

Two-Phase Heat Transfer

Mizra Mohammed Shah

Two-Phase Heat Transfer

Wiley-ASME Press Series

Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation Kamran Behdinan and Rasool Moradi-Dastjerdi

Vibration Assisted Machining: Theory, Modelling and Applications Lu Zheng, Wangun Chen, Dehong Huo

Two-Phase Heat Transfer Mirza Mohammed Shah

Computer Vision for Structural Dynamics and Health Monitoring Dongming Feng, Maria Q Feng

Theory of Solid-Propellant Nonsteady Combustion Vasily B. Novozhilov, Boris V. Novozhilov

Introduction to Plastics Engineering Vijay K. Stokes

Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines Jamil Ghojel

Offshore Compliant Platforms: Analysis, Design, and Experimental Studies Srinivasan Chandrasekaran, R. Nagavinothini

Computer Aided Design and Manufacturing Zhuming Bi, Xiaoqin Wang

Pumps and Compressors Marc Borremans

Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and Engineering Aspects Bijan Kermani and Don Harrop

Design and Analysis of Centrifugal Compressors Rene Van den Braembussche

Case Studies in Fluid Mechanics with Sensitivities to Governing Variables M. Kemal Atesmen

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics J. Robert Mahan

Dynamics of Particles and Rigid Bodies: A Self-Learning Approach Mohammed F. Daqaq

Primer on Engineering Standards, Expanded Textbook Edition Maan H. Jawad and Owen R. Greulich

Engineering Optimization: Applications, Methods and Analysis R. Russell Rhinehart

Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach C. Ranganayakulu and Kankanhalli N. Seetharamu

Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation Mou Chen, Shuyi Shao, and Peng Shi

Robot Manipulator Redundancy Resolution Yunong Zhang and Long Jin

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components Maan H. Jawad

Combined Cooling, Heating, and Power Systems: Modeling, Optimization, and Operation Yang Shi, Mingxi Liu, and Fang Fang

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine Abram S. Dorfman

Bioprocessing Piping and Equipment Design: A Companion Guide for the ASME BPE Standard William M. (Bill) Huitt

Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments R. Russell Rhinehart

Geothermal Heat Pump and Heat Engine Systems: Theory and Practice Andrew D. Chiasson

Fundamentals of Mechanical Vibrations Liang-Wu Cai

Introduction to Dynamics and Control in Mechanical Engineering Systems Cho W.S. To

Two-Phase Heat Transfer

Mirza Mohammed Shah

This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.

© 2021 John Wiley & Sons Ltd.

This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Mirza Mohammed Shah to be identified as the author this work has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data Applied for: 9781119618614 (Hardback)

Cover Design: Wiley

Cover Image: © Jub Rubjob/Getty Images

Set in 9.5/12.5pt STIXTwoText by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

Contents

Preface xvii

1	Introduction 1
1.1	Scope and Objectives of the Book 1
1.2	Basic Definitions 1
1.3	Various Models 2
1.3.1	Homogeneous Model 2
1.3.2	Separated Flow Models 2
1.3.3	Flow Pattern-Based Models 3
1.4	Classification of Channels 3
1.4.1	Based on Physical Dimensions 3
1.4.2	Based on Condensation Studies 3
1.4.3	Based on Boiling Flow Studies 4
1.4.4	Based on Two-Component Flow 4
1.4.5	Discussion 5
1.4.6	Recommendation 5
1.5	Flow Patterns in Channels 5
1.5.1	Horizontal Channels 5
1.5.1.1	Description of Flow Patterns 5
1.5.1.2	Flow Pattern Maps 6
1.5.2	Vertical Channels 7
1.5.3	Inclined Channels 7
1.5.4	Annuli 8
1.5.5	Minichannels 8
1.5.6	Horizontal Tube Bundles with Crossflow 9
1.5.7	Vertical Tube Bundles 10
1.5.8	Effect of Low Gravity 10
1.5.9	Recommendations 12
1.6	Heat Transfer in Single-Phase Flow 12
1.6.1	Flow Inside Channels 12
1.6.2	Vertical Tube/Rod Bundles with Axial Flow 13
1.6.3	Various Geometries 14
1.6.4	Liquid Metals 14
1.7	Calculation of Pressure Drop 14
1.7.1	Single-Phase Pressure Drop in Pipes 14
1.7.2	Two-Phase Pressure Drop in Pipes 15
1.7.3	Annuli and Vertical Tube Bundles 17
1.7.4	Horizontal Tube Bundles 17
1.7.5	Recommendations 17

viii C	Contents	
1	1.8	Calculation of Void Fraction 17
	1.8.1	Flow Inside Pipes 17
	1.8.2	Flow in Tube Bundles 18
	1.8.3	Recommendations 18
	1.9	CFD Simulation 18
	l.10	General Information 19
		Nomenclature 19
		References 20
2	2	Heat Transfer During Condensation 25
_	- 2.1	Introduction 25
2	2.2	Condensation on Plates 25
	2.2.1	Nusselt Equations 25
	2.2.2	Modifications to the Nusselt Equations 26
2	2.2.3	Condensation with Turbulent Film 27
2	2.2.4	Condensation on Underside of a Plate 27
2	2.2.5	Recommendations 28
2	2.3	Condensation Inside Plain Channels 28
2	2.3.1	Laminar Condensation in Vertical Tubes 28
2	2.3.2	The Onset of Turbulence 28
2	2.3.3	Prediction of Heat Transfer in Turbulent Flow 29
2	2.3.3.1	Analytical Models 29
2	2.3.3.2	CFD Models 30
2	2.3.3.3	Empirical Correlations 30
2	2.3.3.4	Correlations Applicable to Both Macro and Minichannels 34
2	2.3.4	Recommendation 41
2	2.4	Condensation Outside Tubes 41
2	2.4.1	Single Tube 41
	2.4.1.1	Stagnant Vapor 41
	2.4.1.2	Moving Vapor 42
	2.4.2	Bundles of Horizontal Tubes 42
	2.4.2.1	Vapor Entry from Top 42
	2.4.2.2	Vapor Entry from Side 44
	2.4.3	Recommendations 44
	2.5	Condensation with Enhanced Tubes 44
	2.5.1	Condensation on Outside Surface 44
	2.5.1.1	Single Tubes 44 Tube Bundles 46
	2.5.1.2 2.5.2	Tube Bundles 46 Condensation Inside Enhanced Tubes 47
	2.5.2	Recommendations 49
	2.6	Condensation of Superheated Vapors 49
	2.6.1	Stagnant Vapor on External Surfaces 49
_	2.6.2	Forced Flow on External Surfaces 49
	2.6.3	Flow inside Tubes 50
_	2.6.4	Plate-Type Heat Exchangers 50
	2.6.5	Recommendations 51
	2.7	Miscellaneous Condensation Problems 51
	2.7.1	Condensation on Stationary Cone 51
	2.7.2	Condensation on a Rotating Disk 51
2	2.7.3	Condensation on Rotating Vertical Cone 52
2	2.7.4	Condensation on Rotating Tubes 52
2	2.7.5	Plate-Type Condensers 53

