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To Fulvio Ricci, with gratitude.



Preface

On 25–29 June 2018 the INdAM Meeting “Geometric Aspects of Harmonic
Analysis” took place in Cortona. This conference, which saw the participation of
over 120 mathematicians from around the world, was organised on the occasion of
Fulvio Ricci’s 70th birthday.

This short introduction is not meant to discuss the interest and relevance of Fulvio
Ricci’s mathematical contributions, which are witnessed by his bright career, the
quality of his scientific production, the awards he received and the level of the
scholars who participated in the conference. Some words in that direction can be
found in the letter by Elias Stein included in this volume. Instead, we would like
to express our appreciation of Fulvio and our gratitude to him for the humanity, the
rigour, the fairness he has always shown in mathematics and life and, last but not
least, his great openness to interact and collaborate with mathematicians of all ages
and from all over the world.

This volume originated in talks given in Cortona and presents timely syntheses of
several major fields of mathematics as well as original research articles contributed
by some of the finest mathematicians working in these areas.

It is our pleasure to thank all the organisations that contributed generously to the
conference with their financial support: the Istituto Nazionale di Alta Matematica-
INdAM, the Clay Mathematics Institute, the US National Science Foundation, the
Scuola Normale Superiore di Pisa, the Università degli Studi di Milano Bicocca,
and the Università degli Studi di Padova. Special thanks are due to the University of
Wisconsin–Madison, which kindly hosted the website of the conference.

On behalf of the entire organising committee of the conference we would like
to acknowledge our great appreciation to the director of INdAM, Professor Giorgio
Patrizio, and to the former director of SNS, Professor Vincenzo Barone. Their efforts
and suggestions helped to make this a most fruitful and enjoyable meeting.

We are also pleased to thank all the speakers for the distinguished and outstand-
ing lectures they gave.
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viii Preface

It is our pleasure to thank all people working at the Centro Convegni
Sant’Agostino and the Palazzone, which were the meeting’s venues, for their
friendliness, kindness and effectiveness; special thanks are particularly due to Mrs
Rita Santiccioli and Mrs Benedetta Biagiotti.

We owe a debt of gratitude to all the other organisers of the conference: Luigi
Ambrosio, Gian Maria Dall’Ara, Bianca Di Blasio, and especially the US organisers
Loredana Lanzani, Betsy Stovall and Brian Street, who applied for the NSF funding.

Finally, we would like to take this opportunity to thank all the participants in the
conference. We hope that the warm atmosphere of those days in Cortona will be a
nice memory for all of them.

Padova, Italy Paolo Ciatti
Birmingham, UK Alessio Martini
October 2020



At the Occasion of Fulvio’s Conference

Elias M. Stein could not attend the June 2018 conference in Cortona. Instead, he
sent a letter, which was read during the conference and is reproduced below.

Dear Fulvio and friends,
I’m sorry that I’m missing this wonderful celebration in your honor, Fulvio—I

can only blame my overly cautious doctor for this. But I want to take this opportunity
to say a few words of appreciation of your many remarkable achievements, and then
indulge in a few reminiscences.

First, we all know and recognize that your work continues to have broad impact
and wide influence—indeed your efforts have played a major role in transforming
a number of diverse area in analysis. Your constant urge to try to look at things
differently, your deep insights, great energy, and your keen appreciation for what is
really important, has made all of this possible. In working with others (you’ve had at
least 20 collaborators), your wisdom and warmth have brought out the best in your
coworkers, and in many cases made them even better than they thought possible, as
I can readily attest.

I will indicate the sweep of your interests and contributions by sketching only a
partial list of the main areas of your work.

• Harmonic analysis of singular integrals of Radon-type on nilpotent groups.
• Geometry and analysis of non-symmetric harmonic spaces, and the study of their

boundary groups.
• The theory of solvability of invariant differential operators on the Heisenberg

group.
• The study of maximal functions and singular integrals associated to polynomial

maps.
• Spectral multipliers on the Heisenberg group, their connection with the Hodge-

Laplacian, and the origin of flag kernels.
• The general theory of operators with flag kernels on nilpotent groups, and most

recently, the theory of singular integrals controlled by multiple norms.

ix



x At the Occasion of Fulvio’s Conference

Fulvio—allow me now to come to some personal recollections. I’m not sure
when we first met. It might have been before 1980, but we really got to know each
other a few years later when you came to the Institute for the whole academic year
with Sandra and Alberto. We began working together then, and wrote a nice (but
forgettable) paper. However what was important is that we learned to appreciate
each other, that we had mathematical empathy, and that we could easily talk together
in that common language we both loved.

There followed a series of visits by you in Princeton, and by me in Torino.
Besides all the mathematics we did together—which I will always treasure—I
remember with nostalgia the hotel Bologna near the train station, the cafes in the
elegant Piazza San Carlo, and the pleasant walks to the Politecnico where we worked
all day, interrupted only by lunch (not at a mensa!), but with paninis in the nice cafes
in the area.

We also had the good fortune to twice spend one-week stays during the summer
(with our families and a few friends) at the Villa Ronconi, right on the shore of Lake
Como, with its marvelous grounds and stunning views. However, soon thereafter
my university, in its wisdom, decided to dispose of this unique holding, and we
were thus expelled from our own private paradise. Nevertheless, a few years later
we had the lucky chance to spend (again with our families and some good friends) a
summer month in Berkeley. While not paradise, Berkeley and its surroundings were
the next best thing on earth! It was there that Alex Nagel joined our collaboration,
and a few years later we also attracted Steve Wainger to our common effort.

And now, after these few warm recollections of the past, I come to some words
about the present and future. Having myself passed this milestone a number of years
ago, I can say with some certainty that this is a new beginning—maybe not what one
would like as an ideal starting point—but nevertheless bracing, full of interesting
challenges to undertake and try to master, and rich in the achievements that can be
hoped for, and the joy and satisfaction they entail. So with this in view, I wish you
all the best of fortune in your further life and adventures!

