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Preface

It gives us great pleasure to introduce this collection of papers that were presented
at the following international conferences: Data Science (ICDATA 2020) and
Information & Knowledge Engineering (IKE 2020). These two conferences were
held simultaneously (same location and dates) at Luxor Hotel (MGM Resorts
International), Las Vegas, USA, July 27–30, 2020. This international event was held
using a hybrid approach, that is, “in-person” and “virtual/online” presentations and
discussions.

This book is composed of nine Parts. Parts I through V (composed of 46 chapters)
include chapters that address emerging trends in data science (ICDATA). Parts VI
through IX (composed of 25 chapters) include a collection of chapters in the areas
of information and knowledge engineering (IKE).

An important mission of the World Congress in Computer Science, Computer
Engineering, and Applied Computing, CSCE (a federated congress to which this
event is affiliated with), includes “Providing a unique platform for a diverse com-
munity of constituents composed of scholars, researchers, developers, educators,
and practitioners. The Congress makes concerted effort to reach out to participants
affiliated with diverse entities (such as: universities, institutions, corporations,
government agencies, and research centers/labs) from all over the world. The
congress also attempts to connect participants from institutions that have teaching
as their main mission with those who are affiliated with institutions that have
research as their main mission. The congress uses a quota system to achieve its
institution and geography diversity objectives.” By any definition of diversity, this
congress is among the most diverse scientific meeting in the USA. We are proud
to report that this federated congress had authors and participants from 54 different
nations representing variety of personal and scientific experiences that arise from
differences in culture and values.

v



vi Preface

The program committees (refer to subsequent pages for the list of the members of
committees) would like to thank all those who submitted papers for consideration.
About 50% of the submissions were from outside the USA. Each submitted paper
was peer reviewed by two experts in the field for originality, significance, clarity,
impact, and soundness. In cases of contradictory recommendations, a member of the
conference program committee was charged to make the final decision, often this
involved seeking help from additional referees. In addition, papers whose authors
included a member of the conference program committee were evaluated using
the double-blind review process. One exception to the above evaluation process
was for papers that were submitted directly to chairs/organizers of pre-approved
sessions/workshops; in these cases, the chairs/organizers were responsible for the
evaluation of such submissions. The overall paper acceptance rate for regular papers
was 20%; 18% of the remaining papers were accepted as short and/or poster papers.

We are grateful to the many colleagues who offered their services in preparing
this book. In particular, we would like to thank the members of the program
committees of individual research tracks as well as the members of the steering
committees of ICDATA 2020 and IKE 2020; their names appear in the subsequent
pages. We would also like to extend our appreciation to over 500 referees.

As sponsors-at-large, partners, and/or organizers, each of the following (sepa-
rated by semicolons) provided help for at least one research track: Computer Science
Research, Education, and Applications (CSREA); US Chapter of World Academy
of Science; American Council on Science and Education & Federated Research
Council; and Colorado Engineering Inc. In addition, a number of university faculty
members and their staff, several publishers of computer science and computer
engineering books and journals, chapters and/or task forces of computer science
associations/organizations from three regions, and developers of high-performance
machines and systems provided significant help in organizing the event as well as
providing some resources. We are grateful to them all.

We express our gratitude to all authors of the articles published in this book and
the speakers who delivered their research results at the congress. We would also
like to thank the following: UCMSS (Universal Conference Management Systems
& Support, California, USA) for managing all aspects of the conference; Dr. Tim
Field of APC for coordinating and managing the printing of the programs; the staff
at Luxor Hotel (MGM Convention) for the professional service they provided; and
Ashu M. G. Solo for his help in publicizing the congress. Last but not least, we
would like to thank Ms. Mary James (Springer Senior Editor in New York) and
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Arun Pandian KJ (Springer Production Editor) for the excellent professional service
they provided for this book project.

