FIFTH EDITION

Professional

Marc Gregoire

PROFESSIONAL

C++
INTRODUCTION ..ttt ittt ittt ettt ittt ittt xlvii
» PARTI INTRODUCTION TO PROFESSIONAL C++
CHAPTER1 A Crash Course in C++ and the Standard Library................ 3
CHAPTER 2 Working with Strings and String Views 87
CHAPTER3 CodingwithStyle.. 111
» PART I PROFESSIONAL C++ SOFTWARE DESIGN
CHAPTER 4 Designing Professional C++ Programs 137
CHAPTERS5 Designingwith Objects 169
CHAPTER 6 DesigningforReuse........, 187
» PART Il C++ CODING THE PROFESSIONAL WAY
CHAPTER7 MemoryManagement i, 211
CHAPTER 8 Gaining Proficiency with Classes and Objects. 249
CHAPTER 9 Mastering Classesand Objects 283
CHAPTER 10 Discovering Inheritance Techniques. 337
CHAPTER11 OddsandEnds.......... ... i iiiiiiiiiiiinnnn.. 397
CHAPTER 12 Writing Generic Code with Templates. 421
CHAPTER 13 Demystifying C++ 1/0o e 465
CHAPTER 14 Handling Errors. i 495
CHAPTER 15 Overloading C++ Operators, 535
CHAPTER 16 Overview of the C++ Standard Library 573
CHAPTER 17 Understanding Iterators and the Ranges Library. 603
CHAPTER 18 Standard Library Containersciiuoa... 627
CHAPTER 19 Function Pointers, Function Objects, and

Lambda Expressions. i 699
CHAPTER 20 Mastering Standard Library Algorithms. 725

Continues

CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24

» PART IV
CHAPTER 25
CHAPTER 26
CHAPTER 27

» PART V

CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32
CHAPTER 33
CHAPTER 34

» PART VI
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

String Localization and Regular Expressions 763

Date and Time Utilities.o oo oo i it e 793
Random Number Facilities. 809
Additional Library Utilities i L. 821
MASTERING ADVANCED FEATURES OF C++

Customizing and Extending the Standard Library.............. 833
Advanced Templates il 877
Multithreaded Programming with C++ 915
C++ SOFTWARE ENGINEERING

Maximizing Software Engineering Methods 971
Writing Efficient C++ L 993
Becoming Adeptat Testing, 1021
ConqueringDebugging 1045
Incorporating Design Techniques and Frameworks. 1083
Applying Design Patterns.o i i 1105
Developing Cross-Platform and Cross-Language Applications. . . 1137
APPENDICES

CHtnterviews. oo e 1165
Annotated Bibliography. o ool 1191
Standard Library Header Files 1203
Introductionto UML. 1213
.. 1219

PROFESSIONAL
C++

PROFESSIONAL
C++

Fifth Edition

Marc Gregoire

AN

WFrox

A Wiley Brand

Professional C++
Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-69540-0
ISBN: 978-1-119-69550-9 (ebk)
ISBN: 978-1-119-69545-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport .wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020950208

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Dedicated to my wonderful parents and my brother,
who are always there for me. Their support and
patience helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of

Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect
at Nikon Metrology (nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments, X-ray machines, and metrology solutions for X-ray, CT, and 3-D geometric
inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework. He has experi-
ence in developing C++ programs running 24/7 on Windows and Linux platforms: for example,
KNX/EIB home automation software. In addition to C/C++, Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marec is the founder of the Belgian C++ Users Group (becpp . org), co-author of C++ Standard
Library Quick Reference 1+ and 2" editions (Apress), a technical editor for numerous books for
several publishers, and a regular speaker at the CppCon C++ conference. He maintains a blog at
www . nuonsoft .com/blog/ and is passionate about traveling and gastronomic restaurants.

http://www.nikonmetrology.com
http://www.becpp.org
http://www.nuonsoft.com/blog/

ABOUT THE TECHNICAL EDITORS

PETER VAN WEERT is a Belgian software engineer whose main interests and expertise are application
software development, programming languages, algorithms, and data structures.

