

Table of Contents
Cover
Title Page
Foreword
Preface
1 How Did We Get Here?

A Culture of Extremes
Divided and Branded
Controlled by Dogma
The Introvert vs. Extrovert Problem
Coaches Should Not Assume
Now What?
Notes

2 Specific Problems
Leadership Is Complex, Nuanced, Multifaceted, and
Necessary
The Scale Problem
Today's Tech Platform Is As Strategic As the
Business Model
Tech Cannot Be an “Order Taker”
Transformation Is a Journey, Not a Rollout
The Individual Matters As Much As the Team
Culture: Individual vs. the Collective
People Don't All Work the Same
Communication Is a Process, Not an Event
The Importance of Focus
Data Is Strategic

file:///tmp/calibre_5.42.0_tmp_5oqb76rx/uhwr6hbf_pdf_out/OPS/cover.xhtml

Notes
3 Leadership: The Core Issue

Authority Is Sometimes Necessary
The Path-Goal Leadership Model
Collective Governance Does Not Solve the Problem
Dimensions, Modes, Forms, and Directions of
Leadership
Soft Forms of Leadership
Applicability and Trade-Offs
Socratic Leadership
Servant Leadership
Theory X, Theory Y, and Mission Command
Knowing When to Intervene
Notes

4 Ingredients That Are Needed
Elements to Keep or Adjust
Elements to Add, Add Back, or Change
Notes

5 Kindsof LeadershipNeeded
Which Leadership Styles Are Appropriate
Leadership at Each Level
Common Types of Product Leadership That Are
Needed
High-Risk Products
Research and Innovation Leadership
Operational Leadership
Leadership and Accountability
Any Leader
An Outside Person: A Sketch

An Inside Person: A Sketch
A Person of Action: A Sketch
A Thought Leader
Notes

6 What Effective Collaboration Looks Like
A Collaborative Approach
Respect How Others Work
Team Leads Need to Facilitate Effective
Collaboration
Every Interruption Is Costly
Standing Meetings Are Costly
Deep Exchanges Are Needed
The Whole Remote vs. In-Person Thing
How to Make Remote Work Work
Are Remote Teams a Trend?
Notes

7 It's All About the Product
What to Prioritize
A Product Should Be Self-Measuring
Development System as Product
Notes

8 Product Design and Agile 2
Agile Ignored Design from the Beginning
Technology Teams Need to Be Equal Partners
The Product Owner Silo
The Need for Early and Frequent Feedback
Don't Just Provide Features—Solve Problems
Participatory Design

Single-Track and Dual-Track Approaches
Notes

9 Moving Fast Requires Real-Time Risk Management
The Need for Real-Time Feedback Loops
Creating Real-Time Feedback Loops
Metrics as Feedback
People Need to Understand the Metrics—Really
Understand Them
Better Information Radiators
People Need to Read, Write, and Converse
Validation and Experimentation as Feedback
Flaws in the Pipeline Model
Feedback: Learn from Product Usage
Balance Design and Experimentation
Responding in Real Time
Notes

10 A Transformation Is a Journey
Agile Is Not a Process Change
What a Learning Journey Looks Like
Organizational Inertia Is Immense
You Do Not Need to Build Anything
Notes

11 DevOps andAgile 2
What Is DevOps? And Why Does It Matter?
Common DevOps Techniques
Data
Notes

12 Agile 2 at Scale

Issues That Arise at Scale
What Is the Strategy?
Strategy and Capability Alignment
Portfolio and Capability Intersection
Need for Hierarchy
Initiative Structure and Leadership
Coordination at Scale
R&D Insertion
Multiple Stakeholders
Knowledge Gap
Reflection on FamilyLab
Notes

13 System Engineering and Agile 2
How Hardware and Software Differ (or Not)
Multitier Products and Systems
Our Case Studies
Case Study: SpaceX
Case Study: A Major Machinery Manufacturer
Notes

14 Agile 2 in Service Domains
Define a Target Culture
Process Varies with Circumstances and Time
The Dysfunction of Staffing Functions
Balance Short- and Long-Term Views of People
Design an Effective Work Environment
Assess Performance Immediately
Notes

