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Preface

Lifetime information obtained from one-shot devices is very limited as the entire
data are either left- or right-censored. For this reason, the analysis of one-shot
device testing data poses a special challenge. This book provides several statisti-
cal inferential methods for analyzing one-shot device lifetime data obtained from
accelerated life-tests and also develops optimal designs for two mainstream accel-
erated life-tests – constant-stress and step-stress accelerated life-tests – that are
commonly used in reliability practice. The discussions provided in the book would
enable reliability practitioners to better design their experiments for data collec-
tion from efficient accelerated life-tests when there are budget constraints in place.
This is important from estimation and prediction point of view as such optimal
designs would result in as accurate an inference as possible under the constraints
imposed on the reliability experiment. Moreover, R codes are presented within
each chapter so that users can try out performing their own analysis on one-shot
device testing data.

In addition, the inferential methods and the procedures for planning accel-
erated life-tests discussed in this book are not only limited to one-shot devices
alone but also can be extended naturally to accelerated life-tests with periodic
inspections (interval-censoring) and those with continuous monitoring and
censoring (right-censoring). The book finally concludes by highlighting some
important issues and problems that are worth considering for further research.
This may be especially useful for research scholars and new researchers interested
in taking on this interesting and challenging area of research in reliability theory
and practice.

It is possible that some pertinent results or references got omitted in this book,
and we assure you that it is due to inadvertency on our part and not due to
scientific antipathy. We will appreciate greatly if the readers inform us of any
corrections/omissions, or any comments pertinent to any of the discussions in
the book!
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1

One-Shot Device Testing Data

1.1 Brief Overview

One-shot device testing data analyses have recently received great attention in
reliability studies. The aim of this chapter is to provide an overview on one-shot
device testing data collected from accelerated life-tests (ALTs). Section 1.2 surveys
typical examples of one-shot devices and associated tests in practical situations.
Section 1.3 describes several popular ALTs, while Section 1.4 provides some
examples of one-shot device testing data that are typically encountered in relia-
bility and survival studies. Finally, Section 1.5 details some recent developments
on one-shot device testing data analyses and associated issues of interest.

1.2 One-Shot Devices

Valis et al. (2008) defined one-shot devices as units that are accompanied by
an irreversible chemical reaction or physical destruction and could no longer
function properly after its use. Many military weapons are examples of one-shot
devices. For instance, the mission of an automatic weapon gets completed
successfully only if it could fire all the rounds placed in a magazine or in ammu-
nition feed belt without any external intervention. Such devices will usually get
destroyed during usual operating conditions and can therefore perform their
intended function only once.

Shaked and Singpurwalla (1990) discussed the submarine pressure hull damage
problem from a Bayesian perspective and assessed the effect of various strengths
of underwater shock waves caused by either a nuclear device or a chemical device
on the probability of damage to a submarine pressure hull. A record is made of
whether a copy of a diminutive model of a submarine pressure hull is damaged
or not, and a specific strength of the shock wave on the model. Fan et al. (2009)

Accelerated Life Testing of One-shot Devices: Data Collection and Analysis, First Edition.
Narayanaswamy Balakrishnan, Man Ho Ling, and Hon Yiu So.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Balakrishnan/Accelerated_Life_Testing
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2 1 One-Shot Device Testing Data

considered electro-explosive devices in military applications, which induct a
current to excite inner powder and make them explode. Naturally, we cannot
adjudge the functioning condition of the electro-explosive device from its exterior,
but can only observe it by detonating it directly. After a successful detonation,
the device cannot be used anymore; if the detonation becomes a failure, we will
also not know when exactly it failed. Nelson (2003) described a study of crack
initiation for turbine wheels. Each of the 432 wheels was inspected once to
determine whether it had started to crack or not. Newby (2008) provided some
other examples of one-shot devices, such as fire extinguishers or munitions. A
full test would require the use of the considered devices and, therefore, their
subsequent destruction. The test carried out would show whether a device is still
in a satisfactory state, or has failed by that inspection time.

One-shot device testing data also arise in destructive inspection procedures,
wherein each device is allowed for only a single inspection because the test itself
results in its destruction. Morris (1987) presented a study of 52 Li/SO2 storage
batteries under destructive discharge. Each battery was tested at one of three
inspection times and then classified as acceptable or unacceptable according to a
critical capacity value.