Hamburg, Germany Robert Stahlbock

New York, NY, USA Gary M. Weiss

Dearborn, MI, USA Mahmoud Abou-Nasr

Taipei City, Taiwan Cheng-Ying Yang

Athens, GA, USA Hamid R. Arabnia

Boston, MA, USA Leonidas Deligiannidis

Book Co-editors and Chapter Co-editors:
Advances in Data Science and Information Engineering + ICDATA 2020 & IKE
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Preface

It gives us great pleasure to introduce this collection of papers that were submit-
ted and accepted for the 16th International Conference on Data Science 2020,
ICDATA’20 (https://icdata.org), July 27–30, 2020, at Luxor Hotel, Las Vegas, USA.
Obviously, the year 2020 is very different from others due to the Covid-19 pandemic
that had severe impact on all our lives. That was not at the horizon when planning
the conference. The conference was held, but almost all authors were not allowed to
travel during the summer, and even if it would have been allowed, it would have been
wise to stay at home instead of travelling if possible. As a consequence, the typical
communication, face to face, during sessions, in front of the conference rooms and
during social events, was replaced by the opportunity to give talks via the web,
either as pre-recorded talk or “live.” All organizers and presenters did their best in
that situation. Thank you very much for all your effort!

Some words about ICDATA and data mining: data mining or machine learning
is critically important if we want to effectively learn from the tremendous amounts
of data that are routinely being generated in science, engineering, medicine (take
Covid-19 and the search for better understanding of the disease as well as for
medicine and better treatment as an example), business, sports and e-sports, and
other areas. The aim is gaining insight into processes and transactions, extract
knowledge, make better decisions, and deliver value to users or organizations. This
is even more important and challenging in an era in which scientists and practi-
tioners are faced with numerous challenges caused by exponential expansion of
digital data, its diversity, and complexity. The scale and growth of data considerably
outpace technological capacities of organizations to process and manage it. During
the last decade, we all observed new, more glorious, and promising concepts or
labels emerging and slowly but steadily displacing “data mining” from the agenda
of CTOs. It was and still is the time, more than ever before, of data science, big data,
advanced-/business-/customer-/data-/predictive-/prescriptive-/ . . . /risk-analytics, to
name only a few terms that dominate websites, trade journals, and the general
press – although there is even a rebirth of terms such as artificial intelligence (AI)
and (machine) learning (e.g., deep learning) in academia, companies, and even on
the agenda of political decision makers.

ix
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All the concepts of data science aim at leveraging data for a better understanding
of complex real-world phenomena. They all pursue this objective using some
formal, often algorithmic, procedures, at least to some extent. This is what data
miners have been doing for decades. The very idea of all those similar or identical
concepts with different labels; the idea to think of massive, omnipresent amounts
of data as strategic assets; and the aim to capitalize on these assets by means
of analytic procedures is, indeed, more relevant and topical than ever before.
Although there are very helpful advances in hardware and software, there are still
many challenges to be tackled in order to leverage the promises of data analytics.
Obviously, technological change is never ending and appears to be accelerating. The
world is especially focused on machine learning and data mining (not contradictory
but similar or even equivalent to data science), as these disciplines are making
an ever-increasing impact on our society. Large multinational corporations are
expanding their efforts in these areas, small startups are founded, and students
are flocking to computer science and related disciplines in order to learn about
these disciplines and take advantage of the many lucrative job opportunities.
Many industries, even conservative ones like, for example, the port industry, are
working towards “Version 4.0” (e.g., “Port 4.0”), with digitization, digitalization,
and even digital transformation of traditional processes resulting in improved
workflows, new concepts, and new business plans. Their goal usually includes data
analytics, automation, autonomization, robotics, and AI. The industry is interested
in feasibility studies and results of scientific research. Data science is popular like
never before. Data scientists are rare on the job market and, therefore, very well
compensated.