15 Conclusion

A Model for Behavioral Change
No More Tribalism
Agile Cannot Be Simplified
Agile Is Timeless
Notes

Index
Copyright
Dedication
About the Authors
Acknowledgments
End User License Agreement

List of Tables
Chapter 4

Table 4.1 Building Construction Compared to
Software Development

List of Illustrations
Chapter 1

Figure 1.1: Blinders to help people focus in “team
rooms”

Chapter 9
Figure 9.1: Continuous builds being delivered,
some potentially usable, some...
Figure 9.2: Simple pipeline
Figure 9.3: Simple pipeline—each step balanced
Figure 9.4: Two pipelines—cadence-based

Figure 9.5: Two pipelines—on demand (no waiting)
Chapter 12

Figure 12.1: Inconsistency of Spotify features
across platforms

Chapter 13
Figure 13.1: Team interaction modes

Agile 2
The Next Iteration of Agile

Cliff Berg
Kurt Cagle
Lisa Cooney
Philippa Fewell
Adrian Lander
Raj Nagappan
Murray Robinson

Foreword
You can recognize a great book by its ability to make
obvious what is wrong with existing worldviews and to add
new insights or nuances to change or improve this
worldview. I believe Agile 2 meets these criteria easily. It is
an easy read not only for those new to the subject of agility,
but also for die-hard professionals who are looking for
something “beyond” the basic Agile concepts that are at
times dogmatic and often being misused in practice.
In this era of digital disruption and an ever-growing world
full of volatility, uncertainty, complexity, and ambiguity, it
becomes increasingly important for organizations to
become more agile. The Agile Manifesto, originally
intended in 2001 to disrupt traditional, not-too-effective
software development practices, has inspired many
organizations over the past decades to change their ways of
working, affecting both work cultures and structures. Its
popularity was boosted by a growing workforce consisting
of millennials and Generation-Z professionals who demand
more autonomy, ownership, and the opportunity to make
meaningful impact. Over the past decade, the “Agile
movement” has gained increasing momentum and also
moved beyond the realm of IT.
A side effect of its success and growth was that all kinds of
Agile frameworks, doctrines, and certifications popped up
to standardize and monetize the discipline. The original
Agile values and principles, being high-level on purpose,
gave ample room for various interpretations of the core
paradigms. During my career I have worked with many
different Agile coaches and consultants, and I was always
surprised by how much discussion and fanatic debates
arose among them with regard to how to live certain Agile

values or implement specific practices. This tribalism led to
confusion among non-Agilists, and this hampers Agile
transformations significantly. I thus see a clear need for a
comprehensive Agile idea set that is both pragmatic and
nuanced by nature. Enter Agile 2.
I was happy to find out quickly that the authors do not
claim to have written yet another Agile doctrine or “Bible.”
Instead, they have written a pragmatic companion guide
that will be useful for managers and specialists alike. It is
packed with hands-on tactics and practices that can help
leaders and specialists in organizations to grow to a next
level of agility, while preventing cargo-cult behavior or
avant le lettre implementations that often do more harm
than good.
One of my key drivers for cofounding the DevOps Agile
Skills Association (DASA) in 2016 was building a
comprehensive view on how to create high-performance IT
organizations. The popularity of DASA stems largely from
the six DevOps and Agile principles that advocate
continuous improvement, customer centricity, autonomous
multidisciplinary teams, and product thinking. Following
these principles often results in a digital and organizational
transformation that typically goes far beyond choosing a
standard Agile framework or adding some basic Agile
rituals to the mix. To transform successfully to high-
performance, organizations need a more mature take on
and guidance on what it means to really “be Agile” at scale.
Providing this guidance is one of this book's core
differentiating features.
Over the past decade I learned firsthand as a consultant,
trainer, and senior leader the importance of building the
right type of leadership in the organization and creating a
culture of continuous learning, experimentation, and
innovation. What I like about Agile 2 is that both the