Ideally, reliability data would contain actual failure times of all devices placed
on test (assuming, of course, the experimenter could wait until all devices fail),
so that the observed failure times can reveal the failure pattern over time, and we
could then estimate the reliability of the device reasonably. But, in practice, many
life-tests would get terminated before all the units fail. Such an early stoppage of
the life-test by the experimenter may be due to cost or time constraints or both.
This would result in what is called as “right-censored data” because the exact fail-
ure times of the unfailed devices are unknown, but all we know is that the failure
times of those devices are larger than the termination time. Considerable liter-
ature exists on statistical inference for reliability data under right-censoring; for
example one may refer to the books by Cohen (1991), Balakrishnan and Cohen
(1991), and Nelson (2003).

Moreover, when nondestructive and periodic inspections are carried on devices,
their exact failure times will not be observed, but the intervals wherein the failures
occurred will only be available. If a failure is observed by the first inspection,
then it is known that the failure time of the device is less than the first inspection
time, resulting in “left-censoring.” Similarly, if a failure is observed between two
consecutive inspection times, then it is known that the failure time is between
these two corresponding inspection times, resulting in “interval-censoring.”
Finally, the failure times of all surviving units at the final inspection time are
right-censored as their exact failure times will not be observed. Exact failure
times can only be observed from a life-testing experiment with continuous
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surveillance. The periodic inspection process with nondestructive evaluation
would actually provide a reasonable approximation to failure times of devices
under test, especially when the inspection time intervals are short, even though
the precision of inference will be less in this case.

It is useful to note that in all the preceding examples of one-shot devices, we
will not observe the actual lifetimes of the devices. Instead, we would only observe
either a success or a failure at the inspection times, and so only the corresponding
binary data would be observed, consequently resulting in less precise inference.
In this manner, one-shot device testing data differ from typical data obtained by
measuring lifetimes in standard life-tests and, therefore, poses a unique challenge
in the development of reliability analysis, due to the lack of lifetime information
being collected from reliability experiments on such one-shot devices. If successful
tests occur, it implies that the lifetimes are beyond the inspection times, leading to
right-censoring. On the other hand, the lifetimes are before the inspection times,
leading to left-censoring, if tests result in failures. Consequently, all lifetimes are
either left- or right-censored. In such a setting of the lifetime data, Hwang and
Ke (1993) developed an iterative procedure to improve the precision of the max-
imum likelihood estimates for the three-parameter Weibull distribution and to
evaluate the storage life and reliability of one-shot devices. Some more examples
of one-shot devices in the literature include missiles, rockets, and vehicle airbags;
see, for example, Bain and Engelhardt (1991), Guo et al. (2010), and Yun et al.
(2014).

1.3 Accelerated Life-Tests

As one-shot devices (such as ammunition or automobile airbags) are usually kept
for a long time in storage and required to perform its function only once, the
reliability required from such devices during their normal operating conditions
would naturally be high. So, it would be highly unlikely to observe many fail-
ures on tests under normal operating conditions within a short period of time.
This renders the estimation of reliability of devices to be a challenging problem
from a statistical point of view. In this regard, ALTs could be utilized to mitigate
this problem. In ALTs, devices are subject to higher-than-normal stress levels to
induce early failures. In this process, more failures could likely be obtained within
a limited test time. As the primary goal of the analysis is to estimate the reliability
of devices under normal operating conditions, ALT models would then typically
extrapolate (from the data obtained at elevated stress levels) to estimate the relia-
bility under normal operating conditions. ALTs are known to be efficient in cap-
turing valuable lifetime information, especially when there is a need to shorten
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the life-testing experiment. For this reason, ALTs have become popular and are
commonly adopted in many reliability experiments in practice. One may refer to
the detailed reviews presented by Nelson (1980), Cramer and Kamps (2001), Pham
(2006), and Meeker and Escobar (2014), and the excellent booklength account pro-
vided by Nelson (2009).

Constant-stress accelerated life-tests (CSALTs) and step-stress accelerated
life-tests (SSALTs) are two popular ALT plans that have received great attention
in the literature. Under a CSALT, each device gets tested at only one prespecified
stress level. To mention a few recent works, for example, Wang et al. (2014)
considered CSALTs with progressively Type-II right censored samples under
Weibull lifetime distribution; for pertinent details on progressive censoring,
see Balakrishnan (2007) and Balakrishnan and Cramer (2014). Wang (2017)
discussed CSALTs with progressive Type-II censoring under a lower truncated
distribution. Lin et al. (2019) studied CSALTs terminated by a hybrid Type-I
censoring scheme under general log-location-scale lifetime distributions. SSALTs
are an alternative to apply stress to devices in a way that stress levels will increase
at prespecified times step-by-step. For SSALTs, there are three fundamental
models for the effect of increased stress levels on the lifetime distribution of a
device: The tampered random variable model proposed by DeGroot and Goel
(1979), the cumulative exposure model of Sedyakin (1966) and Nelson (1980);
see also (Nikulin and Tahir, 2013), and the tampered failure rate model proposed
by Bhattacharyya and Soejoeti (1989). All these models of SSALTs have been
discussed extensively by many authors. Gouno (2001) analyzed data collected
from SSALTs and presented an optimal design for SSALTs; see also Gouno
(2007). Zhao and Elsayed (2005) analyzed data on the light intensity of light
emitting diodes collected from SSALTs with four stress levels under Weibull and
log-normal distributions. For the case of exponential lifetime distribution, by
considering a simple SSALT under Type-II censoring, Balakrishnan et al. (2007)
developed exact likelihood inferential methods for the model parameters; see
also Balakrishnan (2008) for details, while Xiong et al. (2006) considered the
situation when the stress changes from a low-level stress to a high-level stress at
a random time.

