

Agile 2

Agile 2

The Next Iteration
of Agile

Cliff Berg
Kurt Cagle

Lisa Cooney
Philippa Fewell
Adrian Lander
Raj Nagappan

Murray Robinson

Copyright © 2021 Cliff Berg, Kurt Cagle, Lisa Cooney, Philippa Fewell, Adrian Lander,
Raj Nagappan, and Murray Robinson

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-79927-6
ISBN: 978-1-119-79952-8 (ebk)
ISBN: 978-1-119-79929-0 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fitness for
a particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a
potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared
between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-
demand. If this book refers to media such as a CD or DVD that is not included in the version you
purchased, you may download this material at booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2021930182

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://booksupport.wiley.com
http://www.wiley.com

This book is dedicated to the members of the global Agile 2 team,
who shared their expertise and experience and collaborated remotely

throughout the COVID-19 pandemic to create Agile 2.

—Cliff

I dedicate this to those who have felt frustrated that Agile,
for all its hype and promise, didn’t seem to bring to you much
in the way of advantage and frequently seemed an exercise in

pointlessness. There is goodness in Agile methods, but Agile is a
hammer, and sometimes you need a violin.

—Kurt

This book is dedicated to Agilists everywhere, those struggling
in the trenches to apply its values and principles, regardless of their

role or field of work, and who inspired us to try to make it better.

—Lisa

This is dedicated to fellow Agilists seeking better balance,
understanding, and improvement over what’s been in practice for the

last 20 years.

— Philippa

My contribution here is dedicated to independent thinking and
independent thinkers, who prefer to choose discovering what is really

out there over acquired bias or simply following marketed experts
without healthy challenge and validation and who have the courage
to stand up even against popular opinion if that makes sense and do
not shun putting in considerable effort to develop their (independent
thinking) capabilities. In a first year of a series of global pandemic

challenges, my heart is with those affected and who are fighting without
complaining, never giving up, and finding ways to still help others.

—Adrian

This book is dedicated to on-the-ground workers everywhere who have
worked with and struggled with Agile in the past, and who inspired us
to try to make it better. And to my late beagle Bindi, whose boundless
love and loyalty taught me the true meaning of servant leadership.

—Raj

This book is dedicated to people who have become disenchanted
with the dogma, commercialization, and fake Agile that has taken over

the Agile community. We want to reclaim Agile and revive the
community’s ability to learn and adjust and tackle problems that the
original manifesto authors did not imagine. We hope you will join us.

—Murray

About the Authors

Cliff Berg is a consultant and founder of Agile Griffin, which spe-
cializes in merging Agile and DevOps. Cliff began his career doing

systems analysis for electronic systems design and then building com-
pilers, was on the team that created the VHDL language, and wrote the
first “synthesis” compiler for that language. In 1995 he cofounded and
served as CTO of Digital Focus, a startup that grew to 200 people by
2000 and adopted Agile (eXtreme Programming) in full force that year.
Digital Focus was sold in 2006, and since then Cliff has helped more
than ten organizations adopt Agile and DevOps methods, working with
leadership and teams to implement change. Cliff has experience with
Agile and DevOps in a wide range of contexts, from large multiproduct
digital platforms to embedded systems.

Kurt Cagle is the community editor of Data Science Central (Tech
Target) and the editor in chief of the Cagle Report. He is the author of
22 books on internet technology, data modeling, and knowledge repre-
sentation, and he has served as an invited expert to the W3C for more
than 10 years. As a consultant, Kurt’s clients have included Fortune 50
companies, and US and European government agencies. When not try-
ing to keep a handle on what’s happening in the data world, he writes
novels. He can be found on LinkedIn.

Lisa Cooney currently serves as the Agile coach at Axios. She is
the editor of Evolvagility: Growing an Agile Leadership Culture from
the Inside Out, by Michael Hamman (2019). Her eclectic background
includes a master’s degree in education, years of being a stay-at-home
mom, and substitute teaching in K-12 schools while raising children,
creating art, and writing. A lifelong learner, Lisa went from Basic and
Pascal college classes to creating computer-based-training at Kodak to
creating her own website in HTML to virtual online learning design.
She spent years designing, writing, and managing (with Agile!) the
program and project management curriculum (which included sys-
tems thinking) at the Department of Homeland Security. In 2014, she
designed and wrote two virtual instructor-led courses called Agile
for the Federal Government and Agile for the Product Owner for the
Department of Veterans Affairs.