importance of leadership and learning are advocated
strongly. It provides many tangible ideas to reimagine an
organization's leadership culture. I wish that I had this
book on my nightstand five years ago. It would have helped
me greatly in understanding why certain things happened—
or did not happen—during the organizational
transformations I was leading.
I like the fact that the authors do not intend to reinvent the
wheel, but are keen on building on what is already working.
Some of the key Agile values and principles are powerful to
this day, but application in practice often needs some
additional clarity and lots of examples. The authors nicely
provide nuance to how to interpret Agile principles and
values while referring to many interesting, and more
recent, bodies of work. The authors hit the nail with
addressing key topics that are haunting many
organizations, leaders, and teams, such as how to
collaborate, communicate, value both experts and
generalists, and commit team capacity. They rightfully
argue that how to adopt certain principles or how to
interpret certain values depends on your organization's
needs and its current level of maturity. Using this book as
your Agile guide, you can aim and navigate your
transformation in a more tailor-made way, resulting in more
business value. I expect this book to be found on many
nightstands in the coming years.

Dr. Rik Farenhorst
Senior IT Exec | Trainer | Coach | Speaker | Writer on

Creating High-Performance Digital Organizations | Co-
founder of DevOps Agile Skills Association (DASA)

Utrecht, The Netherlands
December 2020

Preface
A few people who have become aware of Agile 2 have
dismissed it as “more of that Agile stuff,” not realizing that
Agile 2 is a departure from the original Agile in attitude,
approach, and substance. One of those individuals—a
chemical engineer—said that he had discussed Agile at
length with an Agile advocate, but still concluded that Agile
is not for him. Another—an experienced systems engineer
who has testified before Congress regarding aircraft and
spacecraft systems reliability—also believes that Agile
methods do not provide a robust process for trustworthy
systems.
We view ourselves as Agilists, and yet we find widespread
doubt about the efficacy and usefulness of Agile in many
quarters. One of these is among engineers. These people
are not ignorant. They know their job extremely well, yet
Agile, as described to them, or as they have experienced it,
has not resonated or has not answered critical questions.
The Agile movement also uprooted the product design
community to some degree (which we will document in this
book), although this is an area in which the Agile
community has realized the issue and some are trying to
rectify it.
Agile authors largely ignored the role of data: something
that is so immensely important, that it is akin to speaking
about mountains but missing a vast canyon immediately
beside you.
The Agile community also sidestepped the issue of
leadership — something that the DevOps community has
tried to address. Leadership is so important for any
endeavor, that to omit it is, frankly, quite equivocal.

Agile has not resonated among the growing DevOps
community. Even though DevOps ideas were developed by
people who strongly identified as Agilists, the Agile
community at large has remained mostly ignorant of
DevOps, which had the effect that DevOps became its own
movement. As a result, most Agile coaches today know
little about DevOps, and we find that DevOps practitioners
often view Agile as superfluous.
You might think that mainstream programmers accept
Agile, since they are the ones who use it most directly, but
in actuality, there is a lot of doubt about Agile within
programming communities in general. That is the biggest
irony of all: that Agile, which was created for programmers,
has in effect been taken away from them, and no longer
serves them.
Agile is mostly accepted within Agile communities—
comprised of Agile coaches, and managers who have been
persuaded of the benefits of Agile. Programmers tend to
have mixed feelings about Agile. (We will support that
assertion in this book.)
Was Agile described poorly? Is Agile missing things? Did it
get some things wrong? Does Agile truly not apply to the
needs of the work of any of these people? Since Agile ideas
can be applied to most things (in our opinion), we believe
that the last explanation is not likely to be the true one.
What we have observed ourselves is that too often, Agilists
explain and advocate Agile ideas and methods before
asking enough questions. Some of us have seen Agile
coaches fired for coming into a setting and insisting on
particular practices before actually understanding how the
work in that setting is done—a hypocrisy given that Agile
coaches so often explain that Agile transformation is a
learning journey.