Happy birthday!
Eli
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An Extension Problem and Hardy Type
Inequalities for the Grushin Operator

Rakesh Balhara, Pradeep Boggarapu, and Sundaram Thangavelu

Dedicated to Professor F. Ricci on his 70th birthday

Abstract In this paper we study the extension problem associated to the Grushin
operatorG = −�−|x|2∂2

w on R
n+1 and use the solutions to prove trace Hardy and

Hardy inequalities for fractional powers ofG.

Keywords Grushin operator · Extension problem · Hardy and trace Hardy
Inequalities

1 Introduction and Main Results

In this article we are interested in proving Hardy type inequalities for fractional
powers of the Grushin operatorG = −�− |ξ |2∂2

w on R
n+1. Recall that in the case

of Laplacian� on R
n such inequalities are well known and there is a vast literature

on the topic. For 0 < s < 1, two kinds of Hardy inequalities for the fractional
powers (−�)s/2 have been studied. The inequality

((−�)s/2f, f ) � cn,s
∫
R
n

|f (x)|2
(1 + |x|2)s dx
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2 R. Balhara et al.

with a sharp explicit constant cn,s is known as Hardy’s inequality with non-
homogeneous weight function whereas the inequality

((−�)s/2f, f ) � Cn,s
∫
R
n

|f (x)|2
|x|s dx

is the Hardy inequality with homogeneous weight. The constant Cn,s is also known
to be sharp and explicit. It is of interest to prove such inequalities when� is replaced
by more general elliptic/subelliptic operator. A particularly interesting case is the
one where we have the sublaplacian L on Heisenberg groups H

n in place of the
Laplacian �. In the articles [13] and [14] the authors have established Hardy type
inequalities for (conformally invariant) fractional powers of L.

In this work we are mainly interested in proving Hardy type inequalities for
fractional powers ofG. There are several ways of proving Hardy inequalities for the
Laplacian, see [2, 10] and [20]. For the case of sublaplacian L the authors in [13]
have used the method of ground state representation developed by Frank, Lieb and
Seiringer [9] in proving a version of Hardy inequality for the sublaplacian with non-
homogeneous weight. Later, in [14] the same authors have used a different method
in proving analogues of both inequalities making use of solutions of the so called
extension problem for the sublaplacian. The extension problem for the Laplacian
studied by Caffarelli and Silvestre [4] deals with the initial value problem

(�+ ∂2
ρ + 1 − s

ρ
∂ρ)u(x, ρ) = 0, u(x, 0) = f (x), x ∈ R

n, ρ > 0.

The solutions of this problem can be written down explicitly and using them one
proves the following inequality known as trace Hardy inequality: for reasonable
real valued functions ϕ from the domain of (−�)s/2 one has

∫ ∞

0

∫
R
n
|∇x,ρu(x, ρ)|2ρ1−sdxdρ ≥ cs

∫
R
n
u(x, 0)2

(−�)s/2ϕ(x)
ϕ(x)

dx

valid for all real valued functions f ∈ C∞
0 (R

n+1). When u is a solution of the
extension problem with initial condition f , the left hand side of the above reduces to
a constant multiple of ((−�)s/2f, f ). Further, the choice ϕ(x) = (1+|x|2)−(n−s)/2
allows us to simplify the right hand side and we obtain the Hardy inequality

((−�)s/2f, f ) ≥ cn,s
∫
R
n

|f (x)|2
(1 + |x|2)s dx.

When f (x) = (1 + |x|2)−(n−s)/2 both sides of the above inequality are equal with

cn,s = 2s
�( n+s2 )

�( n−s2 )
.

All of these are well known in the case of the Laplacian on R
n. Recently, in

[14] the authors have carried out similar analysis for the sublaplacian L on the
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Heisenberg group H
n. Our aim in this article is to show that the same analysis can

be done also for the case of the Grushin operator. Thus we will be studying the
extension problem for the Grushin operator and use the solutions to prove trace
Hardy and Hardy inequalities for fractional powers of the Grushin operator.

In the Euclidean case, an important role is played by the identity

(−�)s/2(1 + |x|2)−(n−s)/2 = 2s
�(n+s2 )

�(n−s2 )
(1 + |x|2)−(n+s)/2

which follows from the transformation property of the Macdonald function. This
can be easily proved by taking the Fourier transform: writing

ϕs(x) = (1 + |x|2)−(n+s)/2 = 1

�(n+s2 )

∫ ∞

0
e−t (1+|x|2)t

n+s
2 −1dt

and taking the Fourier transform we see that

ϕ̂s(ξ) = (4π)−n/2

�(n+s2 )

∫ ∞

0
e−t e−

1
4t |ξ |2 t

s
2 −1dt.

The integral on the right hand side is given in terms of the Macdonald function
K−s/2, see [12], page 407):

K−s/2(|ξ |2) = 2s/2−1|ξ |−s
∫ ∞

0
e−t e−

1
4t |ξ |2 t

s
2 −1dt.

The change of variables u = |ξ |2
4t proves that

|ξ |s ϕ̂−s (ξ) = 2s
�(n+s2 )

�(n−s2 )
ϕ̂s(ξ)

as desired. The corresponding identity used in the case of the sublaplacian L is the
Cowling-Haagerup [6] formula

Ls((1 + |z|2)2 + 16t2)−(n+1−s)/2 = 42s �(
n+1+s

2 )2

�(n+1−s
2 )2

((1 + |z|2)2 + 16t2)−(n+1+s)/2.

This identity is a consequence of certain transformation property of the Kummer’s
function. In our case we make use of the following relation which is the analogue
of the above identity:

G̃s((1 + |ξ |2)2 +w2)−(n+2−2s)/4 = 22s �(
n+2+2s

4 )2

�(n+2−2s
4 )2

((1 + |ξ |2)2 +w2)−(n+2+2s)/4.
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Here G̃s stands for the conformally invariant fractional power of the Grushin
operator and the above identity can be proved by expanding the functions involved
in terms of Laguerre functions and making use of an identity proved for Laguerre
operators in [5].

2 Preliminaries on the Grushin Operator

By the Grushin operator we mean the degenerate elliptic operator G = −� −
|ξ |2∂2

w, ξ ∈ R
n, w ∈ R on R

n+1. Here � stands for the standard Laplacian on R
n.