About the Authorsviii

Lisa helps organize the DC Women in Agile (WIA) meetup, is on the
program committee for the Business Agility Institute’s conferences in
NYC, and speaks at conferences about cognitive bias and developmental
feedback. She is certified as an Agile Certified Practitioner (PMI-ACP),
as a ScrumMaster (CSM), and as both an Agile team facilitator (ICP-
ATF) and an Agile Coach (ICP-ACC). She is working on her certification
for coaching DevOps. Lisa earned her master’s degree in Instructional
Design from the University of Virginia and holds a bachelor’s degree
from Wellesley College. She can be found on LinkedIn.

Philippa Fewell has had a long-tenured, progressive consulting
career leading to her current position as the Managing director of Agile
Services for CC Pace Systems. Philippa has more than 35 years of experi-
ence managing and delivering complex financial, healthcare, and tech-
nology projects for both Fortune 500 companies and startups. She is
an accomplished executive and hands-on manager, with demonstrated
expertise in driving and supporting executive mandates to facilitate
and enable business agility. Philippa has an exceptional track record
of managing stakeholders at all organizational levels, with emphasis
on establishing cultures of trust and building high-performance teams.

Philippa has practiced Agile methods with development teams for
the last 15 years, has worked extensively with leadership on what it
really means to be Agile, is a certified Agile coach, and regularly speaks
on the topic of Agile benefits and practices. Philippa is highly recog-
nized for her in-depth knowledge and practical experience in Agile,
bringing hands-on, real-world techniques to the teams and the execu-
tives she works with. Philippa earned a BS in computer science with a
concentration in business from Rensselaer Polytechnic Institute. She
can be found on LinkedIn.

Adrian Lander has since 1995 had leadership and senior advisory
roles for more than 30 well-known (Fortune 500 and FTSE 100) inter-
national client organizations, across most industries and governments.
These include more than 20 Agile (and DevOps) transformations, plus
other business transformations, often involving innovation and the lat-
est technology.

Adrian began as a self-taught software developer at a young age, and
before studying and researching artificial intelligence and natural lan-
guage processing at several universities, he was already doing software
sales and project management services for clients.

About the Authors ix

He worked for a decade as a top-level management consultant for a
global consultancy, where he specialized in rescuing large, traditional
programs, some beyond $100 million USD, by changing delivery to an
Agile approach. In 2007, he moved to Asia to pioneer Agile in various
countries, including division- and organization-wide transformations in
locales including Singapore and Hong Kong, where as the lead coach,
he won business awards with his teams. The past decade he has been
increasingly involved in turning “bad Agile” into better Agile that has
had significant measurable business benefits.

In addition to 25+ years of Agile experience, he has extensive expe-
rience in applying his expertise in the domains of professional coach-
ing of executives, leadership and (other) teams, organizational change
management, product management, and program management.

Over the years, he has obtained more than 20 professional certifi-
cations, diplomas, and degrees across domains relevant to Agile. For
Adrian, however, only outcomes matter, and he believes more in the
value of his skills and experience gained through deep, broad, and chal-
lenging practice. He is a founder of Agnostic Agile, a movement sup-
ported by 2,500+ Agile practitioners, focusing on openness, inclusion,
and ethics in the practice of Agile. He can be found on LinkedIn.

Raj Nagappan is the founder and CEO of Catum—a software startup
in the product management area. Prior to founding Catum, Raj worked
as a lead engineer and manager for Nuix, which made innovative evi-
dence discovery software for the legal industry and police. He helped it
grow from a small startup to more than 500 employees with customers
in more than 70 countries. Before that, he was a senior engineer in
diverse organizations from startups to software vendors to investment
and retail banks.

Raj holds a PhD in computer science from the Australian National
University and a First Class Honours in science (majoring in computer
science) from the University of Sydney. He is a Professional Scrum
Master and Professional Scrum Product Owner, both from Scrum.org.