2.7.5.1	Recommendation 54
2.7.6	Effect of Oil in Refrigerants 54
2.7.6.1	Recommendation 55
2.7.7	Effect of Gravity 55
2.7.7.1	Some Formulas for Zero Gravity 55
2.7.7.2	Experimental Studies 55
2.7.7.3	Conclusion 55
2.7.8	Effect of Non-condensable Gases 56
2.7.8.1	Prediction Methods 56
2.7.8.2	Recommendation 57
2.7.9	Flooding in Upflow 57
2.7.10	Condensation in Thermosiphons 58
2.7.11	Condensation in Helical Coils 58
2.8	Condensation of Vapor Mixtures 59
2.8.1	Physical Phenomena 59
2.8.2	Prediction Methods 60
2.8.3	Recommendation 61
2.9	Liquid Metals 61
2.9.1	Stagnant Vapors 61
2.9.2	Interfacial Resistance 62
2.9.3	Moving Vapors 62
2.9.4	Recommendation 62
2.10	Dropwise Condensation 63
2.10.1	Prediction of Mode of Condensation 63
2.10.2	Theories of Dropwise Condensation 63
2.10.3	Methods to Get Dropwise Condensations 63
2.10.4	Some Experimental Studies 64
2.10.5	Prediction of Heat Transfer 64
2.10.6	Recommendations 66
	Nomenclature 66
	References 67
3	Pool Boiling 77
3.1	Introduction 77
3.2	
3.2.1	Nucleate Boiling 77
	8
3.2.1.1	Mechanisms of Nucleate Boiling 77
3.2.1.1 3.2.1.2	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77
3.2.1.2	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77
	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77
3.2.1.2 3.2.1.3	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78
3.2.1.2 3.2.1.3 3.2.2	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79 Active Nucleation Site Density 81
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.3	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor-Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79 Active Nucleation Site Density 81 Recommendations 81
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.3	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79 Active Nucleation Site Density 81 Recommendations 81 Correlations for Heat Transfer 81
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.3 3.2.3.1	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79 Active Nucleation Site Density 81 Recommendations 81 Correlations for Heat Transfer 81 Conclusion and Recommendation 83
3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.3 3.2.3.1 3.2.4	Mechanisms of Nucleate Boiling 77 Bubble Agitation 77 Vapor–Liquid Exchange 77 Evaporative Mechanism 78 Bubble Nucleation 78 Inception of Boiling 78 Bubble Nucleation Cycle 79 Active Nucleation Site Density 81 Recommendations 81 Correlations for Heat Transfer 81 Conclusion and Recommendation 83 Multicomponent Mixtures 83

3.2.5

Liquid Metals 86

Nomenclature 115 References 116

4	Forced Convection Subcooled Boiling 123
4.1	Introduction 123
4.2	Inception of Boiling in Channels 123
4.2.1	Analytical Models and Correlations 123
4.2.2	Minichannels 125
4.2.3	Effect of Dissolved Gases 126
4.2.4	Recommendations 126
4.3	Prediction of Subcooled Boiling Regimes in Channels 126
4.3.1	Recommendation 127
4.4	Prediction of Void Fraction in Channels 127
4.4.1	Recommendations 129
4.5	Heat Transfer in Channels 129
4.5.1	Visual Observations and Mechanisms 129
4.5.2	Prediction of Heat Transfer 130
4.5.2.1	Some Dimensional Correlations 130
4.5.2.2	The Shah Correlation 130
4.5.2.3	Various Correlations 132
4.5.2.4	Recommendations 135
4.6	Single Cylinder with Crossflow 135
4.6.1	Experimental Studies 135
4.6.2	Prediction of Heat Transfer 135
4.6.2.1	Shah Correlation 135
4.6.2.2	Other Correlations 137
4.6.3	Recommendation 138
4.7	Various Geometries 138
4.7.1	Tube Bundles with Axial Flow 138
4.7.2	Tube Bundles with Crossflow 138
4.7.3	Flow Parallel to a Flat Plate 138
4.7.4	Helical Coils 138
4.7.5	Bends 139
4.7.6	Rotating Tube 139
4.7.7	Jets Impinging on Hot Surfaces 141
4.7.7.1	Experimental Studies and Correlations 142
4.7.7.2	Recommendations 145
4.7.8	Spray Cooling 145
	Nomenclature 146
	References 146
5	Saturated Boiling with Forced Flow 151
5.1	Introduction 151
5.2	Boiling in Channels 151
5.2.1	Effect of Various Parameters 151
5.2.2	Prediction of Heat Transfer 152
5.2.2.1	Correlations for Macro Channels 152
5.2.2.2	Correlations for Minichannels 158
5.2.2.3	Correlations for Both Minichannels and Macrochannels 159
5.2.2.4	Recommendations 162
5.3	Plate-Type Heat Exchangers 162
5.3.1	Herringbone Plate Type 162
5.3.1.1	Longo et al. Correlation 163
5.3.1.2	Almalfi et al. Correlation 163
5.3.1.3	Ayub et al. Correlation 164

i	Contents	
•	5.3.1.4	Recommendation 164
	5.3.2	Plane Plate Heat Exchangers 164
	5.3.3	Serrated Fin Plate Heat Exchangers 164
	5.3.4	Plate Fin Heat Exchangers 165
	5.4	Boiling in Various Geometries 166
	5.4.1	Helical Coils 166
	5.4.1.1	Correlations for Heat Transfer 166
	5.4.1.2	Evaluation of Correlations 167
	5.4.1.3	Discussion 167
	5.4.1.4	Recommendation 167
	5.4.2	Rotating Disk 168
	5.4.3	Cylinder Rotating in a Liquid Pool 169
	5.4.3.1	Recommendation 169
	5.4.4	Bends 170
	5.4.5	Spiral Wound Heat Exchangers (SWHE) 170
	5.4.6	Falling Thin Film on Vertical Surfaces 171
	5.4.6.1	Various Studies and Correlations 171
	5.4.6.2	Recommendation 171
	5.4.7	Vertical Tube/Rod Bundles with Axial Flow 172
	5.4.8	Spiral Plate Heat Exchangers 172
	5.5	Horizontal Tube Bundles with Upward Crossflow 172
	5.5.1	Physical Phenomena 172
	5.5.2	Prediction Methods for Heat Transfer 173
	5.5.2.1	Shah Correlation 175
	5.5.3	Conclusion and Recommendation 176
	5.6	Horizontal Tube Bundles with Falling Film Evaporation 177
	5.6.1	Flow Patterns/Modes 177
	5.6.2	Heat Transfer 178
	5.6.3	Conclusion and Recommendation 180
	5.7	Boiling of Multicomponent Mixtures 180
	5.7.1	Boiling in Tubes 180
	5.7.2	Boiling in Various Geometries 182
	5.7.3	Conclusions and Recommendations 182
	5.8	Liquid Metals 182 Inception of Boiling 182
	5.8.1 5.8.2	Inception of Boiling 182 Heat Transfer 184
	5.8.2.1	Sodium 184
	5.8.2.1	Potassium 184
	5.8.2.3	Mercury 186
	5.8.2.4	Cesium and Rubidium 186
	5.8.2.5	Mixtures of Liquid Metals 187
	5.8.3	Conclusions and Recommendations 187
	5.9	Effect of Gravity 187
	5.9.1	Experimental Studies 188
	5.9.2	Conclusions and Recommendation 189
	5.9.3	Effect of Oil in Refrigerants 189
	5.9.3.1	Heat Transfer with Immiscible Oils 189
	5.9.3.2	Heat Transfer with Miscible Oils 190