When f is an integrable function on R
n+1 let

f λ(ξ) =
∫ ∞

−∞
f (ξ,w)eiλwdw

stand for the inverse Fourier transform of f in the last variable. Then it follows
that (Gf )λ(ξ) = H(λ)f λ(ξ) where H(λ) = −� + λ2|x|2 is the scaled Hermite
operator on R

n. The spectral decomposition ofG can be written in terms of Hermite
expansions. Let Pk(λ) stand for the projections of L2(Rn) onto the k−th eigenspace
of H(λ) with eigenvalue (2k + n)|λ| so that

H(λ) =
∞∑
k=0

((2k + n)|λ|)Pk(λ).

Then the spectral decomposition of G is given by

Gf (ξ,w) = (2π)−1
∫ ∞

−∞
e−iλw

( ∞∑
k=0

((2k + n)|λ|)Pk(λ)f λ(ξ)
)
dλ.

For a bounded function m defined on the spectrum of G, viz. R+ we can define the
operatorm(G) by

m(G)f (ξ,w) = (2π)−1
∫ ∞

−∞
e−iλw

( ∞∑
k=0

m((2k + n)|λ|)Pk(λ)f λ(ξ)
)
dλ

which is clearly a bounded linear operator on L2(Rn+1). The choice m(a) =
e−ta, t > 0 leads to the heat semigroup e−tG generated by the Grushin operator.
For information on the spectral theory of the Hermite operator we refer to [17].

We make use of the following representation of the Heisenberg group H
n in

order to transfer operators in the Heisenberg setting into the setting of Grushin.
On L2(Rn+1) we define the representation π by

π(z, t)f (ξ,w) = f (ξ − y,w − t − ξ · x + 1

2
x · y), f ∈ L2(Rn+1), z = x + iy.
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It is easy to see that π is a strongly continuous unitary representation of H
n on

L2(Rn+1). More generally, for any f ∈ Lp(Rn+1), 1 ≤ p ≤ ∞, we can check that
π(z, t)f converges to f in Lp(Rn+1) as (z, t) goes to 0. The connection between
the sublaplacian L and the Grushin operator G arises from the following. We can
easily check that π(Xj ) = −ξj ∂∂w and π(Yj ) = − ∂

∂ξj
where Xj = ∂

∂xj
+ 1

2yj
∂
∂t

and Yj = ∂
∂yj

− 1
2xj

∂
∂t

are the vector fields on H
n which along with T = ∂

∂t
form

a basis for the Heisenberg Lie algebra. Thus we see that π(L) = G and this allows
us to express certain functions ofG in terms of operators related to L. For example,
the heat semigroup e−tG generated by the Grushin operator can be written as

e−tGf (ξ,w) =
∫
H
n
qt(z, a)π(z, a)f (ξ,w)dzda (1)

where qt (z, a) stands for the heat kernel associated to L. A simple proof of this goes
as follows.
∫
H
n
qt (z, a)π(z, a)f (ξ, w)dzda=

∫ ∞

−∞

∫
C
n
qt (z, a)f (ξ−y, w−a−ξ ·x+1

2
x·y)dzda

which by Plancherel theorem for the Euclidean Fourier transform simplifies to

∫
C
n

∫ ∞

−∞
e−iλweiλ(−x·ξ+

1
2x·y)qλt (z)f λ(ξ − y)dλdz.

Recalling the definition of the Schrödinger representation πλ(z, a) of Hn (see [18])
and using the fact that qt (x + iy, a) is even in y we get

∫
H
n
qt (z, a)π(z, a)f (ξ,w)dzda =

∫ ∞

−∞

∫
C
n
e−iλwqλt (z)πλ(z, 0)f λ(ξ)dzdλ.

But it is well known that
∫
C
n
qλt (z)πλ(z, 0)dz =

∫
H
n
qt(z, a)πλ(z, a)dzda = e−tH(λ)

(see Sections 2.8, 2.9 in [18]). In view of the spectral resolution of G we obtain the
desired representation:

∫
H
n
qt (z, a)π(z, a)f (ξ,w)dzda = e−tGf (ξ,w).

The above representation gives us an easy proof of the fact that e−tGf converges
to f in Lp(Rn+1) for all 1 ≤ p <∞. This can be seen as follows. It is well known
that qt is a Schwartz class function H

n with
∫
H
n qt (z, a)dzda = 1 and it satisfies

qt (z, a) = t−n−1q1(t
−1/2z, t−1a). Therefore, making a change of variables in (1)
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we get

e−tGf − f =
∫
H
n
q1(z, a)

(
π(t1/2z, ta)f − f )dzda (2)

from which our claim is immediate. More generally, the following is true and we
will make use of it later.

Lemma 1 Suppose ϕ ∈ L1(Hn) with
∫
H
n ϕ(z, a)dzda = c and for t > 0

define ϕt(z, a) = t−n−1ϕ(t−1/2z, t−1a). Then for any f ∈ Lp(Rn+1), 1 ≤ p <

∞, π(ϕt )f converges to cf in the norm as t → 0.

3 An Extension Problem for the Grushin Operator

In this section we study the following extension problem for the Grushin operator
G. Given f ∈ Lp(Rn+1) we are interested in finding solutions u(ξ,w, ρ) of the
equation

(−G+ ∂2
ρ+ 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

w

)
u(ξ,w, ρ) = 0, u(ξ,w, 0) = f (ξ,w). (3)

It might appear to be natural to study the extension problem

( −G+ ∂2
ρ + 1 − 2s

ρ
∂ρ
)
u(ξ,w, ρ) = 0, u(ξ,w, 0) = f (ξ,w) (4)

instead of the above. However, the problem (3) is more suitable for the study of trace
Hardy and Hardy inequalities. The solutions of (4) are related to pure powersGs of
the Grushin operator whereas those of (3) are related to the conformally invariant
fractional powersGs (see Section 4 for the definitions ofGs andGs). A solution of
(4) is given by the following formula of Stinga–Torrea [15]:

u(ξ,w, ρ) = ρ2s

�(s)

∫ ∞

0
e−

1
4t ρ

2
e−tGf (ξ,w)t−s−1dt (5)

where e−tG is the heat semigroup generated by G. Then it is not difficult to see
that u(ξ,w, ρ) solves (4) and u(ξ,w, ρ) converges to f in Lp(Rn+1) as ρ → 0
for 1 ≤ p < ∞. It is also known, see [15], that ρ1−2s∂ρu(ξ,w, ρ) converges to a
constant multiple of Gsf as ρ → 0.

