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Preface

The two-phase systems covered in this book include boil-
ing, condensation, gas–liquid mixtures, and gas–solid
mixtures. While there are many books on these topics,
most of them are concerned mainly with theoretical
aspects while information of practical use is addressed
only briefly. The very few books that were intended to help
the practicing engineers are greatly out of date. I therefore
felt that there was a need for an up-to-date book that
emphasized the practical aspects while also addressing the
theoretical bases. This book is intended to fulfil this need.

The emphasis in this book is on information that is of
practical use. For this reason, theories and methods that
do not provide useable and adequately verified solutions
are dealt only briefly though sufficient references are
provided for more information about them. Effort has
been made to provide a review of the state-of-art and the
best available information for the design of a wide variety
of heat exchangers in a clear and concise manner. This
information includes experimental data, theoretical solu-
tions, and empirical correlations. Accuracy and range of
applicability of formulas/correlations presented is stated.
Clear recommendations are made for application of the

methods presented. A very wide variety of heat exchangers
and applications is covered. These include boiling and con-
densation of pure fluids and their mixtures in tubes and
tube bundles, plate heat exchangers of various types, falling
film heat exchangers, coils, bends, heat pipes, cryogenic
pipelines, surfaces cooled by jets, mist cooling, rotating
surfaces, spheres, disks, cones, etc. Boiling and conden-
sation of metallic fluids is also discussed. Also included
are heat exchangers with two-component gas–liquid mix-
tures, fluidized beds, and flowing gas–solid mixtures. As
space travel and colonization are of much current interest,
available information on effects of low gravity has been
addressed.

While this book is primarily intended to assist practicing
engineers and researchers, it may also be used as textbook
for courses on two-phase heat transfer.

Finally, I thank Dr. Milaz Darzi for his help in getting
some of the publications studied during the preparation of
this book.

Mirza Mohammed ShahRedding, CT
11 April 2020





1

1

Introduction

1.1 Scope and Objectives of the Book

The two-phase systems covered in this book include boil-
ing, condensation, gas–liquid mixtures, and gas–solid
mixtures.

Two-phase heat transfer is involved in numerous appli-
cations. These include heat exchangers in refrigeration and
air conditioning, conventional and nuclear power genera-
tion, solar power plants, aeronautics, chemical processes,
petroleum industry, etc. In recent years, there has been
increasing use of miniature heat exchangers for computers
and other electronic intensive products.

The emphasis in this book is on information that is of
practical use. For this reason, theories and methods that do
not provide useable and adequately verified solutions are
dealt only briefly though sufficient references are provided
for more information about them. Effort is made to provide
the best available information for the design of a wide
variety of heat exchangers in a clear and concise manner.
This information includes experimental data, theoretical
solutions, and empirical correlations. Accuracy and range
of applicability of formulas/correlations presented is stated.
Clear recommendations are made for application of the
methods presented. A very wide variety of heat exchangers
is covered. These include boiling and condensation in
tubes and tube bundles, plate heat exchangers of various
types, falling film heat exchangers, coils, surfaces cooled
by jets, mist cooling, rotating surfaces (tubes, disks, cones,
etc.), spheres, etc. Boiling and condensation of metallic
fluids is discussed besides those of non-metallic fluids.
Also included are heat exchangers with two-component
gas–liquid mixtures, fluidized beds, and flowing gas–solid
mixtures.

In this chapter, information is provided that is needed
for understanding and using the material in other chapters
as well as in other publications. This includes explanation
of commonly used terms, various models used in solving
two-phase flow and heat transfer problems, distinction
between minichannels and conventional channels, flow

patterns and their prediction, etc. While the focus of this
book is on two-phase heat transfer, methods for calculation
of single-phase heat transfer, void fraction and pressure
drop have also been briefly discussed as these are needed
in the design of heat exchangers. References to sources for
more information on these topics have been provided.

Only Newtonian fluids are considered in this book. All
discussions pertain to non-metallic fluids except where
stated otherwise.

1.2 Basic Definitions

Some commonly used terms are explained in the following.
Mass flux or mass velocity is the mass flow rate per unit

area. It is usually designated as G. If W be the mass flow rate
kg s−1 in a tube of cross-sectional area Ac (m2), G = W/Ac
(kg m−2 s−1).

Void fraction is the part of the total volume occupied by
the gas phase. Consider a gas–liquid mixture flowing in a
pipe. If AL is the flow area occupied by liquid and AG is the
flow area occupied by gas, void fraction 𝛼 is

𝛼 =
AG

AL + AG
=

AG

Ac
(1.2.1)

Liquid holdup RL is the part of flow area occupied by liq-
uid phase.