The growth in all these areas has been dramatic enough to require changes
in nomenclature. Most of these “hot” technologies and methods are increasingly
considered part of the broad field of data science, and there are benefits to viewing
this field as a unified whole, rather than a collection of disparate sub-disciplines.
ICDATA, the former data mining conference DMIN merged with the big data
conference ABDA, is much broader than just data mining and big data. It includes
all of the following main topics: all aspects of data mining and machine learning
(tasks, algorithms, tools, applications, etc.), all aspects of big data (algorithms,
tools, infrastructure, and applications), data privacy issues, and data management.
The conference is designed to be of equal interest to researchers and practitioners,
academics and members of industry, computer scientists, physical and social
scientists, and business analysts.

ICDATA’20 attracted submissions of theoretical research papers as well as
industrial reports, application case studies, and, in a second phase, late breaking
papers, position papers, and abstract/poster papers. The program committee would
like to thank all those who submitted papers for consideration. We strived to
establish a review process of high quality. To ensure a fair, objective, and transparent
review process, all review criteria are published on the website. Papers were
evaluated regarding their relevance to ICDATA, originality, significance, informa-
tion content, clarity, and soundness on an international level. Each aspect was
objectively evaluated, with alternative aspects finding consideration for application
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papers. Each paper was refereed by at least two researchers in the topical area,
taking the reviewers’ expertise and confidence into consideration, with most of the
papers receiving three reviews. The review process was competitive. The overall
acceptance rate for submissions was 47%.

We are very grateful to the colleagues who helped in organizing the conference.
In particular, we would like to thank the members of the program committee of
ICDATA’20 and the members of the congress steering committee. The continuing
support of the ICDATA program committee has been essential to further improve
the quality of accepted submissions and the resulting success of the conference. The
ICDATA’20 program committee members are (in alphabetical order): Mahmoud
Abou-Nasr, Ruhul Amin, Jérôme Azé, Kai Brüssau, Paulo Cortez, Zahid Halim,
Tzung-Pei Hong, Wei-Chiang Hong, Andrew Johnston, Madjid Khalilian, Robert
Stahlbock, Chamont Wang, Gary M. Weiss, Yijun Zhao, and Zijiang Yang. They
all did a fantastic job in evaluating a lot of submissions in very short time. We
are aware that their workload was particularly high due to the Covid-19 situation,
so we are grateful for their support of ICDATA’20. The conference’s quality
depends on reliable and good reviewers. We would also like to thank Mahmoud
Abou-Nasr for organizing the special session on “Real-World Data Mining & Data
Science Applications, Challenges, and Perspectives” for more than a decade. We
would like to thank our publicity co-chair Ashu M. G. Solo (Fellow of British
Computer Society, Principal/R&D Engineer, Maverick Technologies America Inc.)
for circulating information on the conference, as well as www.KDnuggets.com,
a platform for analytics, data mining, and data science resources, for listing
ICDATA’20. We are also grateful for support by the Institute of Information
Systems at Hamburg University, Germany and would like to thank all supporters and
sponsors of CSCE. Last but not least, we wish to express again our sincere gratitude
and utmost respect towards our colleague and friend Prof. Hamid R. Arabnia
(Professor, Department of Computer Science, University of Georgia, USA; Editor-
in-Chief, Journal of Supercomputing [Springer]), General Chair and Coordinator of
the federated congress, and also Associate Editor of ICDATA’20, for his excellent,
tireless, and continuous support, organization, and coordination of all affiliated
events, particularly in these hard and difficult times of Covid-19. His exemplary
and professional effort in 2020 and all the earlier years in the steering committee
of the congress make these events possible. We are grateful to continue our data
science conference as ICDATA’20 under the umbrella of the CSCE congress.

Thank you all for your contribution to ICDATA’20! We hope to see you at
ICDATA’21. Stay safe and healthy!

We present the proceedings of ICDATA’20.