By modifying the Stinga–Torrea formula (5) we can also write down a solution
of the extension problem (3). Let pt,s(ρ,w) be the heat kernel associated to the
generalised sublaplacian (see [1])

L(s) = ∂2
ρ + 1 + 2s

ρ
∂ρ + 1

4
ρ2∂2

w
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on R
+ × R. Then the solution of the above extension problem can be written down

explicitly in terms of the function e−tGf . Indeed, we have the following analogue
of the Stinga–Torrea formula.

Theorem 2 For f ∈ Lp(Rn+1), 1 ≤ p ≤ ∞ a solution of the extension problem
(3) is given by

u(ξ,w, ρ) = ρ2s
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)e−tGf (ξ,w −w′)dw′dt. (6)

As ρ tends to zero, the solution u(ξ,w, ρ) converges to Csf in Lp(Rn+1) for 1 ≤
p <∞ where Cs = 1

4�(s)π
−s−1.

Proof Applying G to the function u and noting that e−tGf (ξ,w) satisfies the heat
equation −Gut(ξ,w) = ∂tut (ξ,w) we see that

Gu(ξ,w, ρ) = −ρ2s
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)∂t e−tGf (ξ,w − w′)dw′dt.

Integrating by parts in the t variable we can transfer the t derivative to pt,s(ρ,w)
and since it satisfies the heat equation associated to L(s) we obtain

Gu(ξ,w, ρ) = ρ2s(∂2
ρ + 1 + 2s

ρ
∂ρ + 1

4
ρ2∂2

w

)

×
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)∂t e−tGf (ξ,w −w′)dw′dt.

A simple calculation shows that

ρ2s(∂2
ρ+

1 + 2s

ρ
∂ρ+1

4
ρ2∂2

w

)
v(ξ,w, ρ) = (

∂2
ρ+

1 − 2s

ρ
∂ρ+1

4
ρ2∂2

w

)
(ρ2sv(ξ,w, ρ))

for any function v(ξ,w, ρ). This proves that u satisfies the extension problem.
Since the heat semigroup e−tG is contractive on Lp spaces it follows that

‖u(·, ρ)‖p ≤ ρ2s
( ∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)dw′dt
)
‖f ‖p.

We also know that (see [1])

∫ ∞

−∞
pt,s(ρ,w)e

iλwdw = (4π)−s−1
( λ

sinh(tλ)

)s+1
e−

1
4λ coth(tλ)ρ2

.
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In view of this we obtain

‖u(·, ρ)‖p ≤ Cρ2s
( ∫ ∞

0
e−

1
4t ρ

2
t−s−1dt

)
‖f ‖p ≤ C‖f ‖p.

In order to prove that u(·, ρ) converges to f we make use of the fact that e−tGf
converges to f in Lp(Rn+1) as t tends to zero for 1 ≤ p < ∞. From the explicit
form of pt,s(ρ,w) we note that pρ2t,s(ρ,w) = ρ−2s−4pt,s(1, w/ρ2). Thus the
solution u of the extension problem is given by the integral

u(ξ,w, ρ) = ρ−2
∫ ∞

0

∫ ∞

−∞
pt,s(1, w′/ρ2)e−tρ2Gf (ξ,w − w′)dw′dt.

Letting

Cs = ρ−2
∫ ∞

0

∫ ∞

−∞
pt,s(1, w′/ρ2)dw′dt

= (4π)−s−1
∫ ∞

0
t−s−1e−

1
4t dt = 1

4
�(s)π−s−1

we write u(ξ,w, ρ) − Csf (ξ,w) as the sum of the following two terms:

I1(ξ,w, ρ)= ρ−2
∫ ∞

0

∫ ∞

−∞
pt,s(1, w

′/ρ2)
(
e−tρ2Gf (ξ,w−w′)−f (ξ,w−w′)

)
dw′dt

and

I2(ξ,w, ρ) = ρ−2
∫ ∞

0

∫ ∞

−∞
pt,s(1, w′/ρ2)

(
f (ξ,w −w′)− f (ξ,w))dw′dt.

Clearly,

‖I1‖p ≤ ρ−2
∫ ∞

0

∫ ∞

−∞
pt,s(1, w′/ρ2)‖e−tρ2Gf − f ‖pdw′dt

and hence converges to zero as ρ goes to zero. On the other hand ‖I2‖p also
converges to zero as translation is continuous on Lp and pt,s(ρ,w) satisfies the

estimate pt,s(ρ,w) ≤ Ct−s−1e− c
t
(ρ2+|w|) for some constants C and c. 
�

Remark 3 The solution of the extension problem for the Grushin operator given in
(6) can be written as ρ2sπ(
s,ρ) for a suitable function 
s,ρ on the Heisenberg
group. In fact let us define


s,ρ(z,w) =
∫ ∞

0

( ∫ ∞

−∞
pt,s(ρ,w

′)pt (z,w −w′)dw′)dt.
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Using the fact that π(pt ) = e−tG it can be easily shown that

ρ2sπ(
s,ρ) = ρ2s
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)π(0, w′)e−tGdt.

Since π(0, w′)f (ξ,w) = f (ξ,w −w′) it follows that

ρ2sπ(
s,ρ)f (ξ,w) = ρ2s
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)e−tGf (ξ,w −w′)dt (7)

is the solution defined in (6). Using the homogeneity properties of the heat kernels
pt,s and pt we can check that ρ2s
s,ρ(z,w) = ρ−2n−2
s,1(ρ

−1z, ρ−2w) and
‖
s,1‖L1(Hn) = 1

4�(s)π
−1−s . Thus the solution of the extension problem is given

by

u(ξ,w, ρ) = ρ−2n−2
∫
H
n

s,1(ρ

−1z, ρ−2a)π(z, a)f (ξ,w)dzda (8)

which gives, in view of Lemma 1, another proof that u(ξ,w, ρ) converges to
1
4�(s)π

−1−sf (ξ,w) as ρ goes to 0.