5.9.3.3 Conclusions and Recommendations 190

Nomenclature 191 References 192

6	Critical Heat Flux in Flow Boiling 201
6.1	Introduction 201
6.2	CHF in Tubes 201
6.2.1	Types of Boiling Crisis and Mechanisms 201
6.2.2	Prediction Methods 201
6.2.2.1	Analytical Models 201
6.2.2.2	Lookup Tables of CHF 202
6.2.2.3	Dimensional Correlations for Water 203
6.2.2.4	General Correlations 203
6.2.2.5	Fluid-to-Fluid Modeling 213
6.2.2.6	Non-uniform Heat Flux 214
6.2.3	Recommendations 216
6.3	CHF in Annuli 216
6.3.1	Vertical Annuli with Upflow 216
6.3.1.1	Dimensional Correlations for Water 216
6.3.1.2	General Correlations 217
6.3.1.3	Recommendations 220
6.3.2	Horizontal Annuli 221
6.3.3	Eccentric Annuli 221
6.4	CHF in Various Geometries 222
6.4.1	Single Cylinder with Crossflow 222
6.4.2	Horizontal Tube Bundles 224
6.4.2.1	Recommendation 226
6.4.3	Vertical Tube/Rod Bundles 227
6.4.3.1	Mixed Flow Analyses 227
6.4.3.2	Subchannel Analysis 228
6.4.3.3	Phenomenological Analyses 228
6.4.4	Falling Films on Vertical Surfaces 229
6.4.5	Flow Parallel to a Flat Plate 230
6.4.6	Helical Coils 230
6.4.6.1	Recommendation 232
6.4.7	Spiral Wound Heat Exchangers (SWHE) 232
6.4.8	Rotating Liquid Film 232
6.4.9	Bends 233
	Jets Impinging on Hot Surfaces 234
	Correlations for CHF in Free Stream Jets 234
6.4.10.2	8
6.4.10.3	•
	Effect of Heater Thickness 236
	Confined Jets 236
6.4.10.6	Submerged Jets 236
6.4.10.7	
6.4.11	Spray Cooling 236
6.4.12	Effect of Gravity 237
6.4.12.1	
	Experimental Studies at Low Gravities 238
	CHF Prediction Methods 239
6.4.12.4	Recommendation 239
	Nomenclature 239

References 240

xiv	Contents	
	7	Post-CHF Heat Transfer in Flow Boiling 247
	7.1	Introduction 247
	7.2	Film Boiling in Vertical Tubes 247
	7.2.1	Physical Phenomena 247
	7.2.2	Prediction of Dispersed Flow Film Boiling in Upflow 248
	7.2.2.1	Empirical Correlations 248
	7.2.2.2	
	7.2.2.3	Phenomenological Correlations 249
	7.2.2.4	- T
	7.2.2.5	Recommendations 256
	7.2.3	Prediction of Inverted Annular Film Boiling in Upflow 256
	7.2.3.1	Recommendations 257
	7.2.4	Film Boiling in Downflow 257
	7.3	Film Boiling in Horizontal Tubes 257
	7.3.1	Prediction Methods 258
	7.3.2	
	7.4	Film Boiling in Various Geometries 259
	7.4.1	
	7.4.2	
	7.4.3	Single Horizontal Cylinder 261
	7.4.3.1	Recommendation 262
	7.4.4	Spheres 262
	7.4.5	Jets Impinging on Hot Surfaces 264 Bends 265
	7.4.6	
	7.4.7	Helical Coils 265 Chilldown of Cruspania Binalinas 266
	7.4.8	Chilldown of Cryogenic Pipelines 266 Flow Parallel to a Plate 267
	7.4.9	
	7.4.10 7.5	Spray Cooling 267 Minimum Film Poiling Tomporature and Heat Flux 268
	7.5.1	Minimum Film Boiling Temperature and Heat Flux 268 Flow in Channels 268
	7.5.1	Jets Impinging on Hot Surfaces 268
	7.5.3	Chilldown of Cryogenic Lines 269
	7.5.4	Spheres 269
	7.5.5	Spray Cooling 270
	7.6	Transition Boiling 270
	7.6.1	Flow in Channels 270
	7.6.2	Jets on Hot Surfaces 271
	7.6.3	Spheres 272
	7.6.4	Spray Cooling 272
		Nomenclature 273
		References 274
	8	Two-Component Gas-Liquid Heat Transfer 279
	8.1	Introduction 279

8.1 Introduction 279 8.2 Pre-mixed Mixtures in Channels 279 8.2.1 Flow Pattern-Based Prediction Methods 279 8.2.1.1 Bubbly Flow 279 8.2.1.2 Slug Flow 281 8.2.1.3 Annular Flow 282 8.2.1.4 Post-dryout Dispersed Flow 283 8.2.2 General Correlations 283

8.2.2.1 Horizontal Channels 283

	Vertical Channels 286
8.2.2.3	
8.2.2.4	Inclined Channels 289
8.2.3	Recommendations 289
8.3	Gas Flow through Channel Walls 290
8.3.1	Experimental Studies 290
8.3.2	Heat Transfer Prediction 292
8.3.3	Conclusions 292
8.4	Cooling by Air–Water Mist 292
8.4.1	Single Cylinders in Crossflow 292
8.4.2	Flow over Tube Banks 294
8.4.3	Flow Parallel to Plates 294
8.4.4	Wedges 295
8.4.5	Jets 295
8.4.6	Sphere 297
8.5	Evaporation from Water Pools 297
8.5.1	Introduction 297
8.5.2	Empirical Correlations 297
8.5.3	Analytical Models 298
8.5.3.1	•
8.5.3.2	Other Models 300
8.5.4	CFD Models 301
8.5.5	Occupied Swimming Pools 301
8.5.6	
8.6	Various Topics 301
8.6.1	Jets Impinging on Hot Surfaces 301
8.6.2	Vertical Tube Bundle 302
8.6.3	Effect of Gravity 302
8.7	Liquid Metal–Gas in Channels 303
8.7.1	Mercury 303
8.7.2	Various Liquid Metals 304
8.7.3	Discussion 305
	Nomenclature 305
	References 306
_	
9	Gas-Fluidized Beds 311
9.1	Introduction 311
9.2	Regimes of Fluidization 311
9.2.1	Regime Transition Velocities 312
9.2.1.1	Minimum Fluidization Velocity 312
9.2.1.2	Various Regime Transition Velocities 312
9.2.2	Void Fraction and Bed Expansion 313
9.3	Properties of Solid Particles 313
9.3.1	Density 313
9.3.2	Particle Diameter 313
9.3.3	Particle Shape Factor 314
9.3.4	Classification of Particles 314
9.4	Parameters Affecting Heat Transfer to Surfaces 315
9.4.1	Gas Velocity 315
9.4.2	Particle Size and Shape 315
9.4.3	Pressure and Temperature 316
9.4.4	Heat Transfer Surface Diameter 317

Appendix 347 Index 357

Preface

The two-phase systems covered in this book include boiling, condensation, gas-liquid mixtures, and gas-solid mixtures. While there are many books on these topics, most of them are concerned mainly with theoretical aspects while information of practical use is addressed only briefly. The very few books that were intended to help the practicing engineers are greatly out of date. I therefore felt that there was a need for an up-to-date book that emphasized the practical aspects while also addressing the theoretical bases. This book is intended to fulfil this need.

The emphasis in this book is on information that is of practical use. For this reason, theories and methods that do not provide useable and adequately verified solutions are dealt only briefly though sufficient references are provided for more information about them. Effort has been made to provide a review of the state-of-art and the best available information for the design of a wide variety of heat exchangers in a clear and concise manner. This information includes experimental data, theoretical solutions, and empirical correlations. Accuracy and range of applicability of formulas/correlations presented is stated. Clear recommendations are made for application of the

methods presented. A very wide variety of heat exchangers and applications is covered. These include boiling and condensation of pure fluids and their mixtures in tubes and tube bundles, plate heat exchangers of various types, falling film heat exchangers, coils, bends, heat pipes, cryogenic pipelines, surfaces cooled by jets, mist cooling, rotating surfaces, spheres, disks, cones, etc. Boiling and condensation of metallic fluids is also discussed. Also included are heat exchangers with two-component gas-liquid mixtures, fluidized beds, and flowing gas-solid mixtures. As space travel and colonization are of much current interest, available information on effects of low gravity has been addressed.

While this book is primarily intended to assist practicing engineers and researchers, it may also be used as textbook for courses on two-phase heat transfer.

Finally, I thank Dr. Milaz Darzi for his help in getting some of the publications studied during the preparation of this book.