RL = 1 − 𝛼 (1.2.2)

Quality, usually given the symbol x, is mass flow rate of
vapor divided by the total flow rate. With W L as the flow
rate of liquid and W G that of gas,

x =
WG

WL + WG
(1.2.3)

Two types of phase velocities are used, actual, and super-
ficial. The actual velocity of gas phase uG is that in the area
occupied by the gas phase:

uG =
WG

𝜌gAc𝛼
= Gx
𝜌g𝛼

(1.2.4)

Two-Phase Heat Transfer, First Edition. Mirza Mohammed Shah.
© 2021 John Wiley & Sons Ltd. This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.
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where 𝜌g is the density of gas. The actual liquid velocity is
similarly defined and is given by

uL =
WL

𝜌LAc(1 − 𝛼)
= G(1 − x)
𝜌f (1 − 𝛼)

(1.2.5)

Superficial gas velocity uGS is the velocity assuming that
gas alone is flowing through the entire flow area. In other
words, liquid is assumed to be absent. Then,

uGS =
WG

𝜌gAc
= Gx
𝜌g

(1.2.6)

Similarly, superficial liquid velocity uLS is defined as

uLS =
WL

𝜌LAc
= G(1 − x)

𝜌f
(1.2.7)

The superficial gas and liquid velocities are also called
volumetric gas and liquid flux represented by the symbols
jG and jL, respectively.

Gas and liquid velocities are often not equal. The differ-
ence in phase velocities (uG −uL) is called the slip velocity,
while uG/uL is known as slip ratio. The latter is expressed
by the following relation obtained using Eqs. (1.2.4) and
(1.2.5):

uG

uL
=
( x

1 − x

)(1 − 𝛼
𝛼

)(
𝜌f

𝜌g

)
(1.2.8)

The relative velocity between phases uGL can be written
as

uGL = (uG − uL) =
jG

𝛼
−

jL

(1 − 𝛼)
(1.2.9)

The drift flux jGL is defined as

jGL = uGL𝛼(1 − 𝛼) = jG − 𝛼j (1.2.10)

where

j = jGS + jLS (1.2.11)

The drift velocity of gas uGj with respect to a plane moving
at a velocity j is defined as

uGj = uG − j (1.2.12)

The drift velocity of the liquid phase is

uLj = uL − j (1.2.13)

Heat flux, usually represented as q, is defined as the heat
applied to a surface per unit area per unit time. If Q Watts
are applied to a tube of diameter D and length L,

q = Q
𝜋DL

(1.2.14)

In boiling systems, quality is usually defined assuming
thermodynamic equilibrium between vapor and liquid
phases, i.e. all the heat applied is used to evaporate the

liquid. Thus, if W kg s−1 of saturated liquid enters a tube of
length L with heat flux q, quality at exit from tube is

x =
𝜋DLq∕ifg

W
(1.2.15)

where ifg is the latent heat of vaporization. Equilibrium
quality during condensation is defined in a similar way; all
heat removed is used to condense the vapor. Unless stated
otherwise, the quality used in equations and given in test
data is the equilibrium quality.

If Tw be the wall temperature and TSAT the saturation
temperature during boiling, (Tw −TSAT) = ΔTSAT is known
as the wall superheat. In condensation, (TSAT −Tw) is called
wall subcooling. If a liquid is at a temperature T that is
lower than the saturation temperature, (TSAT −T) = ΔTSC
is called subcooling.

The term “film temperature” is frequently used. It means
the mean of wall and fluid temperature. Unless stated oth-
erwise, it is the arithmetic mean. Thus,

Tfilm =
Twall + Tfluid

2
(1.2.16)

1.3 Various Models

Some basic models used in the analysis of two-phase sys-
tems are discussed herein.

1.3.1 Homogeneous Model

It is assumed that gas and liquid are flowing at the same
velocity and form a homogeneous mixture. By putting
uG = uL in Eq. (1.2.8) and rearranging, the following
expression for void fraction 𝛼 is obtained:

𝛼 =

[
1 +

(1 − x
x

)(
𝜌g

𝜌f

)]−1

(1.3.1)

For use in calculation of heat transfer and pressure drop
with this model, the properties of the mixture are consid-
ered to be the mean of those of gas and liquid. Various meth-
ods of calculating the mean values have been proposed, for
example, weighted according to the mass fractions of gas
and liquid in the mixture.

Homogeneous model works fairly well for bubble flow
and mist flow though it has been used in some empirical
correlations without regard to the flow pattern.

1.3.2 Separated Flow Models

In the separated flow model, the gas and liquid phases
are considered to be separated. Separate equations can
then be written for each phase. Additional equations
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are needed for determining areas occupied by the two
phases and interfacial shear. These can be empirical or
semi-theoretical correlations or sophisticated analyses
such as the two-fluid models in which momentum, energy,
and continuity equations are written separately for each
phase together with equations for interaction between
phases. Closed-form solutions of these equations are rarely
possible and hence have to be solved numerically on
computers. The two-fluid models are difficult to use and
not necessarily more accurate than the simpler models.
Empirical and semi-theoretical models are generally used
in practical designs.