Remark 4 We can also rewrite the solution in the form

u(ξ,w, ρ) =
∫
R
n+1
Kρ(ξ, y,w −w′)f (y,w′)dydw′

where the kernelKρ satisfies the homogeneity condition

Kρ(x, y,w) = ρ−n−2K1(ρ
−1x, ρ−1y, ρ−2w).

The kernel Kρ is expressible in terms of 
s,ρ . We also remark that the functions

s,ρ are known explicitly (see [13]). By using explicit formulas for the kernels pt,s
and pt we can calculate the above integral obtaining


s,ρ(z,w) = C1(n, s)
(
(ρ2 + |z|2)2 +w2)−(n+1+s)/2

,

where C1(n, s) = 2n+s−1π−n−s−2�
(
n+1+s

2

)2
.

In the above theorem we have shown that the solution defined by (6) satisfies
the uniform estimates ‖u(·, ρ)‖p ≤ C‖f ‖p. It is therefore natural to ask if all the
solutions of (3) satisfying the uniform estimates ‖u(·, ρ)‖p ≤ C, ρ > 0 are given
by the formula (6) for some f ∈ Lp(Rn+1).

Theorem 5 Assume 1 ≤ p < ∞ and let u(ξ,w, ρ) be a solution of the extension
problem (3) which satisfies the uniform estimates ‖u(·, ρ)‖p ≤ C, ρ > 0. Then
there exists a unique f ∈ Lp(Rn+1) such that u can be expressed as in (6).
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Proof Under the hypothesis on u it follows that there is a subsequence ρk tending
to 0 and an f ∈ Lp(Rn+1) such that u(ξ,w, ρk) converges to f weakly. With this
f let us define

v(ξ,w, ρ) = ρ2s
∫ ∞

0

∫ ∞

−∞
pt,s(ρ,w

′)e−tGf (ξ,w −w′)dw′dt.

The theorem will follow once we show that u = v. In order to prove this we
make use of the uniqueness theorem for solutions of the extension problem for the
sublaplacian proved in [14]. This theorem for the sublaplacian was proved as an
easy consequence of results from [3] and [7].

We make use of the fact that L(π(z, t)ϕ,ψ)) = (π(z, t)Gϕ,ψ) for any two
functions ϕ,ψ on R

n+1. Therefore, if u(ξ,w, ρ) is a solution of the extension
problem for the Grushin operator with initial value 0 then for any ϕ ∈ Lp′

(Rn+1)

( − L + ∂2
ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

t

)(
π(z, t)u(·, ρ), ϕ)

= (
π(z, t)(−G+ ∂2

ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

w)u(·, ρ), ϕ
) = 0.

Hence the hypothesis on u shows that ‖(π(·, ·)u(·, ρ), ϕ)‖∞ ≤ C and so by the
uniqueness theorem for the sublaplacian (see Theorem 1.1 in [14]) we conclude that
(π(z, t)u(·, ρ), ϕ) = 0 for all ϕ and hence u = 0. 
�

4 Fractional Powers of the Grushin Operator

Given a bounded functionm on the spectrum ofG one can define the operatorm(G)
via spectral theorem by

m(G)f (ξ,w) = (2π)−1
∫ ∞

−∞
e−iλwm(H(λ))f λ(x)dλ.

Thus we can think of m(G) as an operator valued multiplier for the Euclidean
Fourier transform on R. Indeed, by identifying L2(Rn+1) with L2(R,X) where
X = L2(Rn) the above can be rewritten as

m(G)F(w) = (2π)−1
∫ ∞

−∞
e−iλwM(λ)F̂ (λ) dλ

where F(w)(ξ) = f (ξ,w) and M(λ) = m(H(λ)). Assuming that m(H(λ)) is
a bounded linear operator on X = L2(Rn) the above is precisely the definition
of operator valued Fourier multipliers studied by L. Weis in [19]. The operator
valued functionM(λ) is known as the multiplier corresponding to m(G). With this
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terminology, the fractional powersGs, 0 < s < 1 are defined via the multiplier

Ms(λ) = (2|λ|)s
∞∑
k=0

�( 2k+n+1+s
2 )

�( 2k+n+1−s
2 )

Pk(λ).

More explicitly,

Gsf (ξ,w) = (2π)−1
∫ ∞

−∞
e−iλw(2|λ|)s

( ∞∑
k=0

�( 2k+n+1+s
2 )

�( 2k+n+1−s
2 )

Pk(λ)
)
f λ(ξ)dλ.

Observe that Gsf is well defined as an L2 function under the assumption that

Ms(λ)f
λ(ξ) is an L2 function of (ξ, λ) on R

n+1. By Stirling’s formula,
�( 2k+n+1+s

2 )

�( 2k+n+1−s
2 )

behaves like (2k+n)s and henceGsf will be inL2(Rn+1) if for every λ,H(λ)sf λ ∈
L2(Rn) and

∫ ∞

−∞

∫
R
n
|H(λ)sf λ(ξ)|2dξdλ <∞.

The domain of Gs consists precisely of those f ∈ L2(Rn+1) for which the above
condition is satisfied. It is clear that all Schwartz functions are in the domain and
thereforeGs is densely defined.

Returning to the solution of the extension problem (3) we can now prove the
following result which is the analogue of the result proved in [4] (see equation (3.1))
for the Laplacian on R

n.

Theorem 6 Assume 0 < s < 1 and let f ∈ Lp ∩ L2(Rn+1) be such thatGsf also
belongs to Lp ∩ L2(Rn+1). Let u(ξ,w, ρ) be the solution of the extension problem
(3) defined by (6). Then−ρ1−2s∂ρu(ξ,w, ρ) converges to BsGsf in Lp∩L2(Rn+1)

as ρ goes to 0, where Bs = 2−1−2sπ−1−s�(1 − s).
Proof In order to prove this theorem we make use of the formula (7) for the solution
of the extension problem. We claim that there is an explicit constant Cn,s such
that −ρ1−2s∂ρ

(
ρ2sπ(
s,ρ)

) = Cn,sπ(ψs,ρ)Gs as operators where ψs,ρ(z,w) =
ρ−2n−2ψs,1(ρ

−1z, ρ−2w) with ‖ψs,1‖L1(Hn) = C2(n, s), where

C2(n, s) = 2−n+sπn+1�(1 − s)/�
(n+ 1 − s

2

)2
.