Redding, CT 11 April 2020 Mirza Mohammed Shah

1

Introduction

1.1 Scope and Objectives of the Book

The two-phase systems covered in this book include boiling, condensation, gas-liquid mixtures, and gas-solid mixtures.

Two-phase heat transfer is involved in numerous applications. These include heat exchangers in refrigeration and air conditioning, conventional and nuclear power generation, solar power plants, aeronautics, chemical processes, petroleum industry, etc. In recent years, there has been increasing use of miniature heat exchangers for computers and other electronic intensive products.

The emphasis in this book is on information that is of practical use. For this reason, theories and methods that do not provide useable and adequately verified solutions are dealt only briefly though sufficient references are provided for more information about them. Effort is made to provide the best available information for the design of a wide variety of heat exchangers in a clear and concise manner. This information includes experimental data, theoretical solutions, and empirical correlations. Accuracy and range of applicability of formulas/correlations presented is stated. Clear recommendations are made for application of the methods presented. A very wide variety of heat exchangers is covered. These include boiling and condensation in tubes and tube bundles, plate heat exchangers of various types, falling film heat exchangers, coils, surfaces cooled by jets, mist cooling, rotating surfaces (tubes, disks, cones, etc.), spheres, etc. Boiling and condensation of metallic fluids is discussed besides those of non-metallic fluids. Also included are heat exchangers with two-component gas-liquid mixtures, fluidized beds, and flowing gas-solid mixtures.

In this chapter, information is provided that is needed for understanding and using the material in other chapters as well as in other publications. This includes explanation of commonly used terms, various models used in solving two-phase flow and heat transfer problems, distinction between minichannels and conventional channels, flow patterns and their prediction, etc. While the focus of this book is on two-phase heat transfer, methods for calculation of single-phase heat transfer, void fraction and pressure drop have also been briefly discussed as these are needed in the design of heat exchangers. References to sources for more information on these topics have been provided.

Only Newtonian fluids are considered in this book. All discussions pertain to non-metallic fluids except where stated otherwise.

1.2 Basic Definitions

Some commonly used terms are explained in the following.

Mass flux or mass velocity is the mass flow rate per unit

area. It is usually designated as G. If W be the mass flow rate $kg s^{-1}$ in a tube of cross-sectional area A_c (m²), $G = W/A_c$ ($kg m^{-2} s^{-1}$).

Void fraction is the part of the total volume occupied by the gas phase. Consider a gas-liquid mixture flowing in a pipe. If A_L is the flow area occupied by liquid and A_G is the flow area occupied by gas, void fraction α is

$$\alpha = \frac{A_G}{A_L + A_G} = \frac{A_G}{A_c} \tag{1.2.1}$$

Liquid holdup R_L is the part of flow area occupied by liquid phase.

$$R_L = 1 - \alpha \tag{1.2.2}$$

Quality, usually given the symbol x, is mass flow rate of vapor divided by the total flow rate. With W_L as the flow rate of liquid and W_G that of gas,

$$x = \frac{W_G}{W_L + W_G} \tag{1.2.3}$$

Two types of phase velocities are used, actual, and superficial. The actual velocity of gas phase u_G is that in the area occupied by the gas phase:

$$u_G = \frac{W_G}{\rho_g A_c \alpha} = \frac{Gx}{\rho_g \alpha} \tag{1.2.4}$$

where ρ_{σ} is the density of gas. The actual liquid velocity is similarly defined and is given by

$$u_L = \frac{W_L}{\rho_L A_c (1 - \alpha)} = \frac{G(1 - x)}{\rho_f (1 - \alpha)}$$
 (1.2.5)

Superficial gas velocity u_{GS} is the velocity assuming that gas alone is flowing through the entire flow area. In other words, liquid is assumed to be absent. Then,

$$u_{\rm GS} = \frac{W_G}{\rho_{\rm g} A_{\rm c}} = \frac{Gx}{\rho_{\rm g}} \tag{1.2.6}$$

Similarly, superficial liquid velocity u_{LS} is defined as

$$u_{\rm LS} = \frac{W_L}{\rho_L A_c} = \frac{G(1-x)}{\rho_f}$$
 (1.2.7)

The superficial gas and liquid velocities are also called volumetric gas and liquid flux represented by the symbols j_G and j_L , respectively.

Gas and liquid velocities are often not equal. The difference in phase velocities $(u_G - u_L)$ is called the slip velocity, while u_G/u_L is known as slip ratio. The latter is expressed by the following relation obtained using Eqs. (1.2.4) and

$$\frac{u_G}{u_L} = \left(\frac{x}{1-x}\right) \left(\frac{1-\alpha}{\alpha}\right) \left(\frac{\rho_f}{\rho_g}\right) \tag{1.2.8}$$

The relative velocity between phases u_{GL} can be written

$$u_{\rm GL} = (u_G - u_L) = \frac{j_G}{\alpha} - \frac{j_L}{(1 - \alpha)}$$
 (1.2.9)

The drift flux j_{GL} is defined as

$$j_{\rm GL} = u_{\rm GL} \alpha (1 - \alpha) = j_{\rm G} - \alpha j$$
 (1.2.10)

where

$$j = j_{GS} + j_{LS} \tag{1.2.11}$$

The drift velocity of gas u_{Gi} with respect to a plane moving at a velocity j is defined as

$$u_{Gi} = u_G - j (1.2.12)$$

The drift velocity of the liquid phase is

$$u_{\rm Lj} = u_L - j \tag{1.2.13}$$

Heat flux, usually represented as q, is defined as the heat applied to a surface per unit area per unit time. If Q Watts are applied to a tube of diameter D and length L,

$$q = \frac{Q}{\pi DL} \tag{1.2.14}$$

In boiling systems, quality is usually defined assuming thermodynamic equilibrium between vapor and liquid phases, i.e. all the heat applied is used to evaporate the liquid. Thus, if W kg s⁻¹ of saturated liquid enters a tube of length L with heat flux q, quality at exit from tube is

$$x = \frac{\pi D L q / i_{\text{fg}}}{W} \tag{1.2.15}$$

where $i_{\rm fg}$ is the latent heat of vaporization. Equilibrium quality during condensation is defined in a similar way; all heat removed is used to condense the vapor. Unless stated otherwise, the quality used in equations and given in test data is the equilibrium quality.

If T_w be the wall temperature and T_{SAT} the saturation temperature during boiling, $(T_w - T_{SAT}) = \Delta T_{SAT}$ is known as the wall superheat. In condensation, $(T_{SAT} - T_w)$ is called wall subcooling. If a liquid is at a temperature T that is lower than the saturation temperature, $(T_{SAT} - T) = \Delta T_{SC}$ is called subcooling.

The term "film temperature" is frequently used. It means the mean of wall and fluid temperature. Unless stated otherwise, it is the arithmetic mean. Thus,

$$T_{\text{film}} = \frac{T_{\text{wall}} + T_{\text{fluid}}}{2} \tag{1.2.16}$$

Various Models 1.3

Some basic models used in the analysis of two-phase systems are discussed herein.

1.3.1 Homogeneous Model

It is assumed that gas and liquid are flowing at the same velocity and form a homogeneous mixture. By putting $u_G = u_L$ in Eq. (1.2.8) and rearranging, the following expression for void fraction α is obtained:

$$\alpha = \left[1 + \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)\right]^{-1} \tag{1.3.1}$$

For use in calculation of heat transfer and pressure drop with this model, the properties of the mixture are considered to be the mean of those of gas and liquid. Various methods of calculating the mean values have been proposed, for example, weighted according to the mass fractions of gas and liquid in the mixture.

Homogeneous model works fairly well for bubble flow and mist flow though it has been used in some empirical correlations without regard to the flow pattern.