Throughout his more than 20 years of experience, Raj has sought to
achieve collaboration between product/design/engineering and sales
and marketing to gain a deeper understanding of customer needs and
thus to craft a better “whole of product” experience. Being an engineer
himself and working directly with other engineers, designers, product
managers, and business stakeholders, Raj has grown frustrated with

http://scrum.org/

About the Authorsx

the frequent shortcomings of conventional Agile implementations and
the failure of the industry to address these concerns. From 2018 he
started writing about these problems and suggesting possible ways to
overcome them. This naturally led to his involvement in Agile 2. He
can be found on LinkedIn.

Murray Robinson works with organizations to design digital initia-
tives and organizations capable of realizing them. He has 30 years’ expe-
rience in IT starting as a software developer, including 20 in product
and project management, 16 with Agile, and 4 in UX. He has delivered
large digital programs of more than $20 million with distributed teams
of up to 100 people for large corporations. He is an experienced Agile
coach, trainer, and practitioner with experience leading a successful
Agile transformation that turned around a struggling digital agency. As
an adaptive leader, he is known for getting things done and bringing
enthusiasm, insight, and humor to every engagement.

Murray has an MBA from Melbourne Business School and has certi-
fications of Professional Scrum Master from Scrum.Org, Leading SAFE
4.5 from Scaled Agile and Business Agility, and Agile Fundamentals
and Agile Product Owner certifications from ICAgile. He is an ICAgile
Authorized Instructor who teaches Agile, product ownership, coach-
ing, and design thinking. He speaks about Agile and design thinking
at industry events and writes about Agile on LinkedIn and his blog at
agileinsights.wordpress.com. He can be found on LinkedIn.

Acknowledgments

We would like to thank the rest of the Agile 2 team—those who
contributed to Agile 2’s development but who are not authors

of this book. They are Huet Landry, Lakshmi Chirravuri, MC Moore,
Navneet Nair, Parul Choudhary, Priya Mayilsamy, Vigneshwaran
 Kennady, and Vincent Harris.

We would like to thank those who reviewed the draft Agile 2 content
early, prior to its release, including David Anderson, Alidad Hamidi,
Maarten Dalmjin, and Shane Hastie.

We would like to thank Navneet Nair for his insights in Chapter 7,
“It’s All About the Product.”

We would like to thank Lakshmi Chirravuri for her contributions
regarding PeopleOps in Chapter 14, “Agile 2 in Service Domains.”

We would like to thank some individuals who provided early insights
and feedback about Agile 2 ideas, including Chris Mills, Ebony Nicole
Brown, Neil Green, and Thomas Fuller.

We thank the original group of Agilists who, throughout the 1990s
and early 2000s, shared their wisdom and experience so generously
and openly with the world.

We thank the DevOps community, including early authors such as
Jez Humble and Gene Kim, for connecting the dots about continuous
delivery and DevOps and explaining it to the world.

Finally, we would like to thank all those among the software and
product development communities who have demonstrated original
thinking in trying to improve the ecosystem and who have helped clients
and colleagues to consider their actual situation instead of following
a standard template. It was those who inspired true understanding of
what is needed to be agile and identified gaps in current practices that
need to be remedied. This includes those who were courageous enough
to speak or write about dysfunctions within the community, ultimately
contributing to the ideas that are behind Agile 2.

Contents
About the Authors ���vii

Acknowledgments��� xi

Foreword�� xv

Preface��� xix

 1� How�Did�We�Get�Here? �� 1

 2 Specific Problems��21

 3� Leadership:�The�Core�Issue��49

 4� Ingredients�That�Are�Needed��69

 5� Kinds�of�Leadership�Needed��121

 6 What Effective Collaboration Looks Like������������������������������157

 7� It’s�All�About�the�Product��181

 8� Product�Design�and�Agile�2���191

 9 Moving Fast Requires Real-Time Risk Management����������205

 10�A�Transformation�Is�a�Journey��245

 11 DevOps and Agile 2 ��275

 12 Agile 2 at Scale ��299

 13�System�Engineering�and�Agile�2 ��335

 14 Agile 2 in Service Domains ��363

 15 Conclusion��383

Index��391

Foreword

You can recognize a great book by its ability to make obvious what
is wrong with existing worldviews and to add new insights or

nuances to change or improve this worldview. I believe Agile 2 meets
these criteria easily. It is an easy read not only for those new to the sub-
ject of agility, but also for die-hard professionals who are looking for
something “beyond” the basic Agile concepts that are at times dogmatic
and often being misused in practice.