Once we have this claim, it follows from Remark 3 that −ρ1−2s∂ρu(ξ,w, ρ) =
Cn,sπ(ψs,ρ)Gsf (ξ,w) and hence the theorem follows from Lemma 1 with Bs =
Cn,sC2(n, s). In order to prove the claim, we make use of the formula

Ls
−s,ρ(z,w) = (2π)2sρ2s
s,ρ(z,w) (9)
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which has been proved in Cowling–Haagerup [6] (see also [5]). Here Ls is the
conformally invariant fractional power of the sublaplacian which is defined by the
relation L̂sf (λ) = f̂ (λ)Ms(λ) where Ms(λ) is the same family of operators used
in the definition ofGs and f̂ stands for the operator valued group Fourier transform
of f on H

n. From (9) we obtain

π(
−s,ρ)Gsf (ξ,w) = (2π)2sρ2sπ(
s,ρ)f (ξ,w) = (2π)2su(ξ,w, ρ). (10)

In [14] the authors have calculated that −ρ1−2s∂ρϕ−s,ρ =ρ−2n−2ψs,1(ρ
−1z, ρ−2w)

for an explicit function ψs,1 and constant C2(n, s), where ϕs,ρ(z,w) = ((ρ2 +
|z|2)2 + 16w2)− n+s+1

2 . Thus differentiating both sides of (10) by ρ and multiplying
by −ρ1−2s , we obtain

C1(n,−s)π(ψs,p)Gsf (ξ,w) = −(2π)2sρ1−2s∂ρu(ξ,w, ρ).

This proves our claim with Cn,s=(2π)−2sC1(n,−s)=2n−3s−1π−n−s−2�(n+1−s
2 )2.

Finally we calculate Bs using the value of C2(n, s) calculated in [14]:

Bs =
(

2n−3s−1π−n−s−2�(
n+ 1 − s

2
)2
)

×
(

2−n+sπn+1�(1 − s)/�(n + 1 − s
2

)2
)

= 2−1−2sπ−1−s�(1 − s).

The proof is complete. 
�

5 Trace Hardy and Hardy Inequalities

Consider the vector fieldsXj = ξj ∂∂w , Yj = ∂
∂ξj

and T = 1
2ρ

∂
∂w

on R
n+1 ×R

+. Let

X be one of these vector fields. For real valued functions u, v defined on R
n+1 ×R

+
consider

∫ ∞

0

∫
R
n+1

(
Xu− u

v
Xv

)2
ρ1−2s dξ dwdρ.

Using integration by parts and assuming that u and v are such that u
2

v
Xv vanishes

at infinity, we have

∫
R
n+1

u

v
XuXv dξdw = −

∫
R
n+1

u

v
XuXv dξdw −

∫
R
n+1
u2X(

1

v
Xv) dξdw.
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Simplifying, we get

∫
R
n+1

u2

v2 (Xv)
2 dξ − 2

∫
R
n+1

u

v
XuXv dξ =

∫
R
n+1

u2

v
X2v dξ. (11)

Consequently,

∫ ∞

0

∫
R
n+1

(
Xu− u

v
Xv

)2
ρ1−2s dξ dwdρ

=
∫ ∞

0

∫
R
n+1
(Xu)2ρ1−2s dξ dwdρ +

∫ ∞

0

∫
R
n+1

u2

v
(X2v)ρ1−2s dξ dwdρ.

In a similar way, using integration by parts, we can check that

∫ ∞

0

u2

v2 (∂ρv)
2ρ1−2s dρ − 2

∫ ∞

0

u

v
∂ρu ∂ρv ρ

1−2s dρ

=
∫ ∞

0

u2

v
∂ρ(ρ

1−2s∂ρv) dρ + lim
ρ→0

(
u2

v
ρ1−2s∂ρv

)

which leads to the equation

∫ ∞

0

∫
R
n+1

(
∂ρu− u

v
∂ρv

)2
ρ1−2s dξ dρ

=
∫ ∞

0

∫
R
n+1
(∂ρu)

2ρ1−2s dξ dρ +
∫ ∞

0

∫
R
n+1

u2

v
∂ρ(ρ

1−2s∂ρv)ρ
1−2s dξ dρ

+
∫
R
n+1

u2(ξ, 0)

v(ξ, 0)
lim
ρ→0

(ρ1−2s∂ρv)(ξ, ρ) dξ.

Let us now consider the gradient

∇u = (X1u, · · · ,Xnu, Y1u, · · · , Ynu, 1

2
ρ ∂wu, ∂ρu). (12)

Adding the above equations we obtain the identity

∫ ∞

0

∫
R
n+1

|∇u− u

v
∇v|2ρ1−2s dξ dwdρ =

∫ ∞

0

∫
R
n+1

|∇u|2ρ1−2s dξ dwdρ

+
∫
R
n+1

u2(ξ, 0)

v(ξ, 0)
lim
ρ→0

(ρ1−2s∂ρv)(ξ, ρ) dξ dwdρ

+
∫ ∞

0

∫
R
n+1

u2

v
(−G+ 1

4
ρ2∂2

w + ∂ρ)(ρ1−2s∂ρv)dξ dwdρ.
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If v solves the extension problem

(
−G+ ∂2

ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

w

)
v(ξ, ρ) = 0,

then the last term in the above vanishes. As the left hand side is non-negative, this
leads to the following inequality known as trace Hardy inequality in the literature.