ICDATA’20 General Conference Chair Robert Stahlbock

Steering Committee ICDATA’20
https://icdata.org

https://icdata.org
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Phoenix: A Scalable Streaming
Hypergraph Analysis Framework

Kuldeep Kurte, Neena Imam, S. M. Shamimul Hasan,
and Ramakrishnan Kannan

1 Introduction

Over the last few years, we have witnessed the explosive growth of data due to the
technological advancements in the fields of social networking, e-commerce, smart
mobile devices, etc. This necessitates the development of novel data mining/analysis
approaches to address the various analytical challenges posed by the massive growth
in data. Some examples of data analytics include live tracking in the transportation
sector, fraud management in insurance, product recommendations in the retail
industry, and predictive analysis in health care. These analyses study the relations,
dynamics, and behavior at an individual level (entity level) as well as at the group
level. The graph representation, G = (V ,E), in which entities are represented by
vertices (V = {v1, v2, .., vn}) and relations among entities are represented by edges
(E = {e1, e2, . . . , em}), is a natural way to model such relational information. For
instance, in an e-commerce system, customers and products are modeled as vertices,
and customer-product relations are represented by edges.
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Fig. 1 Example hypergraph showing social media users (rows) and three social media posts
(columns). Each post Pi is represented as an hyperedge, and those users who interacted with that
post are the hypergraph vertices incident on that hyperedge

The graph representation of the information is able to capture the dyadic
relations, i.e., relations between two entities, but fails to model the group-level
interactions. Due to the fact that the individual’s behavior is mainly influenced
by the group-level interactions, modeling group-level dynamics is important.
Hypergraphs—the generalization of graphs—provide an excellent way to model
the group-level interactions [6, 9, 28]. A hypergraph HG = (V ,H) is an ordered
pair of “n” vertices, i.e., V = {v1, v2, v3, . . . , vn}, and H is a set of “m” hyperedges,
i.e., H = {H1,H2,H3, . . . , Hm}. Each hyperedge Hi is a vector of incident vertices
such that V ≡ h1 ∪ h2 ∪ h3 ∪ . . . ∪ hm. Figure 1 shows an example hypergraph
which includes four social network users, A,B,C,D, and three social media posts,
P1, P2, P3. Each post Pi represents a hyperedge, and its incident vertices are the
users who interacted with the content, say, shared, liked, or commented on the post
(represented by “X”). From this example, it is evident that such hypergraph-based
representation is useful to understand the information propagation among entities
and the categorization of groups according to specific interests over the social
network.

Although the efficacy of hypergraphs for modeling group dynamics is well doc-
umented [1], efficient hypergraph analytics must overcome challenges associated
with accurate hypergraph representation and scalable computation models that can
deal with very high data ingestion rates without creating bottlenecks. While several
large-scale graph processing software are available such as [5, 7, 18, 26], only a
limited number of options are available for hypergraph analysis frameworks [28].
Very-large-scale hypergraph analysis requires scalable and distributed computing
systems which present novel challenges as well as opportunities. The situation
becomes more challenging when streaming data need to be incorporated in the
framework. Some challenges posed by the streaming scenario include variability
in the streaming rates from various external hypergraph sources, heterogeneity in
representing the hypergraph, and efficient hypergraph representation at a system
level to sustain the streaming scenario.

Little research has been done for methodical performance evaluation of large-
scale hypergraph analysis frameworks in a streaming scenario. The leadership
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class high-performance computing facilities, such as hosted at Oak Ridge National
Laboratory, provide petascale to exascale computing powers, large amounts of
per node memory, efficient storage, and high-speed interconnects. Such leadership
class computing facilities can meet the computational requirements of large-scale
streaming hypergraph analysis. As such, researchers at Oak Ridge National Labo-
ratory developed Phoenix, a high-performance, hybrid system enabling concurrent
utilization of online and offline analysis worlds. Phoenix architecture is distributed
for scalability of problem size and performance. In addition, Phoenix is designed
for fast and scalable ingest of streaming data sources. Phoenix also incorporates fast
online (CRUD) operations and has dynamic (and fixed) schema. Using Phoenix,
researchers are able to perform fast decoupled offline global analytics with in-
memory snapshots and commit logs. Phoenix was deployed on Oak Ridge National
Lab’s Titan (ranked number one on top5001 list in 2012) and showed good
performance. Originally designed for simple graph analytics, we recently enhanced
Phoenix to handle hypergraphs. The performance of Phoenix for streaming datasets
is the subject of this paper.