To understand how to apply Agile ideas, one must first
understand that domain, how the work is currently done,
and why it is done that way. No Agile practice is universal.
One size does not fit all, so prescribing before
understanding is potentially destructive.
Indeed, the “dogma” of the Agile community helped to
launch it, but it has also been its chief failing. Early
proponents of Agile insisted that the Agile movement
needed to be disruptive—a “call to arms”—and so dogma
was called for; but dogmatic insistence also alienates and
causes dysfunction when it is not the best advice for the
situation.
Agile 2 is not dogmatic. It is not designed to stir up
emotion. It is not a call to arms or an attempt to disrupt
what we have. As such, it does not try to be disruptive. It
does not replace Agile or replace DevOps or replace
anything. Agile 2 pivots Agile in some important ways and
attempts to fine-tune it. Agile 2 also adds many extremely
crucial ideas that have been ignored by much of the Agile
community, even though successful Agile practitioners
often use those very ideas, and other communities of
thought embrace those ideas.
Agile 2 reinforces some DevOps ideas, and some Lean
ideas, but Agile 2 does not attempt to duplicate or replace
those, and so those sets of ideas are still important in their
own right. Agile 2 does not attempt to subsume any
existing community of thought. Agile 2 also does not claim
to cover all aspects of these topics. Agile 2 claims to only
be a set of useful ideas for how to achieve agility in human
endeavors and encourages people to include other ideas
and fields of thought as well.
Agile 2 is more verbose than the Agile Manifesto. The
reason is that we feel that one of the weaknesses of the
manifesto was that it over-simplified complex issues. A

simple value maxim cannot describe important trade-offs,
and one or two principles cannot address nuanced issues
such as what good leadership looks like and which styles of
leadership apply best in a given situation. So Agile 2 gives
these important topics the space they deserve, from an
agility perspective.
One important way that Agile 2 departs from the Agile
Manifesto is that Agile 2 provides the foundation of thought
from which it was derived. Rather than make bold
statements without substantiating them, Agile 2 provides
the “problems” and “insights” that arose in discussions
about Agile, in the course of the Agile 2 team's
retrospective about the state of Agile. It was these
problems and insights that led to the Agile 2 principles.
An Agile 2 principle is not intended to be an absolute. This
is because there can be no absolutes when it comes to
human behavior. An Agile 2 principle is a proposed rule of
thumb: true most of the time, but perhaps not in some
circumstances. That is why the underlying assumptions and
thoughts—the problems and insights—are important for
understanding the intention of each principle, meaning
what problem it is trying to solve and how.
Someone posted a comment online about Agile 2, saying
that if the original Agile Manifesto authors were not
involved in the Agile 2 effort, he would not look at it. We
believe that all great ideas build upon what has come
before, and that even “original” ideas have deep roots. The
term Agile had been used prior to the creation of the Agile
Manifesto, and “agile” methods had been used and
circulated for years prior to that. Not only do many Agile
methods date back decades, but core ideas in Agile 2 such
as Socratic leadership date back millennia.
There is also the matter of dysfunction within the Agile
community, which we will discuss at length in the book. The

dogma that is found in some quarters is one form of
dysfunction; another is the separation of the community
into tribes, for the various frameworks. We will explain why
this has been a problem and how it has “frozen” Agile
thinking and stifled its evolution.
Many of the thought leaders in the Agile community have a
lot invested in current paradigms and practices, and so
change is not in their best interest. For these reasons, we
felt that we could not rely on the community to fix these
problems. The problems come from the community—not
from the whole community, but from some of the most
established and entrenched parts of it.
Why bother then? Why deal with this? It's because Agile is
extremely important. DevOps cannot replace Agile. While
Agile has become mostly about the human side of building
things, DevOps has become mostly a collection of technical
practices. That is the reality on the ground. But there is
more to building things than the technical side: one needs
both the human side and the technical side.
We therefore realized that addressing Agile's gaps is really
important, and that to do it, we needed a diverse team with
a wide range of skills, composed of people who are not
deeply invested in current paradigms or frameworks. We
needed original thinkers. Those criteria led to the Agile 2
team of 15 members, which you can find on the Agile 2
website.
Agile 2 is an attempt to make a solid course correction to
Agile, but in an open, additive, inclusive, and nondogmatic
or emotional way. We welcome ideas that can supplement
Agile 2 and feedback on its principles, in the spirit of
inclusiveness and advancing everyone's understanding of
these complex issues.