In this era of digital disruption and an ever-growing world full of vol-
atility, uncertainty, complexity, and ambiguity, it becomes increasingly
important for organizations to become more agile. The Agile Mani-
festo, originally intended in 2001 to disrupt traditional, not-too-effec-
tive software development practices, has inspired many organizations
over the past decades to change their ways of working, affecting both
work cultures and structures. Its popularity was boosted by a growing
workforce consisting of millennials and Generation-Z professionals
who demand more autonomy, ownership, and the opportunity to make
meaningful impact. Over the past decade, the “Agile movement” has
gained increasing momentum and also moved beyond the realm of IT.

A side effect of its success and growth was that all kinds of Agile
frameworks, doctrines, and certifications popped up to standardize and
monetize the discipline. The original Agile values and principles, being
high-level on purpose, gave ample room for various interpretations of
the core paradigms. During my career I have worked with many differ-
ent Agile coaches and consultants, and I was always surprised by how
much discussion and fanatic debates arose among them with regard
to how to live certain Agile values or implement specific practices.
This tribalism led to confusion among non-Agilists, and this hampers
Agile transformations significantly. I thus see a clear need for a com-
prehensive Agile idea set that is both pragmatic and nuanced by nature.
Enter Agile 2.

I was happy to find out quickly that the authors do not claim to
have written yet another Agile doctrine or “Bible.” Instead, they have
written a pragmatic companion guide that will be useful for managers
and specialists alike. It is packed with hands-on tactics and practices

Forewordxvi

that can help leaders and specialists in organizations to grow to a next
level of agility, while preventing cargo-cult behavior or avant le lettre
implementations that often do more harm than good.

One of my key drivers for cofounding the DevOps Agile Skills
Association (DASA) in 2016 was building a comprehensive view on how
to create high-performance IT organizations. The popularity of DASA
stems largely from the six DevOps and Agile principles that advocate
continuous improvement, customer centricity, autonomous multidisci-
plinary teams, and product thinking. Following these principles often
results in a digital and organizational transformation that typically goes
far beyond choosing a standard Agile framework or adding some basic
Agile rituals to the mix. To transform successfully to high-performance,
organizations need a more mature take on and guidance on what it
means to really “be Agile” at scale. Providing this guidance is one of
this book’s core differentiating features.

Over the past decade I learned firsthand as a consultant, trainer,
and senior leader the importance of building the right type of leader-
ship in the organization and creating a culture of continuous learning,
experimentation, and innovation. What I like about Agile 2 is that both
the importance of leadership and learning are advocated strongly. It
provides many tangible ideas to reimagine an organization’s leadership
culture. I wish that I had this book on my nightstand five years ago.
It would have helped me greatly in understanding why certain things
happened—or did not happen—during the organizational transforma-
tions I was leading.

I like the fact that the authors do not intend to reinvent the wheel,
but are keen on building on what is already working. Some of the key
Agile values and principles are powerful to this day, but application in
practice often needs some additional clarity and lots of examples. The
authors nicely provide nuance to how to interpret Agile principles and
values while referring to many interesting, and more recent, bodies of
work. The authors hit the nail with addressing key topics that are haunt-
ing many organizations, leaders, and teams, such as how to collaborate,
communicate, value both experts and generalists, and commit team
capacity. They rightfully argue that how to adopt certain principles or
how to interpret certain values depends on your organization’s needs
and its current level of maturity. Using this book as your Agile guide,

Foreword xvii

you can aim and navigate your transformation in a more tailor-made
way, resulting in more business value. I expect this book to be found
on many nightstands in the coming years.