He received his master of science degree in computer science summa cum laude with congratulations
from the Board of Examiners from the University of Leuven. In 2010, he completed his PhD thesis on
the design and efficient compilation of rule-based programming languages at the research group for
declarative programming languages and artificial intelligence. During his doctoral studies he was a
teaching assistant for object-oriented programming (Java), software analysis and design, and declara-
tive programming.

Peter then joined Nikon Metrology, where he worked on large-scale, industrial application software
in the area of 3-D laser scanning and point cloud inspection for over six years. Today, Peter is senior
C++ engineer and Scrum team leader at Medicim, the R&D unit for digital dentistry software of
Envista Holdings. At Medicim, he codevelops a suite of applications for dental professionals, capable
of capturing patient data from a wide range of hardware, with advanced diagnostic functionality and
support for implant planning and prosthetic design.

Common themes in his professional career include advanced desktop application development,
mastering and refactoring of code bases of millions of lines of C++ code, high-performant, real-time
processing of 3-D data, concurrency, algorithms and data structures, interfacing with cutting-edge
hardware, and leading agile development teams.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also
co-authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition),
both published by Apress.

OCKERT J. DU PREEZ is a self-taught developer who started learning programming in the days of
QBasic. He has written hundreds of developer articles over the years detailing his programming

quests and adventures. His articles can be found on CodeGuru (codeguru. com), Developer.com

(developer.com), DevX (devx.com), and Database Journal (databasejournal.com). Software
development is his second love, just after his wife and child.

He knows a broad spectrum of development languages including C++, C#, VB.NET, JavaScript, and
HTML. He has written the books Visual Studio 2019 In-Depth (BpB Publications) and JavaScript for
Gurus (BpB Publications).

He was a Microsoft Most Valuable Professional for NET (2008-2017).

http://www.codeguru.com/
http://developer.com/
http://www.developer.com/
http://www.devx.com/
http://www.databasejournal.com/
http://vb.net/

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX PRESS editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to write
this fifth edition; Kelly Talbot, project editor, for managing this project; and Kim Wimpsett, copy edi-
tor, for improving readability and consistency and making sure the text is grammatically correct.

Thanks to technical editor Hannes Du Preez for checking the technical accuracy of the book. His
contributions in strengthening this book are greatly appreciated.

A very special thank you to technical editor Peter Van Weert for his outstanding contributions. His
considerable advice and insights have truly elevated this book to a higher level.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

—MARC GREGOIRE

CONTENTS

INTRODUCTION xlvii

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY 3

C++ Crash Course 4
The Obligatory “Hello, World" Program 4
Comments 5
Importing Modules 5
Preprocessor Directives 5
The main() Function 8
I/O Streams 8
Namespaces 9
Nested Namespace 11
Namespace Alias L
Literals 11
Variables 12
Numerical Limits 14
Zero Initialization 15
Casting 15
Floating-Point Numbers 16
Operators 16
Enumerated Types 19
Old-Style Enumerated Types 21
Structs 22
Conditional Statements 23
if/else Statements 23
switch Statements 24
The Conditional Operator 25
Logical Evaluation Operators 26
Three-Way Comparisons 27
Functions 28
Function Return Type Deduction 30
Current Function’s Name 30

Function Overloading 30

CONTENTS

XVi

Attributes
[[nodiscard]]
[[maybe_unused]]
[[noreturn]]
[[deprecated]]
[[likely]] and [[unlikely]]

C-Style Arrays

std::array

std::vector

std::pair

std::optional

Structured Bindings

Loops
The while Loop
The do/while Loop
The for Loop
The Range-Based for Loop

Initializer Lists

Strings in C++

C++ as an Object-Oriented Language
Defining Classes
Using Classes

Scope Resolution

Uniform Initialization
Designated Initializers

Pointers and Dynamic Memory
The Stack and the Free Store
Working with Pointers
Dynamically Allocated Arrays
Null Pointer Constant