Agile 2 broadens Agile's focus beyond software. The reality
is that Agile ideas have been applied for many things
besides software, and so the Agile 2 team felt that it made
no sense to define Agile 2 only for software.
The reader will notice that many Agile 2 principles are
stated in the margin, but not all of them. This book is not a
textbook about Agile 2 that covers every aspect of its
principles. The purpose of this book is to introduce Agile 2,
explain why we need it, and give an overview. You can find
more information about Agile 2 on the website:
https://agile2.net, which is published under a Creative
Commons Attribution license, “CC BY 4.0.”
This book attempts to make the many topics of Agile 2
concrete. We give guidance on how to apply the principles
and provide examples. However, we refrain from providing
specific steps or templates to follow: we do not want to
repeat the mistake of current Agile frameworks in that
regard.
Except for our examples, we do not define practices to
implement. Practices are important, but that is for another
book and for others to propose. This book lays out a
conceptual foundation, while using concrete situations as
examples, but not for prescription.
A note about the use of the words “agile” and “Agile”: This
book uses the word “Agile” when referring to the ideas
embraced by the “Agile community,” which is comprised of
Agile coaches and others who view the agilemanifesto.org
document as a guiding source of insight; or in the context
of so-called “Agile frameworks” which claim to define
practices that are consistent with the philosophies of the
Agile community. We use the word “agile” when we intend
to convey the generic quality of agility. Agile with a capital
“A” and agile with a small “a” are two different words.

https://agile2.net/
http://agilemanifesto.org/

The name “Agile 2” is not intended to be a version number,
as in “2.0,” “2.1,” etc. Rather, it is the name of a reborn
Agile. We feel that the principles of agility are timeless, so
we do not expect an Agile 3, and so on. Rather, we see
Agile 2 as an attempt to reimagine Agile—not from scratch,
but by taking Agile ideas and pivoting. We hope that Agile 2
hits closer to the mark!

1
How Did We Get Here?
At a developer conference in 2015, Dave Thomas, one of
the authors of the Agile Manifesto, gave a talk titled “Agile
Is Dead.”1 In a 2018 blog post, Ron Jeffries, another Agile
Manifesto author, wrote, “Developers should abandon
Agile.”2 In a 2019 article in Forbes titled “The End of
Agile,” tech author Kurt Cagle wrote, “[Agile] had become
a religion.”3 A post about the article4 in the programmer
forum Slashdot received more than 200 comments from
software developers, asserting things like “Agile does not
always scale well” and “The definitions of ‘agile’ allow for
cargo cult implementations.”
Agile has been a subject of ridicule since its beginning. In
the early days, there were many people who did not
understand Agile and spoke from ignorance; what has
changed is that today the criticism often comes from people
who do understand Agile methods and have decided that
those methods are problematic.
Is Agile actually dead? The statistics say no,5 yet something
is clearly wrong. Agile—which was sold as the solution for
software development's ills—has severe problems. What
are those problems, how did they happen, and what can be
done about them? And is Agile worth saving?
Most of the discussion in this chapter will be about
software. That is because Agile began in the software
domain. In later chapters, we will broaden the discussion to
product development in general, and to other kinds of
human endeavor, since many Agile ideas apply to
essentially any group effort.

A Culture of Extremes
In 1999 a new book called Extreme Programming
Explained by Kent Beck sent shock waves through the IT
industry. Agile ideas had been circulating and in use prior
to this, but Beck's book somehow pierced corporate IT
consciousness. It arguably launched the Agile movement,
even though the movement was not called “Agile” yet.
The movement's core thesis was that methodical, phase-
based projects were too slow and too ineffective for
building software—challenging the approach then used by
most large organizations and pretty much every
government agency.
The book did not launch Extreme Programming, aka XP,
which was first defined in 1996,6 but it was the book that
popularized it. Talk about XP could be heard in the halls of
every IT shop. It was controversial, but its values strongly
resonated: Small teams, working code (rather than
documents) as the only real proof of progress, frequent
discussions between the customer and the programmers.
Out with big, up-front requirements documents that were
always incomplete, inconsistent, and incomprehensible; out
with big, up-front designs that were usually wrong.
Recurring and incremental customer approval instead of
contracts that locked everyone in to unvalidated
assumptions.
Many of the methods of XP were not new, but they had
been outlier methods, and XP put them under a single
umbrella. The book strongly asserted that these methods
work and are a superior alternative to traditional methods.
It is not that there were no other proposals for how to
reshape software development. So-called lightweight
methods had been around for a while. Extreme
Programming was new in that it threw a grenade into much