Dr. Rik Farenhorst
Senior IT Exec | Trainer | Coach | Speaker |

Writer on Creating High-Performance Digital Organizations | Co-
founder of DevOps Agile Skills Association (DASA)

Utrecht, The Netherlands
December 2020

Preface

A few people who have become aware of Agile 2 have dismissed it as
“more of that Agile stuff,” not realizing that Agile 2 is a departure

from the original Agile in attitude, approach, and substance. One of
those individuals—a chemical engineer—said that he had discussed
Agile at length with an Agile advocate, but still concluded that Agile
is not for him. Another—an experienced systems engineer who has
testified before Congress regarding aircraft and spacecraft systems
 reliability—also believes that Agile methods do not provide a robust
process for trustworthy systems.

We view ourselves as Agilists, and yet we find widespread doubt
about the efficacy and usefulness of Agile in many quarters. One of
these is among engineers. These people are not ignorant. They know
their job extremely well, yet Agile, as described to them, or as they
have experienced it, has not resonated or has not answered critical
questions.

The Agile movement also uprooted the product design community
to some degree (which we will document in this book), although this is
an area in which the Agile community has realized the issue and some
are trying to rectify it.

Agile authors largely ignored the role of data: something that is so
immensely important, that it is akin to speaking about mountains but
missing a vast canyon immediately beside you.

The Agile community also sidestepped the issue of leadership —
something that the DevOps community has tried to address. Leader-
ship is so important for any endeavor, that to omit it is, frankly, quite
equivocal.

Agile has not resonated among the growing DevOps community.
Even though DevOps ideas were developed by people who strongly
identified as Agilists, the Agile community at large has remained mostly
ignorant of DevOps, which had the effect that DevOps became its own
movement. As a result, most Agile coaches today know little about
DevOps, and we find that DevOps practitioners often view Agile as
superfluous.

You might think that mainstream programmers accept Agile, since
they are the ones who use it most directly, but in actuality, there is a

Prefacexx

lot of doubt about Agile within programming communities in general.
That is the biggest irony of all: that Agile, which was created for pro-
grammers, has in effect been taken away from them, and no longer
serves them.

Agile is mostly accepted within Agile communities—comprised of
Agile coaches, and managers who have been persuaded of the benefits
of Agile. Programmers tend to have mixed feelings about Agile. (We
will support that assertion in this book.)

Was Agile described poorly? Is Agile missing things? Did it get some
things wrong? Does Agile truly not apply to the needs of the work of
any of these people? Since Agile ideas can be applied to most things
(in our opinion), we believe that the last explanation is not likely to be
the true one.

What we have observed ourselves is that too often, Agilists explain
and advocate Agile ideas and methods before asking enough questions.
Some of us have seen Agile coaches fired for coming into a setting and
insisting on particular practices before actually understanding how the
work in that setting is done—a hypocrisy given that Agile coaches so
often explain that Agile transformation is a learning journey.

To understand how to apply Agile ideas, one must first understand
that domain, how the work is currently done, and why it is done that
way. No Agile practice is universal. One size does not fit all, so pre-
scribing before understanding is potentially destructive.

Indeed, the “dogma” of the Agile community helped to launch it, but
it has also been its chief failing. Early proponents of Agile insisted that
the Agile movement needed to be disruptive—a “call to arms”—and so
dogma was called for; but dogmatic insistence also alienates and causes
dysfunction when it is not the best advice for the situation.

Agile 2 is not dogmatic. It is not designed to stir up emotion. It is not
a call to arms or an attempt to disrupt what we have. As such, it does
not try to be disruptive. It does not replace Agile or replace DevOps
or replace anything. Agile 2 pivots Agile in some important ways and
attempts to fine-tune it. Agile 2 also adds many extremely crucial ideas
that have been ignored by much of the Agile community, even though
successful Agile practitioners often use those very ideas, and other com-
munities of thought embrace those ideas.

Agile 2 reinforces some DevOps ideas, and some Lean ideas, but
Agile 2 does not attempt to duplicate or replace those, and so those sets
of ideas are still important in their own right. Agile 2 does not attempt

Preface xxi

to subsume any existing community of thought. Agile 2 also does not
claim to cover all aspects of these topics. Agile 2 claims to only be a
set of useful ideas for how to achieve agility in human endeavors and
encourages people to include other ideas and fields of thought as well.