1.3.3 Flow Pattern-Based Models

In these models, the gas and liquid are considered to be
arranged according to the expected flow pattern, and pre-
diction methods are developed specific to particular flow
patterns. The prediction methods are most often empiri-
cal correlations. Analytical solutions have also been devel-
oped notably for stratified, slug, and annular flow patterns.
Such analytical solutions use idealized geometry of the flow
patterns. For example, annular flow is usually assumed to
have uniform liquid layer, no interfacial waves, and no liq-
uid entrainment. These assumptions are usually not cor-
rect. Still, the analytical solutions are useful as they provide
understanding of the physical phenomena.

The accuracy of flow pattern-based models is further
limited by the accuracy of flow pattern prediction meth-
ods. One of the most verified flow pattern correlation is
that of Mandhane et al. (1974). They report an accuracy
of 68% in prediction. Researchers often report that their
observed flow patterns do not agree with well-known flow
pattern correlations. For example, Kim (2000) found large
differences between his own flow pattern observation in
air–water flow and the predictions of the Taitel and Dukler
(1976) map.

Due to the previously mentioned factors, the accuracy of
flow pattern-based prediction methods is not good.

1.4 Classification of Channels

In recent years, there has been increasing use of small
diameter channels known as mini- or microchannels as
they offer more compact and economical heat exchang-
ers. Most of the methods for predicting heat transfer were
developed with data for larger tubes known as conventional
or macro channels.

The generally held view is that there is no effect of
surface tension on heat transfer in tubes of larger diam-
eter, while in tubes of small diameter, surface tension

affects heat transfer. The implication is that methods for
predicting heat transfer in macro channels are not appli-
cable to mini-/microchannels. It is therefore necessary
to demarcate the boundary between macro channels and
minichannels to ensure use of macro channel correlations
only within their applicable range.

Many classifications of channels have been proposed.
These have most recently been discussed by Shah (2018).

1.4.1 Based on Physical Dimensions

According to Shah (1986), the heat exchangers with
area-to-volume ratio more than 700 m2 m−3 are compact.
This results in 6 mm diameter being the boundary between
minichannels and macro channels.

Mehendale et al. (2000) proposed the following:

D> 6 mm, macro channels
D = 1–6 mm, compact channel
D = 100 μm to 1 mm, meso channel
D = 1–100 μm, microchannel

A widely used one is by Kandlikar (2002), according to
which

Conventional channels: D> 3 mm
Minichannels: 3 mm≥D> 0.2 mm
Microchannels: 0.2 mm≥D> 0.01 mm

This classification was based mainly on single-phase flow
of gases, but for uniformity, he also recommended it for
boiling and condensing flows. This is the most widely used
classification.

1.4.2 Based on Condensation Studies

Li and Wang (2003) studied condensation in minichannels.
They observed the transition of flow patterns from sym-
metrical to asymmetrical and noted that these depend on
the capillary length Lcap (also known as Laplace constant)
defined as

Lcap =

[
𝜎

g(𝜌f − 𝜌g)

]0.5

(1.4.1)

Their conclusions were as follows:

• D< 0.224Lcap: Gravity forces are negligible compared
with surface tension forces. Flow regimes are symmetri-
cal.

• 0.224Lcap <D< 1.75Lcap: Gravity and surface tension
forces are comparable. Flow distribution is slightly
stratified.

• 1.75Lcap <D: Gravity forces dominate surface ten-
sion forces and the flow regimes are similar to macro
channels.
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Cheng and Wu (2006) rearranged the preceding results of
Li and Wang in terms of Bond number as follows:

Microchannel, if Bd< 0.5 (negligible effect of gravity)
Minichannel, if 0.5<Bd< 3.0 (both gravity and surface ten-

sion have significant effect)
Macro channel, if Bd> 3.0 (surface tension has negligible

effect).

Bond number is the ratio of surface tension and gravita-
tional forces and is defined as

Bd =
gD2(𝜌f − 𝜌g)

𝜎
(1.4.2)

It is also the ratio of channel diameter to capillary length.
Based on the comparison of his general correlation

for condensation in tubes, Shah (2009, 2013), with a
wide-ranging database, Shah (2016) gave the following
criterion. It is minichannel if

WeGT < 100 (1.4.3)

where

WeGT = G2D
𝜌G𝜎

(1.4.4)

The data for WeGT < 100 included Bond numbers up to 105.
Hence the criteria based on Bond number were found to be
incorrect as they consider effect of surface tension to occur
at Bond numbers between 1 and 4.