1.4 Examples in Reliability and Survival Studies

1.4.1 Electro-Explosive Devices Data

Fan et al. (2009) considered data, presented in Table 1.1, on 90 electro-explosive
devices under various levels of temperature at different inspection times. Ten
devices under test at each condition were inspected to see whether there were any
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Table 1.1 Failure records on electro-explosive devices under CSALTs
with temperature (K).

Test
group

Inspection
time Temperature

Number of
samples

Number of
failures

1 10 308 10 3
2 10 318 10 1
3 10 328 10 6
4 20 308 10 3
5 20 318 10 5
6 20 328 10 7
7 30 308 10 7
8 30 318 10 7
9 30 328 10 9

Source: Fan et al. (2009).

failures or not at each inspection time for each temperature setting. These data
were then used to estimate the reliability of electro-explosive devices at different
mission times under the normal operating temperature.

1.4.2 Glass Capacitors Data

Zelen (1959) presented data from a life-test of glass capacitors at four
higher-than-usual levels of temperature and two levels of voltage. At each
of the eight combinations of temperature and voltage, eight items were tested.
We adopt these data to form one-shot device testing data by taking the inspection
times (hours) as 𝜏 ∈ {300,350, 400,450}, which are summarized in Table 1.2.
These data were then used to estimate the mean lifetime of glass capacitors for
250 V and 443 K temperature.

1.4.3 Solder Joints Data

Lau et al. (1988) considered data on 90 solder joints under three types of printed
circuit boards (PCBs) at different temperatures. The lifetime was measured as the
number of cycles until the solder joint failed, while the failure of a solder joint is
defined as a 10% increase in measured resistance. A simplified dataset is derived
from the original one and presented in Table 1.3, where two stress factors con-
sidered are temperature and a dichotomous variable indicating if the PCB type is
“copper-nickel-tin” or not.
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Table 1.2 Failure records on glass capacitors under CSALTs with two stress
factors: temperature (K) and voltage (V).

Test
group

Inspection
time Temperature Voltage

Number of
samples

Number of
failures

1 450 443 200 8 1
2 400 453 200 8 0
3 350 443 250 8 0
4 300 453 250 8 1
5 450 443 300 8 3
6 400 453 300 8 4
7 350 443 350 8 3
8 300 453 350 8 2

Source: Zelen (1959).

Table 1.3 Failure records on solder joints under CSALTs with temperature (K) and a
dichotomous variable indicating if the PCB type is “copper-nickel-tin (CNT)” or not.

Test
group

Inspection
time Temperature CNT

Number of
samples

Number of
failures

1 300 293 Yes 10 4
2 300 333 Yes 10 4
3 100 373 Yes 10 6
4 1300 293 No 20 10
5 800 333 No 20 3
6 200 373 No 20 4

Source: Lau et al. (1988).

1.4.4 Grease-Based Magnetorheological Fluids Data

Zheng et al. (2018) studied grease-based magnetorheological fluids under SSALTs
with four levels of temperature and observed whether their viscosities or shear
stresses decreased by more than 10% after tests. Twenty samples of grease-based
magnetorheological fluids were subject to higher-than-normal operating tempera-
ture. Then, each sample was inspected only once and only whether it had failed or
not at the inspection time was observed, and not the actual failure time. The data
collected in this manner, presented in Table 1.4, were then used to estimate the
mean lifetime of grease-based magnetorheological fluids under the normal oper-
ating temperature.