current thinking by being so radically different and
proposing methods that were so extreme—methods such as
pair programming (which had been described as early as
1953)7 and Test-Driven Development (which also had some
history prior to XP), which turned many assumptions about
programming on their head.
Thus, the movement began as a rejection of the
predominant existing paradigms. People knew something
was wrong with software development as it was being
done. Extreme Programming provided an oppositional
alternative. It was not so much that people thought XP was
great, but they were sure that current practices were not
great. XP received a lot of attention and was a radically
different approach. Perhaps the attention was not because
XP was so much better or radical, as there had been other
ideas circulating such as Rapid Application Development,
but perhaps XP got attention mostly because the Internet
provided a new medium that made rapid awareness
possible.
Then in 2001 a group of IT professionals—all men by the
way, with most from the United States and a few from
Europe—got together over a weekend and hammered out a
set of four “values,” which they believed should be the
foundation of a new approach to building software. Kent
Beck was among them. You can find these four values at
AgileManifesto.org . It was largely a rejection of many
approaches that had become commonplace, such as
detailed plans, passing information by documents, and big
all-at-once deliveries.
In the weeks that followed, some of them continued the
discussion by email and added 12 principles, which you can
also find at the same website.
They called all this the Manifesto for Agile Software
Development, and it came to be known colloquially as the

http://agilemanifesto.org/

Agile Manifesto or just Agile. This “manifesto” took the
popular culture baton from XP and other iterative
approaches and launched the Agile movement for real.
Extreme Programming had set the tone for what would
become the Agile movement, and the tone was to be
extreme. In those days, extreme was popular. We had
extreme rock climbing, extreme skateboarding, extreme
pogo, extreme skiing, and extreme pretty much anything.
Extreme was in. People were so tired of the ordinary;
everything new had to be extreme. It was a new millennium
for crying out loud: everything needed a reset!
And so “extreme” was a necessary aspect of anything new
and interesting at that moment in time in the late 1990s—
the end of the 20th century.
Since Agile was a rejection of what had become established
software development methods, it was inherently a
disruptive movement, and in the ethos of the time, it had to
be extreme. And so it was that every Agile method that
came to be proposed—these are called practices—were of
necessity extreme. Otherwise, they were not seen to be
consistent with the spirit of being entirely new and
disruptive.
It was not the Agile Manifesto that set things in that
direction. The Agile Manifesto was clearly about balance
and moderation. It makes no absolute statements: every
value is couched as a trade-off. For example, the first value
reads, “[We have come to value] individuals and
interactions over processes and tools.”
It does not say, “Forget process and tools—only pay
attention to individuals and interactions.” Instead, it says,
consider both, but pay special attention to individuals and
interactions.

In other words, the Agile Manifesto advocated judgment
and consideration of context. In that sense, it is a
sophisticated document and cannot be used well by people
who do not have the experience needed to apply judgment.
But the tone had already been set by XP: extreme practices
received the most attention and applause, because XP
practices were all extreme. For example, XP's
recommendation of pair programming, in which two people
sit together and write code together, sharing a keyboard,
was considered by many programmers to be extreme. Or
everyone sitting side by side in a single room, with all walls
removed and no privacy—that was pretty extreme, as it had
been assumed that people needed privacy to focus, and the
big programmer complaint of the 1990s, depicted in so
many Dilbert cartoons, was that programmers were no
longer being given offices and instead were being sat in
cubicles that did not afford enough quiet or privacy. And
now here comes XP and says, in effect, You got it all wrong;
you need to sit next to each other. That was an extreme
swing of the pendulum.
The Scrum framework, which dates in various forms to the
1980s but became reformulated in 1993 and then
popularized through its certification regime during the
2000s,8 added more ideas that are arguably extreme. For
example, Scrum views everyone on a team as an equal
player—no one is acknowledged as having more standing
than anyone else (“Scrum recognizes no titles for
Development Team members”9), regardless of their
experience. That was pretty extreme, since before Agile,
programmers in most (not all) organizations had
professional levels, such as programmer, senior
programmer, architect, etc.
During the first decade of the Agile movement it seemed
that new suggested practices were in a competition to be

more extreme than the others. We saw the introduction of
mob programming, in which rather than two programmers
working together as in pair programming, the entire team
works together—literally—everyone calling out their
thoughts in a single room and sharing a single keyboard.10