1.4.3 Based on Boiling Flow Studies

The growth of bubbles during boiling in small channels
may be restricted due to the limitation of tube diame-
ter. This has led several authors to use the confinement
number Co defined as

Co = 1
D

[
𝜎

g(𝜌f − 𝜌g)

]0.5

(1.4.5)

Kew and Cornwell (1997) compared the data from
their tests on heat transfer during boiling in tubes of
diameter 1.39, 2.87, and 3.69 mm, and a square channel
2 mm× 2 mm, to several correlations based on macro
channel data. They found that these failed when the con-
finement number Co is less than 0.5. Accordingly, they
gave the following classification:

Micro-/minichannel: Co> 0.5
Macro channel: Co< 0.5

According to Ong and Thome (2011a), the lower thresh-
old of macroscale flow is Co = 0.3–0.4, while the upper
threshold of symmetric microscale flow is Co = 1 with
a transition (or mesoscale) region in between. This was
based on the experimental two-phase flow pattern transi-
tion data together with a top/bottom liquid film thickness

comparison for refrigerants R-134a, R-236fa, and R-245fa
during flow boiling in channels of 1.03, 2.20, and 3.04 mm
diameter.

Li and Wu (2010a,b) have given a transition criterion
based on their analysis of data for boiling heat transfer in a
variety of channels. According to it, it is minichannel if

Bd Re0.5
LS ≤ 200 (1.4.6)

Shah (2017b) compared a very wide-ranging database for
saturated boiling prior to CHF with several correlations for
macro channels including Shah (1982). He concluded that
it is minichannel if

F = (2.1 − 0.008WeGT − 110Bo) > 1 (1.4.7)

Bo is the boiling number. For horizontal channels, F = 1 if
FrLT < 0.01. If F ≤ 1, it is macro channel. The data for F > 1
(minichannel) included diameters up to 6.4 mm and Bd up
to 13.7. The data for F ≤ 1 (macro channels) include diam-
eters down to 0.38 mm and Bond numbers down to 0.15.
Hence the criteria based on Bond number and diameter are
not satisfactory

Shah (2017a) compared his general correlation for sub-
cooled boiling in tubes and annuli with a wide-ranging
database that included diameters as small as 0.176 mm
and Bond number down to 0.025. Data over the entire
range were satisfactorily predicted. This correlation did not
include any factor for surface tension effects. No effect of
diameter or Bond number was found.

Shah (2017c) compared his correlation for dispersed
flow film boiling in horizontal and vertical tubes with a
wide-ranging database. This correlation did not have any
factors for surface tension effects. Data over the entire
range were satisfactorily predicted. These included tube
diameters as low as 0.98 mm and Bond numbers down to 2.
The minimum WeGT in these data was 32. This shows that
the Shah criterion for saturated boiling, Eq. (1.4.7), does
not apply to film boiling.

Shah (2015, 2017d) compared his correlation for CHF
in vertical and horizontal tubes with a very wide range
of data. These correlations had no factors for the effect
of surface tension. The data included diameters down to
0.13 mm and Bond numbers down to 0.026. The minimum
WeGT in the data was 6. Hence the criterion of Eq. (1.4.7)
for saturated boiling heat transfer is not applicable
to CHF.

1.4.4 Based on Two-Component Flow

Triplett et al. (1999) studied gas–liquid flow in small diame-
ter channels. They proposed that mini-/microchannels are
those with diameter less than capillary length Lcap. This is
equivalent to Bd< 1.
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Ullmann and Brauner (2007) studied flow pattern
transitions in gas–liquid flow in channels, and based on
their analyses, they proposed that the transition between
minichannels and macro channels depends on the Eotvos
number Eo, which is the ratio of buoyancy force to surface
tension force. It is written as

Eo =
g(𝜌f−𝜌g)D2

8𝜎
(1.4.8)

They proposed that minichannels are those with Eo< 0.2.

1.4.5 Discussion

The criteria given earlier are summarized in Table 1.4.1.
To make the comparison easy, the criteria using Eo and Co
have been given in terms of Bond number. These are related
by the following equation:

Eo = Bd
8

= 1
8Co2 (1.4.9)

It is seen that the value of the transition Bond number
in various criteria varies from 1 to 4. As seen in the dis-
cussion earlier, many data for condensation and saturated
boiling show effect of surface tension at much higher Bond
numbers, while some data at lower Bond numbers do not
show effect of surface tension. Hence the criteria based
on Bond number are inaccurate. Similarly, many data for
tube diameters smaller than 3 mm showed satisfactory
agreement with macro channel correlations for saturated
boiling and condensation, while many data for larger
diameters showed effect of surface tension. Hence the limit
of applicability of macro channel correlations to minichan-
nels cannot be based on criteria based on tube diameter

or Bond number. For saturated boiling and condensation,
the criteria given by Shah are well verified. For subcooled
boiling, film boiling, and CHF, limits of applicability of
macrochannel correlations are as yet unknown.

1.4.6 Recommendation

Distinction has to be made between naming conven-
tion and the actual boundary according to the limit of
applicability of macro channel correlations.