Proposition 7 Let u be a real valued compactly supported continuous function on
R
n+1 × [0,∞) which is smooth for ρ > 0. Let v be a real valued function which

solves the extension problem for the Grushin operator. Then

∫ ∞

0

∫
R
n+1

|∇u(ξ,w, ρ)|2ρ1−2s dξ dwdρ

� −
∫
R
n+1

u2(ξ,w, 0)

v(ξ,w, 0)
lim
ρ→0

(ρ1−2s∂ρv)(ξ,w, ρ) dξdw.

When v is the solution of the extension problem for the Grushin operator
G with initial condition ϕ ∈ L2(Rn+1) defined by (6) then we have proved
that limρ→0 ρ

1−2s∂ρv = −BsGsϕ where Bs is given in Theorem 4.1. Thus the
inequality in the above proposition takes the form

∫ ∞

0

∫
R
n+1

|∇u(ξ,w, ρ)|2ρ1−2s dξ dwdρ� cs
∫
R
n+1

u2(ξ,w, 0)

ϕ(ξ,w)
Gsϕ(ξ,w, ρ) dξdw

where cs = 21−2s �(1−s)
�(s)

. In the case of the sublaplacian on H-type groups, there are
explicit functions ϕs,δ such that Lsϕ−s,δ = δsCn,sϕs,δ with explicit constant Cn,s
which have allowed the authors in [14] to simplify the quotient Lsϕ−s,δ

ϕ−s,δ to get a sharp
trace Hardy inequality. Unfortunately in our context, though we can find analogues
of ϕs,δ the quotient Gsϕ−s,δ

ϕ−s,δ does not seem to simplify. But things are not so bad if
we slightly modify the definition of the fractional powerGs .

Recall that Gs is defined in terms of the multiplier

Ms(λ) = (2|λ|)s
∞∑
k=0

�( 2k+n+1+s
2 )

�( 2k+n+1−s
2 )

Pk(λ).

Instead of this we use the slightly different multiplier

M̃s(λ) = (2|λ|)s
∞∑
k=0

�( 2k+n+2+2s
4 )

�( 2k+n+2−2s
4 )

Pk(λ)

in defining the modified fractional power G̃s . Note that G̃s is nothing but ( 1
2G)s .

The operators Gs and G̃s are comparable. For 0 < s < 1 let C1(s) and C2(s) be
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defined by

C1(s)= inf
k

�( 2k+n+1+s
2 )

�( 2k+n+1−s
2 )

�( 2k+n+2−2s
4 )

�( 2k+n+2+2s
4 )

, C2(s)
−1 = inf

k

�( 2k+n+1−s
2 )

�( 2k+n+1+s
2 )

�( 2k+n+2+2s
4 )

�( 2k+n+2−2s
4 )

.

In view of Stirling’s formula for the gamma function, these constants are positive
and finite. Then it follows that

C1(s)〈G̃sf, f 〉 ≤ 〈Gsf, f 〉 ≤ C2(s)〈G̃sf, f 〉. (13)

The operator G̃s is better behaved as we can see from the following proposition.

For any s ∈ R and δ > 0 let us,δ(x,w) = ((δ + |ξ |2)2 + w2)− n+2+2s
4 defined on

R
n+1. We have an explicit expression for the action of G̃s on u−s,δ.

Proposition 8 For any δ > 0 and 0 < s < 1, we have G̃su−s,δ(ξ,w) =
Cn,sδ

sus,δ(ξ,w), where Cn,s = 22s�( n+2+2s
4 )2

�( n+2−2s
4 )2

.

Proof Since u−s,δ is radial in ξ the action of G on u−s,δ is the same as that of the
generalised sublaplacian L(n/2−1) = −∂2

r − (n−1)
r
∂r − r2∂2

w. Therefore, the result
follows from Theorem 3.11 in [5]. This can be proved by expanding the function
uλ−s,δ(r) in terms of Laguerre functions of type (n/2 − 1). We leave the details to
the reader. 
�

Using the above proposition it is easy to prove a Hardy inequality for the
modified fractional power G̃s . If we let Ts to stand for the operator

Tsf (ξ,w) = ((δ + |ξ |2)2 +w2)
n+2

4 G̃s
(
((δ + |ξ |2)2 +w2)−

n+2
4 f

)
(ξ,w),

then it follows that

Ts((δ + |ξ |2)2 +w2)
s
2 = Cn,sδs((δ + |ξ |2)2 + w2)−

s
2 .

Therefore, using Schur test we can prove the following inequality (see Section 5.1
in [13]).

Theorem 9 Let f ∈ L2(Rn+1) be real valued and assume that Gsf ∈ L2(Rn+1).
Then for any δ > 0 we have the inequality

〈G̃sf, f 〉 � A1(n, s)δ
s

∫
R
n+1

(f (ξ,w))2

((δ + |ξ |2)2 +w2)s
dξ dw

where A1(n, s) = 4s
�(n+2+2s

4 )2

�(n+2−2s
4 )2

. The inequality is sharp and equality holds when

f = u−s,δ.
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Remark 10 In view of (13) we also have the Hardy inequality forGs , namely

〈Gsf, f 〉 � C1(s)A1(n, s)δ
s

∫
R
n+1

(f (ξ,w))2

((δ + |ξ |2)2 + w2)s
dξ dw.

Finally, using the above Hardy inequality we can prove the following trace Hardy
inequality for the Grushin operatorG.

Theorem 11 Let δ > 0 and 0 < s < 1. For any real valued compactly supported
continuous function u on R

n+1 × [0,∞) which is smooth for ρ > 0, we have the
inequality

∫ ∞

0

∫
R
n+1

|∇u(ξ,w, ρ)|2ρ1−2s dξ dwdρ

� C1(s)BsA1(n, s)δ
s

∫
R
n+1

u(ξ,w, 0)2

((δ + |ξ |2)2 +w2)s
dξ dw.

In view of Hardy’s inequality for Gs all we have to do is to prove the following
energy estimate for the Grushin operator. The following result is the analogue of
Theorem 1.2 in [8] proved in the context of Heisenberg groups.