Separated Flow Models 1.3.2

In the separated flow model, the gas and liquid phases are considered to be separated. Separate equations can then be written for each phase. Additional equations

are needed for determining areas occupied by the two phases and interfacial shear. These can be empirical or semi-theoretical correlations or sophisticated analyses such as the two-fluid models in which momentum, energy, and continuity equations are written separately for each phase together with equations for interaction between phases. Closed-form solutions of these equations are rarely possible and hence have to be solved numerically on computers. The two-fluid models are difficult to use and not necessarily more accurate than the simpler models. Empirical and semi-theoretical models are generally used in practical designs.

1.3.3 Flow Pattern-Based Models

In these models, the gas and liquid are considered to be arranged according to the expected flow pattern, and prediction methods are developed specific to particular flow patterns. The prediction methods are most often empirical correlations. Analytical solutions have also been developed notably for stratified, slug, and annular flow patterns. Such analytical solutions use idealized geometry of the flow patterns. For example, annular flow is usually assumed to have uniform liquid layer, no interfacial waves, and no liquid entrainment. These assumptions are usually not correct. Still, the analytical solutions are useful as they provide understanding of the physical phenomena.

The accuracy of flow pattern-based models is further limited by the accuracy of flow pattern prediction methods. One of the most verified flow pattern correlation is that of Mandhane et al. (1974). They report an accuracy of 68% in prediction. Researchers often report that their observed flow patterns do not agree with well-known flow pattern correlations. For example, Kim (2000) found large differences between his own flow pattern observation in air-water flow and the predictions of the Taitel and Dukler (1976) map.

Due to the previously mentioned factors, the accuracy of flow pattern-based prediction methods is not good.

1.4 Classification of Channels

In recent years, there has been increasing use of small diameter channels known as mini- or microchannels as they offer more compact and economical heat exchangers. Most of the methods for predicting heat transfer were developed with data for larger tubes known as conventional or macro channels.

The generally held view is that there is no effect of surface tension on heat transfer in tubes of larger diameter, while in tubes of small diameter, surface tension

affects heat transfer. The implication is that methods for predicting heat transfer in macro channels are not applicable to mini-/microchannels. It is therefore necessary to demarcate the boundary between macro channels and minichannels to ensure use of macro channel correlations only within their applicable range.

Many classifications of channels have been proposed. These have most recently been discussed by Shah (2018).

1.4.1 Based on Physical Dimensions

According to Shah (1986), the heat exchangers with area-to-volume ratio more than $700\,\mathrm{m}^2\,\mathrm{m}^{-3}$ are compact. This results in 6 mm diameter being the boundary between minichannels and macro channels.

Mehendale et al. (2000) proposed the following:

D > 6 mm, macro channels

D = 1-6 mm, compact channel

 $D = 100 \,\mu\text{m}$ to 1 mm, meso channel

 $D = 1-100 \,\mu\text{m}$, microchannel

A widely used one is by Kandlikar (2002), according to which

Conventional channels: D > 3 mmMinichannels: 3 mm > D > 0.2 mmMicrochannels: $0.2 \text{ mm} \ge D > 0.01 \text{ mm}$

This classification was based mainly on single-phase flow of gases, but for uniformity, he also recommended it for boiling and condensing flows. This is the most widely used classification.

1.4.2 Based on Condensation Studies

Li and Wang (2003) studied condensation in minichannels. They observed the transition of flow patterns from symmetrical to asymmetrical and noted that these depend on the capillary length L_{cap} (also known as Laplace constant) defined as

$$L_{\rm cap} = \left[\frac{\sigma}{g(\rho_f - \rho_g)}\right]^{0.5} \tag{1.4.1}$$

Their conclusions were as follows:

- $D < 0.224L_{\text{cap}}$: Gravity forces are negligible compared with surface tension forces. Flow regimes are symmetri-
- $0.224L_{\text{cap}} < D < 1.75L_{\text{cap}}$: Gravity and surface tension forces are comparable. Flow distribution is slightly stratified.
- 1.75 $L_{\text{cap}} < D$: Gravity forces dominate surface tension forces and the flow regimes are similar to macro channels.

Cheng and Wu (2006) rearranged the preceding results of Li and Wang in terms of Bond number as follows:

Microchannel, if Bd < 0.5 (negligible effect of gravity) Minichannel, if 0.5 < Bd < 3.0 (both gravity and surface tension have significant effect)

Macro channel, if Bd > 3.0 (surface tension has negligible effect).

Bond number is the ratio of surface tension and gravitational forces and is defined as

$$Bd = \frac{gD^2(\rho_f - \rho_g)}{\sigma} \tag{1.4.2}$$

It is also the ratio of channel diameter to capillary length.

Based on the comparison of his general correlation for condensation in tubes, Shah (2009, 2013), with a wide-ranging database, Shah (2016) gave the following criterion. It is minichannel if

$$We_{\rm GT} < 100$$
 (1.4.3)

where

$$We_{\rm GT} = \frac{G^2 D}{\rho_G \sigma} \tag{1.4.4}$$

The data for $We_{GT} < 100$ included Bond numbers up to 105. Hence the criteria based on Bond number were found to be incorrect as they consider effect of surface tension to occur at Bond numbers between 1 and 4.

1.4.3 Based on Boiling Flow Studies

The growth of bubbles during boiling in small channels may be restricted due to the limitation of tube diameter. This has led several authors to use the confinement number *Co* defined as

$$Co = \frac{1}{D} \left[\frac{\sigma}{g(\rho_f - \rho_g)} \right]^{0.5}$$
 (1.4.5)

Kew and Cornwell (1997) compared the data from their tests on heat transfer during boiling in tubes of diameter 1.39, 2.87, and 3.69 mm, and a square channel $2 \text{ mm} \times 2 \text{ mm}$, to several correlations based on macro channel data. They found that these failed when the confinement number Co is less than 0.5. Accordingly, they gave the following classification:

Micro-/minichannel: Co > 0.5Macro channel: Co < 0.5

According to Ong and Thome (2011a), the lower threshold of macroscale flow is Co = 0.3–0.4, while the upper threshold of symmetric microscale flow is Co = 1 with a transition (or mesoscale) region in between. This was based on the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness

comparison for refrigerants R-134a, R-236fa, and R-245fa during flow boiling in channels of 1.03, 2.20, and 3.04 mm diameter.

Li and Wu (2010a,b) have given a transition criterion based on their analysis of data for boiling heat transfer in a variety of channels. According to it, it is minichannel if

$$Bd Re_{1S}^{0.5} \le 200 \tag{1.4.6}$$

Shah (2017b) compared a very wide-ranging database for saturated boiling prior to CHF with several correlations for macro channels including Shah (1982). He concluded that it is minichannel if

$$F = (2.1 - 0.008We_{GT} - 110Bo) > 1 (1.4.7)$$

Bo is the boiling number. For horizontal channels, F=1 if $Fr_{\rm LT} < 0.01$. If $F \le 1$, it is macro channel. The data for F > 1 (minichannel) included diameters up to 6.4 mm and Bd up to 13.7. The data for $F \le 1$ (macro channels) include diameters down to 0.38 mm and Bond numbers down to 0.15. Hence the criteria based on Bond number and diameter are not satisfactory

Shah (2017a) compared his general correlation for subcooled boiling in tubes and annuli with a wide-ranging database that included diameters as small as 0.176 mm and Bond number down to 0.025. Data over the entire range were satisfactorily predicted. This correlation did not include any factor for surface tension effects. No effect of diameter or Bond number was found.