The Use of const
const as a Qualifier for a Type
const Methods

The constexpr Keyword

The consteval Keyword

References
Reference Variables
Reference Data Members
Reference Parameters
Reference Return Values
Deciding Between References and Pointers

30
31
31
32
32
33
33
35
36
36
37
38
38
38
39
39
39
40
40
41
41
44
44
45
48
49
49
50
51
52
53
53
55
56
57
58
58
61
61
64
64

CONTENTS

const_cast() 68
Exceptions 69
Type Aliases 70
typedefs 71
Type Inference 72
The auto Keyword 72

The decltype Keyword 75

The Standard Library 75
Your First Bigger C++ Program 75
An Employee Records System 76
The Employee Class 76
Employee.copm 76
Employee.cpp 78
EmployeeTest.cpp 79

The Database Class 80
Database.cppm 80
Database.cpp 81
DatabaseTest.cpp 82

The User Interface 82
Evaluating the Program 85
Summary 85
Exercises 85
CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 87
Dynamic Strings 88
C-Style Strings 88
String Literals 90
Raw String Literals 90

The C++ std::string Class 92
What Is Wrong with C-Style Strings? 92
Using the string Class 92
std::string Literals 95
CTAD with std::vector and Strings 96
Numeric Conversions 96
High-Level Numeric Conversions 96
Low-Level Numeric Conversions 97

The std::string_view Class 100
std::string_view and Temporary Strings 102
std::string_view Literals 102
Nonstandard Strings 102
String Formatting 103
Format Specifiers 104

xvii

CONTENTS

width 104
[filllalign 105

sign 105

105

type 106
precision 107

0 107
Format Specifier Errors 107
Support for Custom Types 107
Summary 110
Exercises 110
CHAPTER 3: CODING WITH STYLE 111
The Importance of Looking Good 111
Thinking Ahead 112
Elements of Good Style 112
Documenting Your Code 112
Reasons to Write Comments 112
Commenting to Explain Usage 112
Commenting to Explain Complicated Code 115
Commenting to Convey Meta-information 116
Commenting Styles 117
Commenting Every Line 117
Prefix Comments 118
Fixed-Format Comments 119

Ad Hoc Comments 120
Self-Documenting Code 122
Decomposition 122
Decomposition Through Refactoring 123
Decomposition by Design 124
Decomposition in This Book 124
Naming 124
Choosing a Good Name 124
Naming Conventions 125
Counters 125
Prefixes 126
Hungarian Notation 126
Getters and Setters 127
Capitalization 127
Namespaced Constants 127
Using Language Features with Style 127
Use Constants 128

xviii

CONTENTS

Use References Instead of Pointers 128
Use Custom Exceptions 129
Formatting 129
The Curly Brace Alignment Debate 130
Coming to Blows over Spaces and Parentheses 131
Spaces, Tabs, and Line Breaks 131
Stylistic Challenges 132
Summary 132
Exercises 133
CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 137
What Is Programming Design? 138
The Importance of Programming Design 139
Designing for C++ 141
Two Rules for Your Own C++ Designs 142
Abstraction 142
Benefiting from Abstraction 142
Incorporating Abstraction in Your Design 143
Reuse 144
Writing Reusable Code 144
Reusing Designs 145
Reusing Existing Code 146
A Note on Terminology 146
Deciding Whether to Reuse Code or Write it Yourself 147
Advantages to Reusing Code 147
Disadvantages to Reusing Code 148
Putting It Together to Make a Decision 149
Guidelines for Choosing a Library to Reuse 149
Understand the Capabilities and Limitations 149
Understand the Learning Cost 150
Understand the Performance 150
Understand Platform Limitations 153
Understand Licensing 153
Understand Support and Know Where to Find Help 154
Prototype 154
Open-Source Libraries 155