In the following sections, we present our approach to scalable streaming
hypergraph analysis as implemented in Phoenix. Section 2 presents an overview of
the various hypergraph analysis tools. Section 3 presents the Phoenix framework for
streaming hypergraph analysis and describes various technical aspects of Phoenix.
Section 4 presents results of the numerical experiments we performed to evaluate
metrics such as streaming performance, ingestion performance, and hypergraph
clustering efficiency. Section 5 summarizes our observations and discusses few
future extensions of this work.

2 Related Work

Many hypergraph analysis tools are available. However, none of these tools presents
the scalability and flexibility associated with Phoenix. In addition, Phoenix incor-
porates scalable hypergraph generators. Most other hypergraph analytics software
tools do not have this attribute. In the following paragraphs, we present an overview
of the various hypergraph analysis tools and the advantages and disadvantages of
each.

HyperNetX is a Python library that supports hypergraph creation, hypergraph-
connected component computation, sub-hypergraph construction, hypergraph statis-
tics computation (e.g., node degree distribution, edge size distribution, toplex size
computation for hypergraphs), and hypergraph visualization (e.g., draw hyper-
graphs, color nodes, and edges). HyperNetX was released in 2018 under the
Battelle Memorial Institute license [21]. HyperNetX library does not support high-

1https://www.top500.org/system/177975.

https://www.top500.org/system/177975
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performance computing (HPC)-based parallel processing. Also, HyperNetX library
documentation does not provide any scalability information.

Chapel HyperGraph Library (CHGL) was developed in the Chapel programming
language by the Pacific Northwest National Laboratory. In the CHGL, users can use
both shared and distributed memory systems for the storage of hypergraphs. The
CHGL is not well documented and requires knowledge of the Chapel programming
language, which is Partitioned Global Address Space (PGAS) language. PGAS
languages are not as widely used as the C or C++ programming language.
However, CHGL does offer valuable functionality within the context of parallel
computations [2, 4].

HyperX offers a scalable framework for hypergraph processing and learning
algorithms, which is developed on top of Apache Spark. It replicates the design
model that is utilized within GraphX. HyperX directly processes the hypergraph
rather than converting the hypergraph to a bipartite graph and employs GraphX to
do the processing [2, 15]. Apache Spark programming paradigm cannot match the
scalability offered by a leadership class computing platform.

HyperGraphLib package was developed in the C++ programming language,
which supports k-uniform, k-regular, simple, linear, path search, and isomorphism
algorithms. HyperGraphLib employs both OpenMP and Boost libraries. Hyper-
GraphLib cannot represent a hypergraph as a bipartite graph or a two-section graph.
Moreover, HyperGraphLib is not integrated with any graph libraries for advanced
analytics [2, 14].

Halp is a Python library that provides both directed and undirected hypergraph
implementations as well as a range of algorithms. These include a variety of
hypergraph algorithms–for instance, k-shortest hyperpaths as well as random walk
and directed paths [2, 13]. However, Halp does not provide parallel implementation
of the algorithms.

SAGE hypergraph generator was developed in the Python language and supports
the creation of complete random, uniform, and binomial random uniform hyper-
graphs. Nevertheless, large-scale hypergraph generation is not possible in SAGE.
Besides, SAGE does not support parallel hypergraph generation.

Karlsruhe Hypergraph Partitioning (KaHyPar) was developed in C++ and is a
multilevel hypergraph partitioning framework. It supports hypergraph partitioning
with variable block weights and fixed vertices. Although KaHyPar is a useful tool,
it does not support the hypergraph generation facility [16, 24].