Then in 2015 the Agile team room was extended by
Facebook to an extreme level when it created its 430,000-
square-foot open team room.11

We also saw the growth of conference formats pushing
popular Agile practices to the extreme—for example, the
Lean Coffee format in which there is no agenda or the
“unconference” and Open Space formats in which people
vote on topics and join ad hoc conversations. These
contrast strongly with a traditional conference or
discussion group format, which generally has an agenda
and scheduled talks, with informal sessions afterward.
But do extremes work?
Certainly they work for something. There is always some
use for any tool. The question is, are the extreme practices
advocated by many among the Agile community actually
the most effective method for a wide range of situations
that commonly occur in organizations? Another question is,
do these practices favor certain ways of working at the
expense of others so that certain people benefit but others
are at a disadvantage? Or, should a thoughtful approach be
used, with moderate approaches being the norm and
extreme approaches used sparingly and when a particular
form of activity is desired for a specific reason?
Since the Agile movement began through advocacy of
extremes and was inherently a disruptive movement, it
became evangelistic, and dogmatic elements arose. As a
result, if one did not embrace the trending favored set of
Agile practices, one was at risk of being labeled an “Agile
doubter.” That label was brandished readily by many Agile

coaches. And so extremes came to be not just something to
consider, but the way—and the only way. Agile was now
something to accept on faith; as Kurt Cagle had written, it
had become a religion.

Divided and Branded
Whenever something new and useful is created, people and
organizations jump in to claim it and use it for their own
purposes. Any change creates huge opportunities. For
example, when Howard Head came out with the oversized
Prince tennis racquet in the early 1970s, other
manufacturers followed Head's lead and came out with
racquets that departed from the standard size. One
suddenly saw racquets on the market with very large nets
and also ones that were only slightly larger than what was
then the standard size.
The ones that were slightly larger became the most popular
and came to be seen as the new standard size. These were
called “midsize” racquets, although today we just call them
racquets.12

The inevitable result was that everyone who owned a tennis
racquet had to go out and buy a new one; otherwise, they
were not adhering to the new “standard.” The sports
equipment industry experienced a windfall in sales.
The rise of Agile did the same thing. There were new
books, new websites, new consulting practices, and new
frameworks that purported to be Agile. Agile quickly
became a commodity to sell. It began with an Agile
certification industry. Ken Schwaber introduced a two-day
certification course for his Scrum framework: the Certified
Scrum Master, aka CSM. By sitting in a training room for
two days and not even taking a test (they do provide a

simple test now), one could walk away with a certificate
claiming to be a “master.”
Essentially the material that could be contained in a small
pamphlet was the basis of what Human Resources staff and
many hiring managers erroneously interpreted as a
“master-level” certification.
Since Schwaber and his partner, Jeff Sutherland, claimed
that Scrum was an Agile framework, it was something they
could sell under the rising banner of Agile. Organizations
that preferred to hire people with certifications made the
CSM a requirement. People who had master's degrees from
universities were dismayed at the naively perceived
equivalence of a master's degree and a Certified Scrum
Master certification. Highly qualified people were screened
from job applications because they did not have the two-
day CSM certification.
Industry groups sprang up: the Agile Alliance, the Scrum
Alliance, Scrum.org , ICAgile, SAFe, LeSS, Kanban, and many
others. The large consulting companies had a hard time
learning about Agile, because Agile's central message of
being lean and efficient and not having big contracted
“phases” was antithetical to their model. Eventually they
figured out how to incorporate it into their offerings, and
today they all have substantial Agile practices, claiming to
be the experts in Agile.
Thus, there is a lot of money today in the Agile industry,
and the Agile community is arguably driven by moneyed
interests, with a continuing tide of people seeking
certifications in the various frameworks and becoming
indoctrinated into them. The phrase Agile industrial
complex, which might have been coined by Martin Fowler
(one of the authors of the Agile Manifesto), has come to be
used to refer to the industry as a commentary on the

http://scrum.org/

degree to which it is driven by financial interests rather
than by ideas and efficacy.