The C++ Standard Library 157

Xix

CONTENTS

Designing a Chess Program 157
Requirements 158
Design Steps 158

Divide the Program into Subsystems 158

Choose Threading Models 160

Specify Class Hierarchies for Each Subsystem 161
Specify Classes, Data Structures, Algorithms, and Patterns for

Each Subsystem 162

Specify Error Handling for Each Subsystem 165

Summary 166

Exercises 166

CHAPTER 5: DESIGNING WITH OBJECTS 169

Am | Thinking Procedurally? 170

The Object-Oriented Philosophy 170
Classes 170
Components 171
Properties 171
Behaviors 172
Bringing It All Together 172

Living in a World of Classes 173
Over-Classification 173
Overly General Classes 174

Class Relationships 175
The Has-a Relationship 175
The Is-a Relationship (Inheritance) 176

Inheritance Techniques 177
Polymorphism 178

The Fine Line Between Has-a and Is-a 178

The Not-a Relationship 181
Hierarchies 182
Multiple Inheritance 183
Mixin Classes 184
Summary 185
Exercises 185
CHAPTER 6: DESIGNING FOR REUSE 187

The Reuse Philosophy 188

How to Design Reusable Code 189
Use Abstraction 189
Structure Your Code for Optimal Reuse 191

Avoid Combining Unrelated or Logically Separate Concepts 191

XX

CONTENTS

Use Templates for Generic Data Structures and Algorithms 193
Provide Appropriate Checks and Safeguards 195
Design for Extensibility 196
Design Usable Interfaces 198
Consider the Audience 198
Consider the Purpose 199
Design Interfaces That Are Easy to Use 200
Design General-Purpose Interfaces 204
Reconciling Generality and Ease of Use 205
Designing a Successful Abstraction 205
The SOLID Principles 206
Summary 207
Exercises 207
CHAPTER 7: MEMORY MANAGEMENT 211
Working with Dynamic Memory 212
How to Picture Memory 212
Allocation and Deallocation 213
Using new and delete 213
What About My Good Friend malloc? 214
When Memory Allocation Fails 215
Arrays 215
Arrays of Primitive Types 215
Arrays of Objects 218
Deleting Arrays 218
Multidimensional Arrays 219
Working with Pointers 223

A Mental Model for Pointers 223
Casting with Pointers 224
Array-Pointer Duality 224
Arrays Are Pointers! 224
Not All Pointers Are Arrays! 226
Low-Level Memory Operations 227
Pointer Arithmetic 227
Custom Memory Management 228
Garbage Collection 228
Obiject Pools 229
Common Memory Pitfalls 229
Underallocating Data Buffers and Out-of-Bounds Memory Access 229

XXi

CONTENTS

Memory Leaks 231
Finding and Fixing Memory Leaks in Windows with Visual C++ 232
Finding and Fixing Memory Leaks in Linux with Valgrind 233

Double-Deletion and Invalid Pointers 234

Smart Pointers 234

unique_ptr 235
Creating unique_ptrs 236
Using unique_ptrs 237
unique_ptr and C-Style Arrays 238
Custom Deleters 239

shared_ptr 239
Creating and Using shared_ptrs 239
The Need for Reference Counting 241
Casting a shared_ptr 242
Aliasing 242

weak_ptr 243

Passing to Functions 244

Returning from Functions 244

enable_shared_from_this 244

The Old and Removed auto_ptr 245

Summary 246
Exercises 246
CHAPTER 8: GAINING PROFICIENCY WITH CLASSES
AND OBJECTS 249
Introducing the Spreadsheet Example 250
Writing Classes 250

Class Definitions 250
Class Members 251
Access Control 251
Order of Declarations 252
In-Class Member Initializers 253

Defining Methods 253
Accessing Data Members 254
Calling Other Methods 254
The this Pointer 255