The Julia programming language was used to develop the SimpleHypergraphs.jl
hypergraph analysis framework. It is an efficient hypergraph analysis tool that
supports distributed computing. However, SimpleHypergraphs.jl is heavily depen-
dent on the HyperNetX library, specifically for hypergraph visualization. Moreover,
SimpleHypergraphs.jl tool provides limited hypergraph analysis functionalities and
is not highly scalable [2].

networkR was developed in the R programming language, which supports
hypergraphs’ projection into graphs. networkR also supports degree distribution,
diameter, centrality, and network density computation. One of the limitations of the
networkR is that it needs to project hypergraph into graph structure for analysis.
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Moreover, vertices and hyperedge-related meta-information is not available in
networkR [2, 20].

Gspbox provides hypergraph modeling capability. Although in Gspbox, one can
manipulate the hypergraph by transforming a model into a regular graph, it does not
provide specific solutions or optimizations for hypergraphs [2, 8].

BalancedGo software was developed in the Go programming language. Bal-
ancedGo supports generalized hypertree decompositions via balanced separators.
BalancedGo supports a limited number of algorithms mainly focused on hypertree
decompositions. Moreover, BalancedGo supports only HyperBench format or
PACE Challenge 2019 format [3] as input.

Pygraph was released under the MIT license and is a Python library that can
be used to process graphs. It includes hypergraph support along with standard
graph functionalities. However, Pygraph does not offer any hypergraph optimization
feature [2, 22].

Yadati et al. developed HyperGCN, a new graph convolutional network (GCN)
training approach for semi-supervised learning (SSL) on hypergraphs [30]. The
Python implementation of the tool is available in [12]. The quality of the hypergraph
approximation heavily depends on weight initialization, which is a limitation of
HyperGCN [30].

Multihypergraph is a Python package that provides support for multi-edges,
hyperedges, and looped edges. The main focus of the Multihypergraph package
is the mathematical understanding of graph than algorithmic efficiency. Moreover,
the Multihypergraph package is limited with graph model memory definition and
isomorphism functionalities and does not provide any other functionalities for
hypergraphs [2, 19].

d3-hypergraph is a hypergraph visualization tool developed on top of the
D3 JavaScript library. Another example of the hypergraph visualization tool is
visualsc, which is similar to the open-source graph visualization tool Graphviz. d3-
hypergraph and visualsc tools are solely used for hypergraph visualization.

3 Framework for Analyzing Streaming Hypergraphs

This section describes the overall Phoenix framework and its various components
which enable the analysis of the streaming hypergraph. Figure 2 shows Phoenix’s
end-to-end framework which is composed of various essential modules for analyz-
ing the streaming hypergraphs in a distributed and scalable fashion.

3.1 Hypergraph Sources and Generation

Phoenix is capable of utilizing a diverse set of graph generators as inputs to the
framework. One of the candidates is a distributed hypergraph generator called
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Fig. 2 Phoenix’s end-to-end framework for scalable and distributed hypergraph analysis. Stream-
ing server acts as a gateway where various hypergraph generators/external sources can connect.
Next the streaming server streams the hypergraph in the form of hyperedge or incidences to the
graph service nodes (GSNs). GSNs handle the communication with the streaming server and
consume the hypergraph and send it to the graph data nodes (GDNs) where GDNs store the
ingested hypergraph as its in-memory representation

HyGen, which is capable of generating synthetic hypergraphs. HyGen is another
high-performance graph analytics project at Oak Ridge National Laboratory and
was incorporated in the Phoenix architecture. HyGen takes input parameters such
as number of clusters, number of vertices, and number of hyperedges to generate
the corresponding hypergraph. For instance, if we have a rough understanding about
the number of the clusters in the real-world hypergraph (e.g., communities), HyGen
will enable the rapid production of the different sizes of hypergraphs which can
be further consumed (by HSNs) and stored in-memory (by HDNs) in a distributed
fashion. Refer to Fig. 2 and Sect. 3.3 for more information on HSNs and HDNs.
Further, various online and offline analyses can be performed on this generated
hypergraph. Similarly, the external hypergraph sources can also connect to the
streaming server. More detailed discussions on graph generators can be found in
references [17, 27, 32].