In most literature, channels with diameter> 3 mm are
called conventional or macro channels, while those with
diameter≤ 3 mm are called minichannels. Hence this nam-
ing convention is also followed in this book. However, this
is not the limit of applicability of macro channel correla-
tions. The following are the recommendations for this limit:

• For condensation heat transfer, Shah’s criterion
WeGT > 100.

• For saturated boiling heat transfer, Shah’s Eq. (1.4.7).
• For subcooled boiling, film boiling, and CHF, the limit

is undefined. Use macro channel correlations within the
range of data in the analyses of such data performed by
Shah (2017a,c,d).

1.5 Flow Patterns in Channels

1.5.1 Horizontal Channels

1.5.1.1 Description of Flow Patterns
There is a great deal of variation in the description and
names of flow patterns used by different authors. Rouhani

Table 1.4.1 Criteria for macro to mini transition by various authors.

Author Criterion for minichannel Basis

Shah (1986) D< 6 mm Surface-area-to-volume ratio> 700 m2 m−3

Mehendale et al. (2000) D< 6 mm Same as above
Kandlikar (2002) D≤ 3 mm Based on mean free path of common gases
Kew and Cornwell (1997) Bd< 4 Bubble growth confinement during boiling in channels
Triplett et al. (1999) Bd< 1 Flow pattern transitions in gas–liquid flows
Ullman and Brauner (2007) Bd< 1.6 Flow pattern transitions in adiabatic gas–liquid flows
Cheng and Wu (2006) Bd< 3 Flow pattern transitions during condensation in tubes
Ong and Thome (2011a) Bd< 1 Flow pattern transitions and top-bottom liquid film thickness

during boiling in channels
Li and Wu (2010aa,b) Bd⋅ReLS

0.5 ≤ 200 Correlation of heat transfer coefficients during saturated
boiling in channels

Shah (2016) WeGT < 100 Comparison of test data with correlation for condensation heat
transfer in macro channels

Shah (2017b) F = (2.1− 0.008WeGT − 110Bo)> 1 Comparison of test data with correlation for saturated boiling
heat transfer in macro channels

Source: From Shah (2018). Licensed under CC-BY-4.0.
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Stratified-smooth flow

Stratified-wavy flow

Plug flow

Slug flow

Annular flow

Dispersed-bubble flow

Figure 1.5.1 Flow patterns during co-current gas–liquid flow
in horizontal tubes. Source: From Rouhani and Sohal (1983).
© 1983 Elsevier.

and Sohal (1983) note that there are 84 different flow
pattern labels in literature, 60 of them being for horizontal
co-current flow. The most common names are used herein.

Typical flow patterns occurring during flow of gas–liquid
mixtures in horizontal channels are shown in Figure 1.5.1.
Flow in horizontal channels is subjected to gravity, inertia,
and surface tension forces, and the flow patterns result
from the balance of these forces. Gravity force tends to pull
the heavier liquid phase to the bottom, while the inertia
force tends to keep the flow symmetrical. At low flow
rates, stratified flow occurs in which the liquid flows at the
bottom, while gas flows at the top. The interface is smooth
at the lowest flow rates. As flow rates increase, gas–liquid
interface becomes rough with appearance of ripples and
waves. This is usually called the stratified-wavy pattern. If
the waves are of significant height, many authors call it the
wavy pattern. With further increase in flow rates, the wave
amplitude increases and they reach the top of tube. Gas
pockets/plugs then get trapped between the liquid crests,
resulting in the plug and slug flow regimes. The difference
between plug and slug patterns is mainly that gas pockets
are larger in slug flow. Slug flow is often called Taylor
flow. Plug and slug flow are also called intermittent flow.
Considerable pressure fluctuations occur during intermit-
tent flow. As gas and liquid flow rates increase further,
the annular flow pattern occurs. The churn flow pattern
may occur in transition from slug flow to annular flow
as the slugs begin to disintegrate. In annular flow, liquid
is in the form of a layer around the tube circumference,
and gas flows in the middle of the tube. Considerable
amounts of liquid drops may be entrained in the vapor core
and interfacial waves occur. If the liquid layer is thin or
non-existent at the upper part of tube, some authors call it
semi-annular or crescent pattern. This pattern often occurs
during evaporation in tubes. At high gas/vapor velocities,
large amount of liquid is torn off the liquid film, and the
gas core carries large amounts of liquid droplets. This is

called the mist-annular flow; it is called mist flow if there
is no liquid film. During dispersed bubble flow (also called
bubble flow), vapor bubbles are carried in the continuous
liquid stream. It occurs at high liquid flow rates together
with low gas flow rate.

Figure 1.5.2 shows the flow patterns during evaporation
in horizontal tubes under two conditions common in refrig-
eration evaporators.