Shah (2017c) compared his correlation for dispersed flow film boiling in horizontal and vertical tubes with a wide-ranging database. This correlation did not have any factors for surface tension effects. Data over the entire range were satisfactorily predicted. These included tube diameters as low as 0.98 mm and Bond numbers down to 2. The minimum $We_{\rm GT}$ in these data was 32. This shows that the Shah criterion for saturated boiling, Eq. (1.4.7), does not apply to film boiling.

Shah (2015, 2017d) compared his correlation for CHF in vertical and horizontal tubes with a very wide range of data. These correlations had no factors for the effect of surface tension. The data included diameters down to 0.13 mm and Bond numbers down to 0.026. The minimum $We_{\rm GT}$ in the data was 6. Hence the criterion of Eq. (1.4.7) for saturated boiling heat transfer is not applicable to CHF.

1.4.4 Based on Two-Component Flow

Triplett et al. (1999) studied gas–liquid flow in small diameter channels. They proposed that mini-/microchannels are those with diameter less than capillary length $L_{\rm cap}$. This is equivalent to Bd < 1.

Ullmann and Brauner (2007) studied flow pattern transitions in gas-liquid flow in channels, and based on their analyses, they proposed that the transition between minichannels and macro channels depends on the Eotvos number Eo, which is the ratio of buoyancy force to surface tension force. It is written as

$$Eo = \frac{g(\rho_{f-}\rho_g)D^2}{8\sigma} \tag{1.4.8}$$

They proposed that minichannels are those with Eo < 0.2.

1.4.5 Discussion

The criteria given earlier are summarized in Table 1.4.1. To make the comparison easy, the criteria using Eo and Co have been given in terms of Bond number. These are related by the following equation:

$$Eo = \frac{Bd}{8} = \frac{1}{8Co^2} \tag{1.4.9}$$

It is seen that the value of the transition Bond number in various criteria varies from 1 to 4. As seen in the discussion earlier, many data for condensation and saturated boiling show effect of surface tension at much higher Bond numbers, while some data at lower Bond numbers do not show effect of surface tension. Hence the criteria based on Bond number are inaccurate. Similarly, many data for tube diameters smaller than 3 mm showed satisfactory agreement with macro channel correlations for saturated boiling and condensation, while many data for larger diameters showed effect of surface tension. Hence the limit of applicability of macro channel correlations to minichannels cannot be based on criteria based on tube diameter or Bond number. For saturated boiling and condensation, the criteria given by Shah are well verified. For subcooled boiling, film boiling, and CHF, limits of applicability of macrochannel correlations are as yet unknown.

1.4.6 Recommendation

Distinction has to be made between naming convention and the actual boundary according to the limit of applicability of macro channel correlations.

In most literature, channels with diameter > 3 mm are called conventional or macro channels, while those with diameter < 3 mm are called minichannels. Hence this naming convention is also followed in this book. However, this is not the limit of applicability of macro channel correlations. The following are the recommendations for this limit:

- For condensation heat transfer, Shah's criterion $We_{\rm GT} > 100$.
- For saturated boiling heat transfer, Shah's Eq. (1.4.7).
- For subcooled boiling, film boiling, and CHF, the limit is undefined. Use macro channel correlations within the range of data in the analyses of such data performed by Shah (2017a,c,d).

Flow Patterns in Channels

1.5.1 Horizontal Channels

1.5.1.1 Description of Flow Patterns

There is a great deal of variation in the description and names of flow patterns used by different authors. Rouhani

Table 1.4.1 Criteria for macro to mini transition by various authors.

Author	Criterion for minichannel	Basis
Shah (1986)	D < 6 mm	Surface-area-to-volume ratio > 700 m ² m ⁻³
Mehendale et al. (2000)	D < 6 mm	Same as above
Kandlikar (2002)	$D \le 3 \text{ mm}$	Based on mean free path of common gases
Kew and Cornwell (1997)	Bd < 4	Bubble growth confinement during boiling in channels
Triplett et al. (1999)	Bd < 1	Flow pattern transitions in gas-liquid flows
Ullman and Brauner (2007)	<i>Bd</i> < 1.6	Flow pattern transitions in adiabatic gas-liquid flows
Cheng and Wu (2006)	Bd < 3	Flow pattern transitions during condensation in tubes
Ong and Thome (2011a)	<i>Bd</i> < 1	Flow pattern transitions and top-bottom liquid film thickness during boiling in channels
Li and Wu (2010aa,b)	$Bd \cdot Re_{\rm LS}^{0.5} \le 200$	Correlation of heat transfer coefficients during saturated boiling in channels
Shah (2016)	$We_{GT} < 100$	Comparison of test data with correlation for condensation heat transfer in macro channels
Shah (2017b)	$F = (2.1 - 0.008We_{GT} - 110Bo) > 1$	Comparison of test data with correlation for saturated boiling heat transfer in macro channels

Source: From Shah (2018). Licensed under CC-BY-4.0.

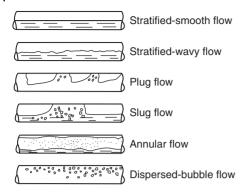


Figure 1.5.1 Flow patterns during co-current gas-liquid flow in horizontal tubes. Source: From Rouhani and Sohal (1983). © 1983 Elsevier.

and Sohal (1983) note that there are 84 different flow pattern labels in literature, 60 of them being for horizontal co-current flow. The most common names are used herein.

Typical flow patterns occurring during flow of gas-liquid mixtures in horizontal channels are shown in Figure 1.5.1. Flow in horizontal channels is subjected to gravity, inertia, and surface tension forces, and the flow patterns result from the balance of these forces. Gravity force tends to pull the heavier liquid phase to the bottom, while the inertia force tends to keep the flow symmetrical. At low flow rates, stratified flow occurs in which the liquid flows at the bottom, while gas flows at the top. The interface is smooth at the lowest flow rates. As flow rates increase, gas-liquid interface becomes rough with appearance of ripples and waves. This is usually called the stratified-wavy pattern. If the waves are of significant height, many authors call it the wavy pattern. With further increase in flow rates, the wave amplitude increases and they reach the top of tube. Gas pockets/plugs then get trapped between the liquid crests, resulting in the plug and slug flow regimes. The difference between plug and slug patterns is mainly that gas pockets are larger in slug flow. Slug flow is often called Taylor flow. Plug and slug flow are also called intermittent flow. Considerable pressure fluctuations occur during intermittent flow. As gas and liquid flow rates increase further, the annular flow pattern occurs. The churn flow pattern may occur in transition from slug flow to annular flow as the slugs begin to disintegrate. In annular flow, liquid is in the form of a layer around the tube circumference, and gas flows in the middle of the tube. Considerable amounts of liquid drops may be entrained in the vapor core and interfacial waves occur. If the liquid layer is thin or non-existent at the upper part of tube, some authors call it semi-annular or crescent pattern. This pattern often occurs during evaporation in tubes. At high gas/vapor velocities, large amount of liquid is torn off the liquid film, and the gas core carries large amounts of liquid droplets. This is called the mist-annular flow; it is called mist flow if there is no liquid film. During dispersed bubble flow (also called bubble flow), vapor bubbles are carried in the continuous liquid stream. It occurs at high liquid flow rates together with low gas flow rate.

Figure 1.5.2 shows the flow patterns during evaporation in horizontal tubes under two conditions common in refrigeration evaporators.