3.2 Hypergraph Streaming and Consumption

A streaming server is developed to facilitate the streaming of hypergraphs generated
by hypergraph generators and from external sources to the internal core component
called DiSciPHER (refer Sect. 3.3) which is responsible for hypergraph consump-
tion and in-memory storage. The three advantages of having this layer of streaming
server are as follows:

1. Decoupling: Streaming server acts as a gateway and prevents hypergraph
generators and external sources from directly accessing the DiSciPHER which is
a core internal module of Phoenix. This provides the flexibility to make changes
in the DiSciPHER module without impacting the accessibility of the hypergraph
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sources. Moreover, syntactic changes made by hypergraph sources do not have
any impact on the DiSciPHER’s representation.

2. Standardization: Streaming servers can acquire data either as a bipartite
representation or as a hyperedge representation. It is unlikely that all external
sources comply with a unified syntax even though the data follow the semantics
of bipartite or hyperedge representation. The streaming server can implement
various methods for data translation to address this syntactic heterogeneity
problem.

3. Intermediate caching: The rate of streaming from different external sources
of hypergraphs can be different. At the system level, the heterogeneity in the
streaming rates could cause data loss in case of extremely high data streaming
and longer wait time for HSN processes in case of slow data streaming.
We believe that the intermediate layer of the streaming server can stabilize
the rate of streaming hypergraph from various external sources to HSN. The
streaming server can provide a temporary storage capability to store the acquired
hypergraph data before sending it to the HSNs of DiSciPHER module. This way
streaming servers can stabilize the streaming rate.

The streaming server can acquire hypergraphs in one of two ways: (1) bipartite
representation, a list of incidences, and (2) hyperedge representation, a list of
hyperedges. Each incidence in a bipartite representation is a two-dimensional vector
〈i, j 〉, such that vi ∈ Hj , i.e., vertex vi incident upon hyperedge Hj . On the other
hand, the hyperedge representation constitutes a set of hyperedges (H ) in which
each hyperedge is a vector of incident vertices, i.e., Hk = 〈vk1, vk2, vk3, . . . ., vkp〉
and “p” is the total number of incident vertices on hyperedge k.

The streaming server opens multiple communication ports where several hyper-
graph service node (HSN) processes of DiSciPHER module, which is responsible
for the consumption of the hypergraph, can connect and consume the hypergraph.
In the case of bipartite representation, the streaming server performs streaming
of incidences in a batched fashion. The batch size represents the maximum
number of hypergraph incidences that can be packed in a batch. The batch size
in case of hyperedge representation is the maximum number of hypergraphs per
batch. Due to the variable size of hyperedges in a batch, the batch creation is
not as straightforward as in the bipartite representation. Here, each hyperedge is
reformatted as 〈hid, p, v1, v2, v3, . . . , vp,−1〉 by appending hyperedge identifier
hid , its length in the beginning p, followed by a list of incident vertices, i.e.,
vi and “-1” at the end to indicate the termination of the hyperedge. In this way,
the hypergraphs are packed to form a batch such that each element in the batch
represents either hypergraph identifier, length of hypergraph, vertex identifier, or
“-1.”

As mentioned in the paragraph above, the hypergraph service node processes
(HSNs) connect to the communication ports of the streaming server and consume
a hypergraph either as a batched incidences or as hyperedges. We implemented a
handshaking and communication protocol to enable the streaming and consumption
of the hypergraphs. Figure 3 shows a sequence of commands and data exchanges