1.5.1.2 Flow Pattern Maps
Many maps for prediction of flow patterns have been
proposed. One of the best known is that of Baker (1954).
The original map was in terms of dimensional parameters.
Figure 1.5.3 is an essentially dimensionless version. This
map was developed by analysis of mostly air–water data in
pipes of diameters up to 50 mm. Gl and Gg are the super-
ficial mass velocities of liquid and gas. The other terms
are

𝜆 =
(
𝜌g

𝜌air

𝜌f

𝜌water

)0.5

(1.5.1)

𝜙 =
(𝜎water

𝜎

) ⎡⎢⎢⎣
𝜇f

𝜇water

(
𝜌water

𝜌f

)2⎤⎥⎥⎦
1∕3

(1.5.2)

The subscripts “air” and “water” indicate air and water at
room temperature and pressure. While this map was based
entirely on adiabatic flow, several authors have reported
its agreement with boiling and condensation data. For
example, Shah (1975) reported it to be in fairly good agree-
ment with his data for ammonia evaporating in a 26.2 mm
diameter pipe.

A well-verified correlation is by Mandhane et al. (1974)
shown in Figure 1.5.4. It was developed using adiabatic
gas–liquid data for many gas–liquid combinations. The
range of those data is given in Table 1.5.1. Its success in
correctly predicting the flow patterns was 67.1%. For the
same data, Baker map was able to correctly predict only
41.5% of them. Other researchers have generally found it
to be fairly good. Mandhane et al. have also given a version
that includes fluid properties but its accuracy was about
the same as that of this simple version. They have given a
computer subroutine for this correlation.

Another widely quoted flow pattern map is that of Tai-
tel and Dukler (1976). It was developed analytically. Kim
(2000) found large differences between his own flow pat-
tern observation in air–water flow and the predictions of
the Taitel and Dukler (1976) map.

A number of maps have been developed specifically for
boiling and condensation. Among them are those of El
Hajal et al. (2003) for condensation and Kattan et al. (1998)
for boiling. These were verified with data for halocarbon
refrigerants.
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Constant Heat Flux; Tube Diameter Approximately 13 mm
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Top dries out
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Figure 1.5.2 Flow patterns during evaporation in horizontal tubes. (a) High mass velocity (400 kg s−1 m−2), subcooled liquid at inlet.
(b) Low mass velocity (200 kg s−1 m−2), 20% flash gas at inlet. Source: From ASHRAE (2017).

Figure 1.5.3 Baker flow pattern map for
co-current gas–liquid flow in horizontal pipes.
Source: From Rouhani and Sohal (1983). © 1983
Elsevier.
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1.5.2 Vertical Channels

Figure 1.5.5 shows the most common flow patterns in
vertical upward co-current flow. These are mostly similar
to the horizontal flow patterns except that they are more
axisymmetric and the stratified pattern does not occur. This
is because gravity force is parallel to the flow direction.

An early flow pattern map is by Hewitt and Roberts
(1969), which was based on steam–water flow. Mishima
and Ishii (1984) analytically developed criteria for transi-
tions between flow patterns. These were compared to data
for air–water and boiling water in round and rectangular
channels from several sources and found to be in fair
agreement with them. Flow pattern maps can be drawn for
any conditions using these criteria. Figure 1.5.6 shows their
predicted map for air–water flow at room conditions in a
25.4 mm pipe. In the Region A shown in it, it is difficult to

distinguish between churn and annular flow as it is highly
agitated.

McQuillan and Whalley (1985) analytically derived
criteria for transitions between flow patterns in co-current
upflow. Figure 1.5.7 is an example of their predictions. They
compared their map with data for air–water as well as for
boiling water and refrigerants. Agreement was generally
good with 84.1% of the data points predicted correctly.

1.5.3 Inclined Channels

By inclined channels is meant channels with flow direc-
tions other than horizontal and vertical up.

The flow patterns in different inclinations change due
to the changing relative direction of gravitational force.
Analytical expressions for transition criteria have been
developed by several authors for particular flow directions.
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Figure 1.5.4 The Mandhane et al. flow pattern map for
co-current flow in horizontal pipes. Source: From Ghiaasiaan
et al. and Cambridge University Press. © 1974 Elsevier.

Table 1.5.1 Range of data with which flow pattern map of
Mandhane et al. was verified.

Range

Pipe diameter (mm) 12.7–165.1
Liquid density (kg m−3) 705–1009
Gas density (kg m−3) 0.8–50.5
Liquid viscosity (Pa s) 3× 10−4–9× 10−2

Gas viscosity (Pa s) 10−5–2.2× 10−5

Surface tension (N m−1) 0.024–0.103
Superficial liquid velocity (m s−1) 0.9× 10−3–7.3
Superficial gas velocity (m s−1) 0.04–171

Source: Modified from Mandhane et al. (1974).