Using Objects 257
Objects on the Stack 257
Objects on the Free Store 257

Understanding Object Life Cycles 258

Object Creation 258
Writing Constructors 259
Using Constructors 260

XXii

CONTENTS

Providing Multiple Constructors 260
Default Constructors 261
Constructor Initializers 265
Copy Constructors 269
Initializer-List Constructors 271
Delegating Constructors 273
Converting Constructors and Explicit Constructors 273
Summary of Compiler-Generated Constructors 275
Object Destruction 276
Assigning to Objects 277
Declaring an Assignment Operator 278
Defining an Assignment Operator 278
Explicitly Defaulted and Deleted Assignment Operator 280
Compiler-Generated Copy Constructor and Copy Assignment Operator 280
Distinguishing Copying from Assignment 280
Objects as Return Values 280
Copy Constructors and Object Members 281
Summary 282
Exercises 282
CHAPTER 9: MASTERING CLASSES AND OBJECTS 283
Friends 284
Dynamic Memory Allocation in Objects 285
The Spreadsheet Class 285
Freeing Memory with Destructors 288
Handling Copying and Assignment 289
The Spreadsheet Copy Constructor 291

The Spreadsheet Assignment Operator 291
Disallowing Assignment and Pass-by-Value 294
Handling Moving with Move Semantics 295
Rvalue References 295
Implementing Move Semantics 297
Testing the Spreadsheet Move Operations 301
Implementing a Swap Function with Move Semantics 303
Using std::move() in Return Statements 303
Optimal Way to Pass Arguments to Functions 304

Rule of Zero 305
More About Methods 306
static Methods 306
const Methods 307
mutable Data Members 308

xXiii

CONTENTS

Method Overloading 308
Overloading Based on const 309
Explicitly Deleting Overloads 310
Ref-Qualified Methods 310

Inline Methods 311

Default Arguments 313

Different Kinds of Data Members 314

static Data Members 314
Inline Variables 314
Accessing static Data Members within Class Methods 315
Accessing static Data Members Outside Methods 316

const static Data Members 316

Reference Data Members 317

Nested Classes 318
Enumerated Types Inside Classes 319
Operator Overloading 320

Example: Implementing Addition for SpreadsheetCells 320
First Attempt: The add Method 320
Second Attempt: Overloaded operator+ as a Method 321
Third Attempt: Global operator+ 322

Overloading Arithmetic Operators 324
Overloading the Arithmetic Shorthand Operators 324

Overloading Comparison Operators 325
Compiler-Generated Comparison Operators 328

Building Types with Operator Overloading 330

Building Stable Interfaces 330
Using Interface and Implementation Classes 330
Summary 334
Exercises 335
CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 337
Building Classes with Inheritance 338

Extending Classes 338
A Client's View of Inheritance 339
A Derived Class's View of Inheritance 340
Preventing Inheritance 341

Overriding Methods 342
The virtual Keyword 342
Syntax for Overriding a Method 342
A Client's View of Overridden Methods 343
The override Keyword 344

XXiv

CONTENTS

The Truth About virtual
Preventing Overriding
Inheritance for Reuse
The WeatherPrediction Class
Adding Functionality in a Derived Class
Replacing Functionality in a Derived Class
Respect Your Parents
Parent Constructors
Parent Destructors
Referring to Parent Names
Casting Up and Down
Inheritance for Polymorphism
Return of the Spreadsheet
Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell Base Class
A First Attempt
Pure Virtual Methods and Abstract Base Classes
The Individual Derived Classes
StringSpreadsheetCell Class Definition
StringSpreadsheetCell Implementation
DoubleSpreadsheetCell Class Definition and Implementation
Leveraging Polymorphism
Future Considerations
Multiple Inheritance
Inheriting from Multiple Classes
Naming Collisions and Ambiguous Base Classes
Name Ambiguity
Ambiguous Base Classes
Uses for Multiple Inheritance
Interesting and Obscure Inheritance Issues
Changing the Overridden Method'’s Return Type
Adding Overloads of Virtual Base Class Methods to Derived Classes
Inherited Constructors
Hiding of Inherited Constructors
Inherited Constructors and Multiple Inheritance
Initialization of Data Members
Special Cases in Overriding Methods
The Base Class Method Is static
The Base Class Method Is Overloaded
The Base Class Method Is private
The Base Class Method Has Default Arguments