Agile 2 is more verbose than the Agile Manifesto. The reason is that
we feel that one of the weaknesses of the manifesto was that it over-sim-
plified complex issues. A simple value maxim cannot describe impor-
tant trade-offs, and one or two principles cannot address nuanced issues
such as what good leadership looks like and which styles of leadership
apply best in a given situation. So Agile 2 gives these important topics
the space they deserve, from an agility perspective.

One important way that Agile 2 departs from the Agile Manifesto
is that Agile 2 provides the foundation of thought from which it was
derived. Rather than make bold statements without substantiating
them, Agile 2 provides the “problems” and “insights” that arose in
discussions about Agile, in the course of the Agile 2 team’s retrospec-
tive about the state of Agile. It was these problems and insights that
led to the Agile 2 principles.

An Agile 2 principle is not intended to be an absolute. This is because
there can be no absolutes when it comes to human behavior. An Agile 2
principle is a proposed rule of thumb: true most of the time, but perhaps
not in some circumstances. That is why the underlying assumptions
and thoughts—the problems and insights—are important for under-
standing the intention of each principle, meaning what problem it is
trying to solve and how.

Someone posted a comment online about Agile 2, saying that if the
original Agile Manifesto authors were not involved in the Agile 2 effort,
he would not look at it. We believe that all great ideas build upon what
has come before, and that even “original” ideas have deep roots. The
term Agile had been used prior to the creation of the Agile Manifesto,
and “agile” methods had been used and circulated for years prior to
that. Not only do many Agile methods date back decades, but core ideas
in Agile 2 such as Socratic leadership date back millennia.

There is also the matter of dysfunction within the Agile community,
which we will discuss at length in the book. The dogma that is found in
some quarters is one form of dysfunction; another is the separation of
the community into tribes, for the various frameworks. We will explain
why this has been a problem and how it has “frozen” Agile thinking
and stifled its evolution.

Prefacexxii

Many of the thought leaders in the Agile community have a lot
invested in current paradigms and practices, and so change is not in
their best interest. For these reasons, we felt that we could not rely on
the community to fix these problems. The problems come from the
community—not from the whole community, but from some of the
most established and entrenched parts of it.

Why bother then? Why deal with this? It’s because Agile is extremely
important. DevOps cannot replace Agile. While Agile has become
mostly about the human side of building things, DevOps has become
mostly a collection of technical practices. That is the reality on the
ground. But there is more to building things than the technical side:
one needs both the human side and the technical side.

We therefore realized that addressing Agile’s gaps is really important,
and that to do it, we needed a diverse team with a wide range of skills,
composed of people who are not deeply invested in current paradigms
or frameworks. We needed original thinkers. Those criteria led to the
Agile 2 team of 15 members, which you can find on the Agile 2 website.

Agile 2 is an attempt to make a solid course correction to Agile, but
in an open, additive, inclusive, and nondogmatic or emotional way. We
welcome ideas that can supplement Agile 2 and feedback on its prin-
ciples, in the spirit of inclusiveness and advancing everyone’s under-
standing of these complex issues.

Agile 2 broadens Agile’s focus beyond software. The reality is that
Agile ideas have been applied for many things besides software, and
so the Agile 2 team felt that it made no sense to define Agile 2 only
for software.

The reader will notice that many Agile 2 principles are stated in the
margin, but not all of them. This book is not a textbook about Agile
2 that covers every aspect of its principles. The purpose of this book
is to introduce Agile 2, explain why we need it, and give an overview.
You can find more information about Agile 2 on the website: https://
agile2.net, which is published under a Creative Commons Attribu-
tion license, “CC BY 4.0.”

This book attempts to make the many topics of Agile 2 concrete.
We give guidance on how to apply the principles and provide exam-
ples. However, we refrain from providing specific steps or templates to
follow: we do not want to repeat the mistake of current Agile frame-
works in that regard.

https://agile2.net
https://agile2.net

Preface xxiii

Except for our examples, we do not define practices to implement.
Practices are important, but that is for another book and for others
to propose. This book lays out a conceptual foundation, while using
concrete situations as examples, but not for prescription.