Barnea (1987) developed a comprehensive model that is
applicable to all flow directions from vertical up to vertical
down. It consists of equations for transitions between flow
patterns. Figure 1.5.8 shows their predicted flow patterns
over the entire range of inclinations from vertical up to
vertical down. Good agreement with data from one source
is seen. Data from the same source for a 25 mm pipe
also showed good agreement. Comparison of this model
with data from many sources covering a wide range of
parameters is needed.

Mehta and Banerjee (2014) observed flow patterns during
air–water flow in a 2.1 mm diameter tube whose orienta-
tion was varied at various angle from vertical up to verti-
cal down. They compared their observations with several
flow pattern maps, but none was found to agree with their
data. They developed maps for horizontal, vertical upflow,

and vertical downflows, which were verified only with their
own data.

1.5.4 Annuli

Kelessidis and Dukler (1989) investigated flow patterns
in vertical upward gas–liquid flow in a concentric and
an eccentric annulus (eccentricity 50%). Flow patterns
observed were essentially the same as in tubes. Eccentric-
ity was found to have only minor effect on flow patterns.
They derived expressions for transitions between flow
patterns. These were found to be in agreement with their
own data.

Das et al. (1999a,b) observed flow patterns during adia-
batic gas–liquid upflow in vertical annuli and developed
a mechanistic model of the flow pattern transitions that
agreed with their data.

Julia and Hibiki (2011) developed criteria for transitions
between flow patterns during upflow in annuli. They com-
pared their map with adiabatic data mentioned earlier as
well as boiling water data of Hernandez et al. (2010). Satis-
factory agreement was found.

1.5.5 Minichannels

All the foregoing discussions were on flow patterns in
macro/conventional channels. Those in minichannels are
addressed in this section.

Numerous experimental studies have been done on flow
patterns in minichannels, and many flow pattern maps
have been proposed. Cheng et al. (2008) reviewed many
of them. Experimental studies show that flow patterns
in minichannels are the same as in macro channels, but
criteria for transitions between flow patterns are usually
different.

Triplett et al. (1999) studied flow patterns during
air–water flow in horizontal tubes of diameter 1.09 and
1.49 mm. They compared their data to some macro channel
maps and found them unsatisfactory.

Akbar et al. (2002, 2003) studied data for air–water in
horizontal and vertical minichannels from six sources and
proposed a new flow pattern map.

Chen et al. (2006) performed tests with R-134 boiling
with upward flow in vertical tubes of diameter 1.10, 2.01,
2.88, and 4.26 mm. They found the Akbar et al. (2003) map
unsatisfactory for their data. They noticed subtle differ-
ences between the flow patterns of the two larger tubes
and the two smaller tubes. The smaller tubes had slimmer
vapor slugs and thinner liquid films around the vapor
slugs, suggesting greater influence of surface tension. They
therefore considered D = 2 mm as the boundary between
minichannels and macro channels for the conditions of
their tests.
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Figure 1.5.5 Flow patterns during upflow in vertical pipes.
Source: From Rouhani and Sohal (1983). © 1983 Elsevier.
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Figure 1.5.6 Example of flow patterns according
to the transition criteria of Mishima and Ishii.
Source: From Mishima and Ishii (1984). © 1984
Elsevier.
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Ullmann and Brauner (2007) analytically developed cri-
teria for transition between flow patterns. They concluded
that for flow patterns, transition between minichannel and
macro channel occurs at Eotvos number of 0.2. They com-
pared their map with the flow patterns observed by Triplett
et al. (1999) in a 1 mm diameter tube with air–water flow.
Satisfactory agreement was found.

Ong and Thome (2011b) studied boiling of three refrig-
erants in tubes of diameter 1.03, 2.20, and 3.04 mm. They
gave a new flow pattern map that agreed with their data.
Saisorn et al. (2018) found satisfactory agreement with this
map of their data for R-134 boiling in a 1 mm diameter tube
in horizontal, vertical upflow, and vertical downflow.

Jige et al. (2018) experimentally investigated R-32 boil-
ing in horizontal multiport rectangular minichannels with
hydraulic diameters of 0.5 and 1.0 mm. Mass velocity range
was 30–400 kg m−2 s−1 at a saturation temperature of 15 ∘C.
They compared their observations with flow pattern tran-
sition criteria of Garimella et al. (2002) and Enoki et al.
(2013), both for minichannels. Agreement was not good.
They developed their own map.

As is evident from the earlier discussions, many flow pat-
tern maps for minichannels have been proposed, but none
of them has been verified with a wide range of data.

1.5.6 Horizontal Tube Bundles with Crossflow

A number of experimental studies have been done on
upflow across horizontal tube bundles. Most of them were
done with air–water, while a few were with boiling and
condensation. Flow patterns observed included bubble,
slug, churn, and annular. Xu et al. (1998) studied both
downflow and upflow of air–water. In downflow, they also
noticed a falling film flow pattern. This occurred at low
superficial velocities of gas and liquid. The liquid formed
a film around tube wall and flowed down on the tube
below. Their observations during upflow and downflow
are shown in Figure 1.5.9.