346
350
350
350
351
352
353
353
355
356
358
360
360
360
361
361
362
363
363
363
364
364
365
367
367
368
368
369
371
371
371
373
374
375
376
377
378
378
379
380
382

XXV

CONTENTS

The Base Class Method Has a Different Access Specification 383
Copy Constructors and Assignment Operators in Derived Classes 385
Run-Time Type Facilities 386
Non-public Inheritance 388
Virtual Base Classes 389

Casts 390
static_cast() 390
reinterpret_cast() 391
std::bit_cast() 392
dynamic_cast() 393
Summary of Casts 394

Summary 394

Exercises 395

CHAPTER 11: ODDS AND ENDS 397

Modules 397
Module Interface Files 399
Module Implementation Files 401
Splitting Interface from Implementation 402
Visibility vs. Reachability 403
Submodules 404
Module Partitions 405

Implementation Partitions 407

Header Units 408

Header Files 408
Duplicate Definitions 409
Circular Dependencies 409
Querying Existence of Headers 410
Feature Test Macros for Core Language Features 410
The static Keyword 411
static Data Members and Methods 411
static Linkage 411

The extern Keyword 413
static Variables in Functions 414
Order of Initialization of Nonlocal Variables 415

Order of Destruction of Nonlocal Variables 415

XXVi

CONTENTS

C Utilities 415
Variable-Length Argument Lists 415
Accessing the Arguments 416

Why You Shouldn’t Use C-Style Variable-Length Argument Lists 417
Preprocessor Macros 417
Summary 419
Exercises 419
CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 421
Overview of Templates 422
Class Templates 422
Writing a Class Template 423
Coding Without Templates 423

A Template Grid Class 426
Using the Grid Template 430

How the Compiler Processes Templates 431
Selective Instantiation 431
Template Requirements on Types 432
Distributing Template Code Between Files 432
Method Definitions in Same File as Class Template Definition 433
Method Definitions in Separate File 433
Template Parameters 433
Non-type Template Parameters 434
Default Values for Type Parameters 436
Class Template Argument Deduction 436
Method Templates 438
Method Templates with Non-type Parameters 440
Class Template Specialization 442
Deriving from Class Templates 445
Inheritance vs. Specialization 446
Alias Templates 447
Function Templates 447
Function Template Overloading 449
Friend Function Templates of Class Templates 449
More on Template Parameter Deduction 451
Return Type of Function Templates 451
Abbreviated Function Template Syntax 453

XXVii

CONTENTS

Variable Templates 454
Concepts 454
Syntax 455
Constraints Expression 455
Requires Expressions 455
Combining Concept Expressions 457
Predefined Standard Concepts 457
Type-Constrained auto 458
Type Constraints and Function Templates 458
Constraint Subsumption 460
Type Constraints and Class Templates 461
Type Constraints and Class Methods 461
Type Constraints and Template Specialization 462
Summary 463
Exercises 463
CHAPTER 13: DEMYSTIFYING C++ I/O 465
Using Streams 466
What Is a Stream, Anyway? 466
Stream Sources and Destinations 467
Output with Streams 468
Output Basics 468
Methods of Output Streams 469
Handling Output Errors 470
Output Manipulators 471
Input with Streams 473
Input Basics 473
Handling Input Errors 475
Input Methods 476
Input Manipulators 480
Input and Output with Objects 481
Custom Manipulators 482
String Streams 482
File Streams 484
Text Mode vs. Binary Mode 485
Jumping Around with seek() and tell() 485
Linking Streams Together 487
Bidirectional I/0 488
Filesystem Support Library 490
Path 490
Directory Entry 491

XXViii