A note about the use of the words “agile” and “Agile”: This book
uses the word “Agile” when referring to the ideas embraced by the
“Agile community,” which is comprised of Agile coaches and others
who view the agilemanifesto.org document as a guiding source of
insight; or in the context of so-called “Agile frameworks” which claim
to define practices that are consistent with the philosophies of the Agile
community. We use the word “agile” when we intend to convey the
generic quality of agility. Agile with a capital “A” and agile with a small
“a” are two different words.

The name “Agile 2” is not intended to be a version number, as in
“2.0,” “2.1,” etc. Rather, it is the name of a reborn Agile. We feel that the
principles of agility are timeless, so we do not expect an Agile 3, and so
on. Rather, we see Agile 2 as an attempt to reimagine Agile—not from
scratch, but by taking Agile ideas and pivoting. We hope that Agile 2
hits closer to the mark!

http://agilemanifesto.org

1 How Did
We Get Here?

At a developer conference in 2015, Dave Thomas, one of the authors
of the Agile Manifesto, gave a talk titled “Agile Is Dead.”1 In a 2018

blog post, Ron Jeffries, another Agile Manifesto author, wrote, “Devel-
opers should abandon Agile.”2 In a 2019 article in Forbes titled “The
End of Agile,” tech author Kurt Cagle wrote, “[Agile] had become a
religion.”3 A post about the article4 in the programmer forum Slashdot
received more than 200 comments from software developers, asserting
things like “Agile does not always scale well” and “The definitions of
‘agile’ allow for cargo cult implementations.”

Agile has been a subject of ridicule since its beginning. In the early
days, there were many people who did not understand Agile and spoke
from ignorance; what has changed is that today the criticism often
comes from people who do understand Agile methods and have decided
that those methods are problematic.

Is Agile actually dead? The statistics say no,5 yet something is clearly
wrong. Agile—which was sold as the solution for software develop-
ment’s ills—has severe problems. What are those problems, how
did they happen, and what can be done about them? And is Agile
worth saving?

Most of the discussion in this chapter will be about software. That is
because Agile began in the software domain. In later chapters, we will
broaden the discussion to product development in general, and to other
kinds of human endeavor, since many Agile ideas apply to essentially
any group effort.

Agile 22

A Culture of Extremes
In 1999 a new book called Extreme Programming Explained by Kent
Beck sent shock waves through the IT industry. Agile ideas had been
circulating and in use prior to this, but Beck’s book somehow pierced
corporate IT consciousness. It arguably launched the Agile movement,
even though the movement was not called “Agile” yet.

The movement’s core thesis was that methodical, phase-based
 projects were too slow and too ineffective for building software—chal-
lenging the approach then used by most large organizations and pretty
much every government agency.

The book did not launch Extreme Programming, aka XP, which was
first defined in 1996,6 but it was the book that popularized it. Talk about
XP could be heard in the halls of every IT shop. It was controversial, but
its values strongly resonated: Small teams, working code (rather than
 documents) as the only real proof of progress, frequent discussions
between the customer and the programmers. Out with big, up-front
requirements documents that were always incomplete, inconsistent,
and incomprehensible; out with big, up-front designs that were usually
wrong. Recurring and incremental customer approval instead of con-
tracts that locked everyone in to unvalidated assumptions.

Many of the methods of XP were not new, but they had been outlier
methods, and XP put them under a single umbrella. The book strongly
asserted that these methods work and are a superior alternative to
traditional methods.

It is not that there were no other proposals for how to reshape soft-
ware development. So-called lightweight methods had been around
for a while. Extreme Programming was new in that it threw a grenade
into much current thinking by being so radically different and pro-
posing methods that were so extreme—methods such as pair program-
ming (which had been described as early as 1953)7 and Test-Driven
Development (which also had some history prior to XP), which turned
many assumptions about programming on their head.

Thus, the movement began as a rejection of the predominant exist-
ing paradigms. People knew something was wrong with software
development as it was being done. Extreme Programming provided
an oppositional alternative. It was not so much that people thought
XP was great, but they were sure that current practices were not great.
XP received a lot of attention and was a radically different approach.