�

� �

�

1.4 Examples in Reliability and Survival Studies 7

1.4.5 Mice Tumor Toxicological Data

It is important to point out that one-shot device testing data arise from diverse
fields beyond reliability engineering, such as in mice tumor studies from
tumorigenicity experiments; see Kodell and Nelson (1980). In such a study, each
mouse received a particular dosage of benzidine dihydrochloride in its drinking
water and was later sacrificed to detect whether some tumors had developed by
then or not. Tumor presence can be detected only at the time of mouse’s sacrifice
or natural death. These data are summarized in Table 1.5. The data collected in
this form were then used to measure the impact of the chemical dosage on the
risk of tumor development.

1.4.6 ED01 Experiment Data

Lindsey and Ryan (1993) described experimental results conducted by National
Center for Toxicological Research in 1974. 3355 out of 24 000 female mice were ran-
domized to a control group or groups that were injected with a high dose (150 ppm)
of a known carcinogen, called 2-AAF, to different parts of the bodies. The inspec-
tion times on the mice were 12, 18, and 33 months and the outcomes of mice were
death without tumor (DNT) and death with tumor (DWT), and sacrificed with-
out tumor (SNT) and sacrificed with tumor (SWT). Balakrishnan et al. (2016a),
in their analysis, ignored the information about parts of mouse bodies where the
drugs were injected and combined SNT and SWT into one sacrificed group, and
denoted the cause of DNT as natural death and the cause of DWT as death due to
cancer. These data are summarized in Table 1.6. They then estimated the chance
of death without tumor.

1.4.7 Serial Sacrifice Data

Ling et al. (2020) were primarily concerned with the data (Berlin et al., 1979), pre-
sented in Table 1.7, on the presence or absence of two disease categories – (a)

Table 1.4 Failure records on grease-based magnetorheological fluids under SSALTs with
temperature (K).

Stage
Inspection

time (h) Temperature
Number of
samples

Number of
failures

1 864 333 5 1
2 1512 339 5 1
3 1944 345 5 2
4 2160 351 5 2

Source: Zheng et al. (2018).
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Table 1.5 The number of mice sacrificed, with tumor from tumorigenecity experiments
data.

Test
group

Inspection
time (mo) Sex

Dosage
(ppm)

Number of
mice

sacrificed

Number of
mice

with tumor

1 9.33 F 60 72 1
2 14.00 F 60 48 3
3 18.67 F 60 36 18
4 9.33 F 120 48 0
5 14.00 F 120 47 14
6 18.67 F 120 26 25
7 9.33 F 200 47 4
8 14.00 F 200 45 38
9 9.33 F 400 24 16
10 14.00 F 400 10 9
11 9.33 M 120 48 0
12 14.00 M 120 44 7
13 18.67 M 120 42 11
14 9.33 M 200 47 3
15 14.00 M 200 32 5
16 18.67 M 200 19 8
17 9.33 M 400 24 0
18 14.00 M 400 22 11
19 18.67 M 400 15 11

Source: Kodell and Nelson (1980).

thymic lymphoma and/or glomerulosclerosis and (b) all other diseases – for an
irradiated group of 343 female mice given 𝛾-radiation and a control group of 361
radiation-free female mice to study the onset time and the rate of development of
radiation-induced disease. All of the mice in both groups were sacrificed at various
times, with the presence of a disease indicating that the disease onset occurred
before sacrifice, while the absence of a disease indicating that the disease onset
would occur after sacrifice.
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Table 1.6 The number of mice sacrificed, died without tumor, and died with tumor from
the ED01 experiment data.

Number of mice

Test
group

Inspection
time
(mo)

High
dose

of 2-AAF Sacrificed
Died

without tumor
Died

with tumor

1 12 No 115 22 8
2 12 Yes 110 49 16
3 18 No 780 42 8
4 18 Yes 540 54 26
5 33 No 675 200 85
6 33 Yes 510 64 51

Source: Lindsey and Ryan (1993).

Table 1.7 Serial sacrifice data on the presence or absence of two disease categories: (a)
thymic lymphoma and/or glomerulosclerosis and (b) all other diseases.

Number of mice

Test
group

Sacrifice
time (d) 𝜸-radiation Healthy

With
(a) only

With
(b) only

With
(a) and (b)

1 100 No 58 13 0 1
2 200 No 40 23 1 1
3 300 No 18 41 1 3
4 400 No 8 25 1 6
5 500 No 1 21 1 16
6 600 No 1 11 0 21
7 700 No 0 9 1 39
8 100 Yes 54 12 1 0
9 200 Yes 36 24 3 5
10 300 Yes 13 35 1 17
11 400 Yes 0 13 2 28
12 500 Yes 0 3 1 35
13 600 Yes 0 0 1 30
14 700 Yes 0 0 1 28

Source: Berlin et al. (1979).