Theorem 12 Let δ > 0 and 0 < s < 1. For any real valued compactly supported
continuous function u on R

n+1 × [0,∞) which is smooth for ρ > 0, we have the
inequality

∫ ∞

0

∫
R
n+1

|∇u(ξ,w, ρ)|2ρ1−2s dξ dwdρ � Bs〈Gsf, f 〉

where f (ξ,w) = u(ξ,w, 0) and Bs = 2−1−2sπ−1−s�(1 − s).
Proof In proving this theorem we closely follow the proof of Theorem 1.2 in [8].
We therefore give only a sketch of the proof referring to [8] for details. In what
follows we assume that u is smooth. The general case can be dealt with using an
approximation argument.

Let Hs(Rn+1) be the completion of C∞
0 (R

n+1) with respect to the norm
‖f ‖2

(s) = 〈Gsf, f 〉. It can be verified that the dual of Hs(Rn+1) is H−s(Rn+1).

If g ∈ H−s(Rn+1), it follows that h = G−1
s g = G−sg ∈ Hs(Rn+1). Let

H(ξ,w, ρ) be the solution of extension problem with initial condition h defined
as in (6). In view of Theorem 2 and Theorem 6, H(ξ,w, ρ) converges to Csh
with Cs = 1

4�(s)π
−s−1 and −ρ1−2s∂ρH(ξ,w, ρ) converges to BsGsh with Bs =

2−1−2sπ−1−s�(1−s). If we letW(ξ,w, q) = H(2−1/2ξ, 2−1w, ρ) with q = ρ2/2,
thenW satisfies the equation

2
(
q∂2
q + (1 − s)∂q + q∂2

w −G)W(ξ,w, q) = 0. (14)
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Moreover, as q → 0, we have W(ξ,w, q) → Csh(ξ,w) in Hs(Rn+1) and
−q1−s∂qW(ξ,w, q) → 2s−1BsGsh(ξ,w) in H−s(Rn+1). We define U(ξ,w, q) =
u(ξ,w, ρ) with q = ρ2/2 and proceed as in the proof of Theorem 1.2 in [8]. We
leave the details to the reader. 
�

6 An Isometry Property of the Solution Operator Associated
to the Extension Problem

In this section we will prove an isometry property of the solution operator associated
to the extension problem for the Grushin operator. Such a property has been already
proved in the context of R

n and H
n in [11], see also [14]. Let u(ξ,w, ρ) be the

solution of the extension problem given by (6). For s > 0, for which Gs makes
sense (e.g. 0 < s < (n + 1)), recall that the Sobolev space Hs(Rn+1) is defined as
the completion of C∞

0 (R
n+1) under the norm

‖f ‖2
(s) = 〈Gsf, f 〉 = ‖G1/2

s f ‖2
L2(Rn+1)

.

Let
λα, α ∈ N
n be the scaled Hermite functions which are eigenfunctions of scaled

Hermite operator H(λ) = −� + λ2|ξ |2. In view of the spectral decomposition of
Gs we have that

‖f ‖2
(s) = (2π)−1

∫ ∞

−∞
(2|λ|)s

(∑
α∈Nn

�(
2|α|+n+1+s

2 )

�(
2|α|+n+1−s

2 )
|〈f λ,
λα〉|2

)
dλ.

We think of the solution u(ξ,w, ρ) as a function on R
n+3 which is radial in the

third variable. Thus U(ξ,w, ζ ) = u(ξ,w, |ζ |) is a function on R
n+3. For (α, β) ∈

N
n × N

2, let 
λα,β(ξ, ζ ) = 
λα(ξ)

λ/2
β (ζ ), where 
λα(ξ) and 
λ/2β (ζ ) are Hermite

functions on R
n and R

2 respectively. Now we define the Sobolev space H̃ s+1(Rn+3)

in terms of 
λα,β(ξ, ζ ) as the space of all functions U ∈ L2(Rn+3) for which the
following norm is finite.

‖U‖2
H̃ s+1(Rn+3)

= (2π)−1
∫ ∞

−∞
(2|λ|)s+1

⎛
⎝ ∑
(α,β)∈Nn×N

2

�(
2|α|+|β|+n+1+1+s+1

2 )

�(
2|α|+|β|+n+1+1−s−1

2 )
|〈Uλ,
λα,β〉|2

⎞
⎠ dλ

where Uλ is defined as usual by

Uλ(ξ; ζ ) =
∫ ∞

−∞
U(ξ,w, ζ )eiλwdλ.



18 R. Balhara et al.

We begin with the following expansion of the function U(ξ,w, ζ ) in terms of
Hermite functions. We let L(λ, a, b) be defined by

L(λ, a, b) =
∫ ∞

0
e−λ(2t+1)ta−1(1 + t)−b dt, λ > 0, a > 0, b ∈ C.

Proposition 13 If U(ξ,w, ζ ) = u(ξ,w, |ζ |), where u(ξ,w, ρ) is the solution of
the extension problem given in (6), then

Uλ(ξ; ζ ) =
∑
α

aλα,ζ (s)〈f λ,
λα〉
λα(ξ) (15)

where the coefficients are given by

aλα,ζ (s) = (4π)−s−1(2|λ|)s |ζ |2sL
( |λ||ζ |2

4
,

2|α| + n+ 1 + s
2

,
2|α| + n+ 1 − s

2

)
.

Proof It is easy to see that

Uλ(ξ, ζ ) = |ζ |2s
∫ ∞

0
pλt,s(|ζ |)e−tH(λ)f λ(ξ)dt (16)

which follows from the spectral decomposition of G. We also have

e−tH(λ)f λ(ξ) =
∑
α∈Nn

e−t (2|α|+n)|λ|〈f λ,
λα〉
λα(ξ) (17)

and the heat kernel for the generalised sublaplacian is given by

pλt,s(|ζ |) = (4π)−s−1
(

λ

sinh(tλ)

)s+1

e−
1
4λ coth(tλ)|ζ |2 . (18)

We substitute (17) and (18) in (16) and we get

Uλ(ξ, ζ ) =
∑
α

aλα,ζ (s)〈f λ,
λα〉
λα(ξ)

where the coefficients are given by the integral

aλα,ζ (s) = (4π)−s−1|ζ |2s
∫ ∞

0

(
λ

sinh(tλ)

)s+1

e−
1
4λ coth(tλ)|ζ |2e−t (2|α|+n)|λ|dt.