1.5.1.2 Flow Pattern Maps

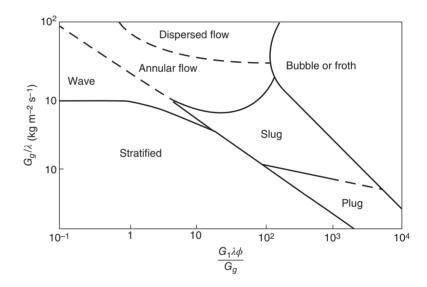
Many maps for prediction of flow patterns have been proposed. One of the best known is that of Baker (1954). The original map was in terms of dimensional parameters. Figure 1.5.3 is an essentially dimensionless version. This map was developed by analysis of mostly air–water data in pipes of diameters up to 50 mm. G_l and G_g are the superficial mass velocities of liquid and gas. The other terms are

$$\lambda = \left(\frac{\rho_{\rm g}}{\rho_{\rm air}} \frac{\rho_{\rm f}}{\rho_{\rm water}}\right)^{0.5} \tag{1.5.1}$$

$$\phi = \left(\frac{\sigma_{\text{water}}}{\sigma}\right) \left[\frac{\mu_f}{\mu_{\text{water}}} \left(\frac{\rho_{\text{water}}}{\rho_f}\right)^2\right]^{1/3}$$
 (1.5.2)

The subscripts "air" and "water" indicate air and water at room temperature and pressure. While this map was based entirely on adiabatic flow, several authors have reported its agreement with boiling and condensation data. For example, Shah (1975) reported it to be in fairly good agreement with his data for ammonia evaporating in a 26.2 mm diameter pipe.

A well-verified correlation is by Mandhane et al. (1974) shown in Figure 1.5.4. It was developed using adiabatic gas-liquid data for many gas-liquid combinations. The range of those data is given in Table 1.5.1. Its success in correctly predicting the flow patterns was 67.1%. For the same data, Baker map was able to correctly predict only 41.5% of them. Other researchers have generally found it to be fairly good. Mandhane et al. have also given a version that includes fluid properties but its accuracy was about the same as that of this simple version. They have given a computer subroutine for this correlation.


Another widely quoted flow pattern map is that of Taitel and Dukler (1976). It was developed analytically. Kim (2000) found large differences between his own flow pattern observation in air–water flow and the predictions of the Taitel and Dukler (1976) map.

A number of maps have been developed specifically for boiling and condensation. Among them are those of El Hajal et al. (2003) for condensation and Kattan et al. (1998) for boiling. These were verified with data for halocarbon refrigerants.

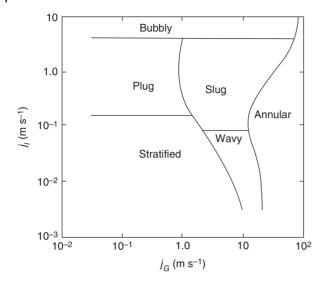
Figure 1.5.2 Flow patterns during evaporation in horizontal tubes. (a) High mass velocity ($400 \text{ kg s}^{-1} \text{ m}^{-2}$), subcooled liquid at inlet. (b) Low mass velocity ($200 \text{ kg s}^{-1} \text{ m}^{-2}$), 20% flash gas at inlet. Source: From ASHRAE (2017).

Figure 1.5.3 Baker flow pattern map for co-current gas-liquid flow in horizontal pipes. Source: From Rouhani and Sohal (1983). © 1983 Elsevier.

1.5.2 Vertical Channels

Figure 1.5.5 shows the most common flow patterns in vertical upward co-current flow. These are mostly similar to the horizontal flow patterns except that they are more axisymmetric and the stratified pattern does not occur. This is because gravity force is parallel to the flow direction.

An early flow pattern map is by Hewitt and Roberts (1969), which was based on steam—water flow. Mishima and Ishii (1984) analytically developed criteria for transitions between flow patterns. These were compared to data for air—water and boiling water in round and rectangular channels from several sources and found to be in fair agreement with them. Flow pattern maps can be drawn for any conditions using these criteria. Figure 1.5.6 shows their predicted map for air—water flow at room conditions in a 25.4 mm pipe. In the Region A shown in it, it is difficult to


distinguish between churn and annular flow as it is highly agitated.

McQuillan and Whalley (1985) analytically derived criteria for transitions between flow patterns in co-current upflow. Figure 1.5.7 is an example of their predictions. They compared their map with data for air–water as well as for boiling water and refrigerants. Agreement was generally good with 84.1% of the data points predicted correctly.

1.5.3 Inclined Channels

By inclined channels is meant channels with flow directions other than horizontal and vertical up.

The flow patterns in different inclinations change due to the changing relative direction of gravitational force. Analytical expressions for transition criteria have been developed by several authors for particular flow directions.

Figure 1.5.4 The Mandhane et al. flow pattern map for co-current flow in horizontal pipes. Source: From Ghiaasiaan et al. and Cambridge University Press. © 1974 Elsevier.

Table 1.5.1 Range of data with which flow pattern map of Mandhane et al. was verified.

	Range
Pipe diameter (mm)	12.7–165.1
Liquid density (kg m ⁻³)	705-1009
Gas density (kg m ⁻³)	0.8-50.5
Liquid viscosity (Pa s)	$3 \times 10^{-4} - 9 \times 10^{-2}$
Gas viscosity (Pa s)	$10^{-5} - 2.2 \times 10^{-5}$
Surface tension (N m ⁻¹)	0.024-0.103
Superficial liquid velocity (m s ⁻¹)	$0.9 \times 10^{-3} - 7.3$
Superficial gas velocity (m $\rm s^{-1}$)	0.04-171

Source: Modified from Mandhane et al. (1974).

Barnea (1987) developed a comprehensive model that is applicable to all flow directions from vertical up to vertical down. It consists of equations for transitions between flow patterns. Figure 1.5.8 shows their predicted flow patterns over the entire range of inclinations from vertical up to vertical down. Good agreement with data from one source is seen. Data from the same source for a 25 mm pipe also showed good agreement. Comparison of this model with data from many sources covering a wide range of parameters is needed.

Mehta and Banerjee (2014) observed flow patterns during air—water flow in a 2.1 mm diameter tube whose orientation was varied at various angle from vertical up to vertical down. They compared their observations with several flow pattern maps, but none was found to agree with their data. They developed maps for horizontal, vertical upflow,

and vertical downflows, which were verified only with their own data.

1.5.4 Annuli

Kelessidis and Dukler (1989) investigated flow patterns in vertical upward gas-liquid flow in a concentric and an eccentric annulus (eccentricity 50%). Flow patterns observed were essentially the same as in tubes. Eccentricity was found to have only minor effect on flow patterns. They derived expressions for transitions between flow patterns. These were found to be in agreement with their own data.

Das et al. (1999a,b) observed flow patterns during adiabatic gas-liquid upflow in vertical annuli and developed a mechanistic model of the flow pattern transitions that agreed with their data.

Julia and Hibiki (2011) developed criteria for transitions between flow patterns during upflow in annuli. They compared their map with adiabatic data mentioned earlier as well as boiling water data of Hernandez et al. (2010). Satisfactory agreement was found.

1.5.5 Minichannels

All the foregoing discussions were on flow patterns in macro/conventional channels. Those in minichannels are addressed in this section.

Numerous experimental studies have been done on flow patterns in minichannels, and many flow pattern maps have been proposed. Cheng et al. (2008) reviewed many of them. Experimental studies show that flow patterns in minichannels are the same as in macro channels, but criteria for transitions between flow patterns are usually different.

Triplett et al. (1999) studied flow patterns during air-water flow in horizontal tubes of diameter 1.09 and 1.49 mm. They compared their data to some macro channel maps and found them unsatisfactory.

Akbar et al. (2002, 2003) studied data for air-water in horizontal and vertical minichannels from six sources and proposed a new flow pattern map.

Chen et al. (2006) performed tests with R-134 boiling with upward flow in vertical tubes of diameter 1.10, 2.01, 2.88, and 4.26 mm. They found the Akbar et al. (2003) map unsatisfactory for their data. They noticed subtle differences between the flow patterns of the two larger tubes and the two smaller tubes. The smaller tubes had slimmer vapor slugs and thinner liquid films around the vapor slugs, suggesting greater influence of surface tension. They therefore considered $D=2\,\mathrm{mm}$ as the boundary between minichannels and macro channels for the conditions of their tests.

