292
Table 7.0	Coefficient of the MLR in sandbar mined and nits sites	301
Table 7.10	Site wise distribution of phytoplankton and zooplankton	303
Table 7.10	Correlation between physiochemical properties and instream	505
14010 7.11	biota in sandhar mined and nit sites	304
Table 8.1	Prospective mining areas in Lalgarh segment based on KSMP	504
	2016	310
Table 8.2	Prospective mining areas in Mohannur segment based on	519
1 abic 0.2	KSMP 2016	320
Table 8.3	Computation of expected of hed lowering and non recorded	520
	sand mining over the years in different mining segments	277
Table 8.4	Computation of send mining demand ontimum volume and	322
1 auto 0.4	maximum profit in selected mining sites of Kangsabati	
	Piver	222
Table 8.5	Pair wise comparison matrix	333
Table 8.6	Final priority in hierarchical structure of sand mining criteria	542
	and sub alternatives for EIA	3/3
Table 87	Environmental aspects/sub components and impact categories	545
	of send mining from upper course mining sites (after Pastakia	
	1008: Pasmi et al. 2011)	318
Table 8.8	Environmental aspects/sub components and impact categories	540
1 able 0.0	environmental aspects/sub-components and impact categories	
	1008: Pasmi et al. 2011)	252
Table 8.0	Environmental espects/sub-components and impact esterorize	555
1 auto 0.9	of sand mining from lower course mining sites (after Pastelia	
	1008: Dosmi et al. 2011)	256
	1990, R (2011)	550

List of Plates

Plate 1.1	Various type of river sand: a gravel size, b coarser sand,	
	c medium sand, d finer sand. <i>Source</i> Authors	10
Plate 2.1	Instream sand mining methods in Kangsabati River:	
	a barskimming, b pit excavation, c bar excavation,	
	d sand and gravel traps. <i>Source</i> Authors	28
Plate 2.2	Floodplain sand mining methods in Kangsabati River:	
	a pit excavation, b dry pit mining. <i>Source</i> Authors	29
Plate 2.3	Geomorphic threshold ranges of sand mining consequences	
	from Aniket Dam to Debangai in Kapastikri segment:	
	a resilience of threshold limit during 2003, b over the threshold	
	limit during 2017. Source Authors are prepared from Google	
	Earth Images 2003, 2017	48
Plate 3.1	ß factor measured from gully channel. Source prepared	
	by the authors, based on Renard (1997)	61
Plate 3.2	Field photography of soil loss in Lalgarh segment: a soil	
	erosion across the rill and gully. b Mass failure across the bank	
	margin. Source Authors.	74
Plate 3.3	Field photography of SY: a delivery outlet across the	
	Mohanpur; b SY across the Lalgarh. <i>Source</i> Authors	90
Plate 3.4	Mining induced consequences: a River bank erosion in	
	Mohanpur, b huge sedimentation in Dherua. <i>Source</i> Authors	99
Plate 4.1	Sediment grain size in different course: a Gravel at upper	
	course, b coarser at upper course, c medium grain at middle	
	course, d finer grain at lower course. <i>Source</i> Authors	113
Plate 4.2	Scouring and deposition process: a pit pool sites, b sandbar	
	sites near Kapastikri divider point. Source Authors	141