How Did We Get Here? 3

Perhaps the attention was not because XP was so much better or rad-
ical, as there had been other ideas circulating such as Rapid Application
Development, but perhaps XP got attention mostly because the Internet
provided a new medium that made rapid awareness possible.

Then in 2001 a group of IT professionals—all men by the way, with
most from the United States and a few from Europe—got together
over a weekend and hammered out a set of four “values,” which they
believed should be the foundation of a new approach to building soft-
ware. Kent Beck was among them. You can find these four values at
AgileManifesto.org. It was largely a rejection of many approaches
that had become commonplace, such as detailed plans, passing
information by documents, and big all-at-once deliveries.

In the weeks that followed, some of them continued the discussion
by email and added 12 principles, which you can also find at the
same website.

They called all this the Manifesto for Agile Software Development,
and it came to be known colloquially as the Agile Manifesto or just
Agile. This “manifesto” took the popular culture baton from XP and
other iterative approaches and launched the Agile movement for real.

Extreme Programming had set the tone for what would become the
Agile movement, and the tone was to be extreme. In those days, extreme
was popular. We had extreme rock climbing, extreme skateboarding,
extreme pogo, extreme skiing, and extreme pretty much anything.
Extreme was in. People were so tired of the ordinary; everything new
had to be extreme. It was a new millennium for crying out loud: every-
thing needed a reset!

And so “extreme” was a necessary aspect of anything new and
interesting at that moment in time in the late 1990s—the end of the
20th century.

Since Agile was a rejection of what had become established software
development methods, it was inherently a disruptive movement, and in
the ethos of the time, it had to be extreme. And so it was that every Agile
method that came to be proposed—these are called practices—were of
necessity extreme. Otherwise, they were not seen to be consistent with
the spirit of being entirely new and disruptive.

It was not the Agile Manifesto that set things in that direction. The
Agile Manifesto was clearly about balance and moderation. It makes no
absolute statements: every value is couched as a trade-off. For example,

http://agilemanifesto.org

Agile 24

the first value reads, “[We have come to value] individuals and inter-
actions over processes and tools.”

It does not say, “Forget process and tools—only pay attention to indi-
viduals and interactions.” Instead, it says, consider both, but pay special
attention to individuals and interactions.

In other words, the Agile Manifesto advocated judgment and
consideration of context. In that sense, it is a sophisticated document
and cannot be used well by people who do not have the experience
needed to apply judgment.

But the tone had already been set by XP: extreme practices received
the most attention and applause, because XP practices were all extreme.
For example, XP’s recommendation of pair programming, in which two
people sit together and write code together, sharing a keyboard, was
considered by many programmers to be extreme. Or everyone sitting
side by side in a single room, with all walls removed and no privacy—
that was pretty extreme, as it had been assumed that people needed pri-
vacy to focus, and the big programmer complaint of the 1990s, depicted
in so many Dilbert cartoons, was that programmers were no longer
being given offices and instead were being sat in cubicles that did not
afford enough quiet or privacy. And now here comes XP and says, in
effect, You got it all wrong; you need to sit next to each other. That was
an extreme swing of the pendulum.

The Scrum framework, which dates in various forms to the 1980s
but became reformulated in 1993 and then popularized through its
certification regime during the 2000s,8 added more ideas that are argu-
ably extreme. For example, Scrum views everyone on a team as an equal
player—no one is acknowledged as having more standing than anyone
else (“Scrum recognizes no titles for Development Team members”9),
regardless of their experience. That was pretty extreme, since before
Agile, programmers in most (not all) organizations had professional
levels, such as programmer, senior programmer, architect, etc.

During the first decade of the Agile movement it seemed that new
suggested practices were in a competition to be more extreme than
the others. We saw the introduction of mob programming, in which
rather than two programmers working together as in pair program-
ming, the entire team works together—literally—everyone calling out
their thoughts in a single room and sharing a single keyboard.10 Then
in 2015 the Agile team room was extended by Facebook to an extreme
level when it created its 430,000-square-foot open team room.11