Figure 1.5.5 Flow patterns during upflow in vertical pipes. Source: From Rouhani and Sohal (1983). © 1983 Elsevier.

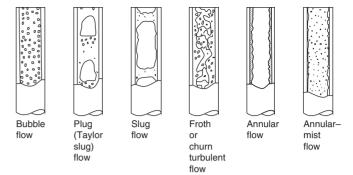
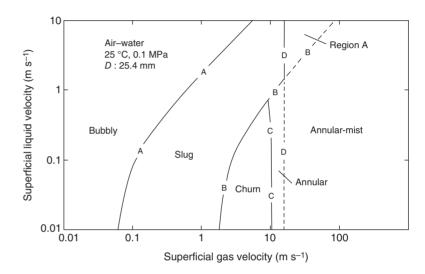



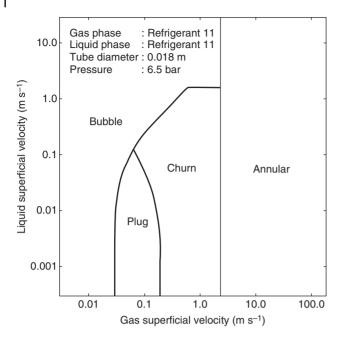
Figure 1.5.6 Example of flow patterns according to the transition criteria of Mishima and Ishii. Source: From Mishima and Ishii (1984). © 1984 **FIsevier**

Ullmann and Brauner (2007) analytically developed criteria for transition between flow patterns. They concluded that for flow patterns, transition between minichannel and macro channel occurs at Eotvos number of 0.2. They compared their map with the flow patterns observed by Triplett et al. (1999) in a 1 mm diameter tube with air-water flow. Satisfactory agreement was found.

Ong and Thome (2011b) studied boiling of three refrigerants in tubes of diameter 1.03, 2.20, and 3.04 mm. They gave a new flow pattern map that agreed with their data. Saisorn et al. (2018) found satisfactory agreement with this map of their data for R-134 boiling in a 1 mm diameter tube in horizontal, vertical upflow, and vertical downflow.

Jige et al. (2018) experimentally investigated R-32 boiling in horizontal multiport rectangular minichannels with hydraulic diameters of 0.5 and 1.0 mm. Mass velocity range was $30-400 \text{ kg m}^{-2} \text{ s}^{-1}$ at a saturation temperature of 15 °C. They compared their observations with flow pattern transition criteria of Garimella et al. (2002) and Enoki et al. (2013), both for minichannels. Agreement was not good. They developed their own map.

As is evident from the earlier discussions, many flow pattern maps for minichannels have been proposed, but none of them has been verified with a wide range of data.


1.5.6 Horizontal Tube Bundles with Crossflow

A number of experimental studies have been done on upflow across horizontal tube bundles. Most of them were done with air-water, while a few were with boiling and condensation. Flow patterns observed included bubble, slug, churn, and annular. Xu et al. (1998) studied both downflow and upflow of air-water. In downflow, they also noticed a falling film flow pattern. This occurred at low superficial velocities of gas and liquid. The liquid formed a film around tube wall and flowed down on the tube below. Their observations during upflow and downflow are shown in Figure 1.5.9.

Flow pattern maps have been proposed by Grant and Chisholm (1979), Pettigrew et al. (1989), Ulbrich and Mewes (1994), Xu et al. (1998), Aprin et al. (2007), and Kanizawa and Ribatski (2016). All of them are based on air-water data except that of Aprin et al., which was based on their own boiling data.

Xu et al. (1998) compared their upflow data with the maps of Ulbrich and Mewes (1994) and Grant and Chisholm (1979). Significant differences were found.

Kanizawa and Ribatski (2016) performed tests with air-water flowing up across a bundle of 19 mm tubes on an

Figure 1.5.7 Flow patterns predictions of McQuillan and Whalley for evaporating R-11 during upflow in a vertical tube under the conditions shown. Source: From McQuillan and Whalley (1985). © 1985 Elsevier.

equilateral triangular arrangement. They compared their data with the maps of Xu et al. (1998), Ulbrich and Mewes (1994), and Grant and Chisholm (1979). These were able to correctly predict 48%, 69%, and 58% of the flow patterns, respectively. They developed their own flow pattern map, which agrees well with their own data.

1.5.7 Vertical Tube Bundles

Vertical tube/rod bundles are especially of interest due to their use in light water nuclear reactors in normal and post-accident conditions. A number of studies on flow patterns in such bundles have been done.

Williams and Peterson (1978) studied upflow of high pressure boiling water in a bundle consisting of a single row of four 6.35 mm rods. The observed two-phase flow patterns were bubble flow, froth flow, slug flow, and annular flow.

Venkateswararao et al. (1982) performed an experiment of vertical adiabatic air—water flow in a rod bundle under atmospheric pressure. There were 24 rods arranged on a square pitch in a cylindrical shell with 12.7 mm outside diameter and 17.5 mm pitch. They identified five flow patterns. These are bubbly, finely dispersed bubbly, slug, churn, and annular. They proposed an analytically based flow pattern map that agreed with their data.

Mizutani et al. (2007) also studied air-water upflow in a 4×4 bundle of 12 mm rods with pitch of 16 mm. They

identified the following flow patterns: bubbly, bubbly-churn, churn, churn-annular, and annular flows. They developed a map that agreed well with their own data.

Paranjape et al. (2011) had air–water flowing up an 8×8 bundle of 12.7 mm diameter rods with square arrangement and a pitch of 16.7 mm. They observed four flow patterns, namely, bubbly, cap-bubbly, cap-turbulent, and churn–turbulent flows. Cap-bubbly indicates that the bubbles were cap shaped. A map of their flow patterns was presented.

Zhou et al. (2015) studied vertical boiling steam—water flow in a 3×3 heated rod bundle at atmospheric pressure. The rods were 10 mm diameter at 15 mm square pitch. The flow patterns observed were bubbly, bubbly–churn, churn, and annular. They also proposed a map that agreed with their data.

Liu and Hibiki (2017) showed that the flow pattern maps mentioned earlier do not agree well with data other than their own. Liu and Hibiki analytically developed their own flow pattern map that identifies six flow patterns. It was shown to be in fair agreement with data of Zhou et al. (2015), Paranjape et al. (2011), Mizutani et al. (2007), and Venkateswararao et al. (1982). They did not compare it with the data of Williams and Peterson (1978).

1.5.8 Effect of Low Gravity

All the foregoing discussions were for systems operating under Earth gravity. Flow patterns under micro gravity (<0.03 Earth gravity) condition are addressed herein.

Experimental studies show that flow patterns in microgravity are the same as under Earth gravity but the transitions between flow patterns are different.

The earliest experimental study at near-zero gravity was by Heppner et al. (1975). They used air-water in 25.4 mm diameter tube. They compared the observed flow pattern transitions to those at Earth gravity and found large differences.

Dukler et al. (1988) performed tests under microgravity conditions in a drop tower as well as in parabolic flights with air–water flowing in horizontal tubes of diameter 9.5 and 12.7 mm. Study of their data and analysis led them to the following criteria for transitions between flow patterns:

Bubble to slug,
$$u_{LS} = 1.2 u_{GS}$$
 (1.5.3)

Slug to annular,
$$\frac{u_{GS}}{u_{LS} + u_{GS}} = C_0$$
 (1.5.4)

Study of their data showed C_0 between 1.15 and 1.3. They tentatively chose a value of 1.25. Rezkallah (1990) found these criteria to be in fair agreement with data from several sources as seen in Figure 1.5.10. The data of Hill et al. (1987) were for Freon 114 boiling in a 15.8 mm diameter tube. In