Flow pattern maps have been proposed by Grant and
Chisholm (1979), Pettigrew et al. (1989), Ulbrich and
Mewes (1994), Xu et al. (1998), Aprin et al. (2007), and
Kanizawa and Ribatski (2016). All of them are based on
air–water data except that of Aprin et al., which was based
on their own boiling data.

Xu et al. (1998) compared their upflow data with
the maps of Ulbrich and Mewes (1994) and Grant and
Chisholm (1979). Significant differences were found.

Kanizawa and Ribatski (2016) performed tests with
air–water flowing up across a bundle of 19 mm tubes on an
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Figure 1.5.7 Flow patterns predictions of McQuillan and
Whalley for evaporating R-11 during upflow in a vertical tube
under the conditions shown. Source: From McQuillan and
Whalley (1985). © 1985 Elsevier.

equilateral triangular arrangement. They compared their
data with the maps of Xu et al. (1998), Ulbrich and Mewes
(1994), and Grant and Chisholm (1979). These were able
to correctly predict 48%, 69%, and 58% of the flow patterns,
respectively. They developed their own flow pattern map,
which agrees well with their own data.

1.5.7 Vertical Tube Bundles

Vertical tube/rod bundles are especially of interest due
to their use in light water nuclear reactors in normal and
post-accident conditions. A number of studies on flow
patterns in such bundles have been done.

Williams and Peterson (1978) studied upflow of high
pressure boiling water in a bundle consisting of a sin-
gle row of four 6.35 mm rods. The observed two-phase
flow patterns were bubble flow, froth flow, slug flow, and
annular flow.

Venkateswararao et al. (1982) performed an experiment
of vertical adiabatic air–water flow in a rod bundle under
atmospheric pressure. There were 24 rods arranged on a
square pitch in a cylindrical shell with 12.7 mm outside
diameter and 17.5 mm pitch. They identified five flow
patterns. These are bubbly, finely dispersed bubbly, slug,
churn, and annular. They proposed an analytically based
flow pattern map that agreed with their data.

Mizutani et al. (2007) also studied air–water upflow in
a 4× 4 bundle of 12 mm rods with pitch of 16 mm. They

identified the following flow patterns: bubbly, bubbly–
churn, churn, churn–annular, and annular flows. They
developed a map that agreed well with their own data.

Paranjape et al. (2011) had air–water flowing up an 8× 8
bundle of 12.7 mm diameter rods with square arrange-
ment and a pitch of 16.7 mm. They observed four flow
patterns, namely, bubbly, cap-bubbly, cap-turbulent, and
churn–turbulent flows. Cap-bubbly indicates that the
bubbles were cap shaped. A map of their flow patterns was
presented.

Zhou et al. (2015) studied vertical boiling steam–water
flow in a 3× 3 heated rod bundle at atmospheric pressure.
The rods were 10 mm diameter at 15 mm square pitch. The
flow patterns observed were bubbly, bubbly–churn, churn,
and annular. They also proposed a map that agreed with
their data.

Liu and Hibiki (2017) showed that the flow pattern maps
mentioned earlier do not agree well with data other than
their own. Liu and Hibiki analytically developed their own
flow pattern map that identifies six flow patterns. It was
shown to be in fair agreement with data of Zhou et al.
(2015), Paranjape et al. (2011), Mizutani et al. (2007), and
Venkateswararao et al. (1982). They did not compare it
with the data of Williams and Peterson (1978).

1.5.8 Effect of Low Gravity

All the foregoing discussions were for systems operating
under Earth gravity. Flow patterns under micro gravity
(<0.03 Earth gravity) condition are addressed herein.

Experimental studies show that flow patterns in micro-
gravity are the same as under Earth gravity but the transi-
tions between flow patterns are different.

The earliest experimental study at near-zero gravity was
by Heppner et al. (1975). They used air–water in 25.4 mm
diameter tube. They compared the observed flow pattern
transitions to those at Earth gravity and found large differ-
ences.

Dukler et al. (1988) performed tests under microgravity
conditions in a drop tower as well as in parabolic flights
with air–water flowing in horizontal tubes of diameter 9.5
and 12.7 mm. Study of their data and analysis led them to
the following criteria for transitions between flow patterns:

Bubble to slug, uLS = 1.2 uGS (1.5.3)

Slug to annular,
uGS

uLS + uGS
= C0 (1.5.4)

Study of their data showed C0 between 1.15 and 1.3. They
tentatively chose a value of 1.25. Rezkallah (1990) found
these criteria to be in fair agreement with data from several
sources as seen in Figure 1.5.10. The data of Hill et al. (1987)
were for Freon 114 boiling in a 15.8 mm diameter tube. In