Controlled by Dogma
Today Agile is big business, and it is highly competitive.
Large consulting companies have traditionally used their
partners to fly around and build relationships with their
clients' executives, convincing the executives that the
partners and consulting firms have strategic insight. That
was the case before COVID-19 and will probably resume
being the case after COVID-19. Through those
relationships, the partners are able to place large numbers
of Agile-certified staff on-site, generating a lot of revenue.
Placing staff is their goal—as many as possible. These staff
members do not usually have the industry experience that
the partners have, but they have a certificate, perhaps a
Certified Scrum Master certificate, perhaps a SAFe
certificate, or perhaps others. In other words, they sat in a
classroom for a few days or weeks, and they probably
participated in at least one project that was said to be
Agile. Most are not what one would normally expect from a
consultant who is advising teams and programs: decades of
practical experience at multiple levels of responsibility,
great acumen, demonstrated industry thought leadership,
and a history of P&L accountability.
Certainly there are many people in large consulting
companies who are very qualified, but we have seen many
who are not. The point is that one should not treat a large
consulting company as if it is inherently more trustworthy
than any other with regard to Agile expertise. Have their
people achieved business results? The partners will tell you
they have and will provide proof, but you know how data
can be misused.

Many of the various industry groups do not like each other
either. One of the largest Scrum training organizations—
one that claims to speak for the Scrum community at large
—actually writes into its contract with its trainers that one
cannot train for a “competing” training framework such as
the Scaled Agile Framework. Thus, the organization does
not want its customers to have a choice or to be able to
consider other ideas. Limiting what one’s trainers know
does not seem to us like a good way to serve one’s
customers.
Meanwhile, the organization preaches Agile's value of
“customer collaboration over contract negotiation” and
professes to being open to all ideas and to being
cooperative and collaborative—core Agile attributes. You
should not miss the hypocrisy in this.
An Agile training organization's armies are its certified
coaches. When the CSM certification was introduced, it had
an unintended effect (at least, there is no evidence that it
was intentional). Large numbers of people who had no
software development experience took the training and
became certified. Almost overnight they had a new career:
their CSM certification could get them a job as a Scrum
Master or an Agile coach.
We then saw the rise of these two new professions (Scrum
Master and Agile coach), and they quickly came to be
dominated by nontechnical people from every manner of
prior profession. Since their background was nontechnical,
they emphasized the human side of software teams: team
trust, team happiness, and so on, as well as the set of
Scrum practices: the sprint planning, the daily scrum (aka
daily standup), the sprint review, and the retrospective. The
technical focus that XP had was almost entirely lost, and by
2011, 52% of Agile teams reported using Scrum (which

defines no technical practices), compared to only 2% using
the highly technical XP.13

This is a big problem. In a talk at Agile Australia in 2018,
Martin Fowler, one of the authors of the Agile Manifesto,
asked the audience, “How many people here are software
developers?” Then he said, “A smattering, but actually very
much a minority … and that's actually quite tragic.”14

Agile coaches and Scrum Masters focused on the
nontechnical practices as if they were the be-all and end-all
of software development, ignoring critical things such as
test coverage, code branching, integration testing, issue
management, and all the critical things that every
programmer knows are essential. The retrospective, in
which a team is supposed to talk about how to improve
their work, was facilitated by the Scrum Master, who was
usually nontechnical, and so the discussion tended to steer
toward the Scrum practices, because team members did
not want to bring up issues that the Scrum Master would
not understand. Teams then went back to their desks,
anxious to get back to work after all of the Scrum-related
ceremonies (what the Scrum practices are called), and so
important technical issues went undiscussed.
The Agile conversation was essentially taken away from
software developers—the people for whom Agile was
created. After all, the Manifesto begins with (italics added),
“We are uncovering better ways of developing software …
.”
Agile thought leadership was increasingly controlled by
those who wanted to advance an increasingly extreme
behavioral agenda. Programmers speak up from time to
time, but with trepidation. For example, a poster on Reddit
wrote this:

