Advances in Industrial Control

Zhe Wu Panagiotis D. Christofides

Process Operational Safety and Obersecurity

Advances in Industrial Control

Series Editors

Michael J. Grimble, Industrial Control Centre, University of Strathclyde, Glasgow, UK

Antonella Ferrara, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy

Editorial Board

Graham Goodwin, School of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW, Australia

Thomas J. Harris, Department of Chemical Engineering, Queen's University, Kingston, ON, Canada

Tong Heng Lee^(b), Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Om P. Malik, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada

Kim-Fung Man, City University Hong Kong, Kowloon, Hong Kong

Gustaf Olsson, Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, Lund, Sweden

Asok Ray, Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA

Sebastian Engell, Lehrstuhl für Systemdynamik und Prozessführung, Technische Universität Dortmund, Dortmund, Germany

Ikuo Yamamoto, Graduate School of Engineering, University of Nagasaki, Nagasaki, Japan

Advances in Industrial Control is a series of monographs and contributed titles focusing on the applications of advanced and novel control methods within applied settings. This series has worldwide distribution to engineers, researchers and libraries.

The series promotes the exchange of information between academia and industry, to which end the books all demonstrate some theoretical aspect of an advanced or new control method and show how it can be applied either in a pilot plant or in some real industrial situation. The books are distinguished by the combination of the type of theory used and the type of application exemplified. Note that "industrial" here has a very broad interpretation; it applies not merely to the processes employed in industrial plants but to systems such as avionics and automotive brakes and drivetrain. This series complements the theoretical and more mathematical approach of Communications and Control Engineering.

Indexed by SCOPUS and Engineering Index.

Proposals for this series, composed of a proposal form downloaded from this page, a draft Contents, at least two sample chapters and an author cv (with a synopsis of the whole project, if possible) can be submitted to either of the:

Series Editors

Professor Michael J. Grimble

Department of Electronic and Electrical Engineering, Royal College Building, 204 George Street, Glasgow G1 1XW, United Kingdom e-mail: m.j.grimble@strath.ac.uk

Professor Antonella Ferrara

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy e-mail: antonella.ferrara@unipv.it

or the

In-house Editor

Mr. Oliver Jackson

Springer London, 4 Crinan Street, London, N1 9XW, United Kingdom e-mail: oliver.jackson@springer.com

Proposals are peer-reviewed.

Publishing Ethics

Researchers should conduct their research from research proposal to publication in line with best practices and codes of conduct of relevant professional bodies and/or national and international regulatory bodies. For more details on individual ethics matters please see: https://www.springer.com/gp/authors-editors/journal-author/journal-author-helpdesk/publishing-ethics/14214

More information about this series at http://www.springer.com/series/1412

Process Operational Safety and Cybersecurity

A Feedback Control Approach

Zhe Wu Department of Chemical and Biomolecular Engineering University of California Los Angeles, CA, USA Panagiotis D. Christofides D Department of Chemical and Biomolecular Engineering University of California Los Angeles, CA, USA

 ISSN 1430-9491
 ISSN 2193-1577 (electronic)

 Advances in Industrial Control
 ISBN 978-3-030-71182-5

 ISBN 978-3-030-71182-5
 ISBN 978-3-030-71183-2 (eBook)

 https://doi.org/10.1007/978-3-030-71183-2

Mathematics Subject Classification (2010): 93C83, 49J15, 93C10

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Traditionally, the operational safety of chemical processes has been addressed through process design considerations and through a hierarchical, independent design of control and safety systems. By developing safety systems including alarms, emergency shutdown, and further emergency response systems to be activated when control systems fail to operate chemical processes in a normal operating region, process operational safety has been improved to prevent incidents that can lead to property damage, human injuries, and environmental impact. However, the consistent accidents throughout chemical process plant history (including several high-profile disasters in the last decade) have motivated researchers to design control systems that explicitly account for process operational safety considerations. In particular, a new design of control systems such as model predictive controllers (MPC) that incorporates safety considerations and can be coordinated with safety systems has the potential to significantly improve process operational safety and avoid unnecessary triggering of alarm systems. However, the rigorous design of safety-based control systems poses new challenges that cannot be addressed with traditional process control methods, including, for example, proving simultaneous closed-loop stability and safety. On the other hand, cybersecurity has become increasingly important in chemical process industries in recent years as cyber-attacks that have grown in sophistication and frequency have become another leading cause of process safety incidents. While the traditional methods of handling cyber-attacks in control systems still rely partly on human analysis and mainly fall into the area of fault diagnosis, the intelligence of cyber-attacks and their accessibility to control system information have recently motivated researchers to develop cyber-attack detection and resilient operation control strategies to address directly cybersecurity concerns.

The book covers several rigorous methods for the design of MPC systems that improve process operational safety and cybersecurity for chemical processes described by nonlinear dynamic models. Beginning with the motivation and organization of this book, a background on nonlinear systems analysis, Lyapunov-based control techniques, and MPC designs is first presented. Then, two MPC schemes that use a Safeness Index function and a control Lyapunov-barrier function, respectively,

are presented with rigorous analysis provided on their closed-loop stability, operational safety, and recursive feasibility properties, followed by case studies of largescale chemical processes under integrated process control and safety systems. Subsequently, the use of machine learning techniques to develop data-driven nonlinear dynamic process models to be used in the MPC schemes is presented with closedloop stability and safety analysis as well as discussion on computational implementation issues. Next, the development of an integrated detection and control system for process cybersecurity is developed, in which several types of intelligent cyber-attacks, machine learning detection methods, and resilient control strategies are presented. The book closes with a two-tier control architecture that possesses inherent cybersecurity properties and could provide a blueprint for the design of cybersecure industrial process control systems. Throughout the book, the control methods are applied to numerical simulations of nonlinear chemical process examples and Aspen simulations of large-scale chemical process networks to demonstrate their effectiveness and performance.

The book requires some knowledge of nonlinear systems, nonlinear control theory, and nonlinear programming methods, and is intended for researchers, graduate students, and process control and safety engineers.

In conclusion, we would like to acknowledge Prof. Helen Durand, Prof. Fahad Albalawi, Dr. Anas Alanqar, Dr. Anh Tran, Dr. David Rincon, Dr. Zhihao Zhang, and Ms. Scarlett Chen, all at UCLA, who have contributed substantially to the research efforts and results included in this book. We would like to thank them for their hard work and contributions. We would also like to thank all the other people who contributed in some way to this project. In particular, we would like to thank our colleagues at UCLA, and the United States National Science Foundation and Department of Energy for financial support. Last but not the least, we would like to express our deepest gratitude to our families for their dedication, encouragement, and support over the course of this project. We dedicate this book to them.

Los Angeles, CA, USA

Zhe Wu Panagiotis D. Christofides

Contents

1	Intr	oductio	on		1
	1.1	Motiv	ation		1
	1.2	Backg	round .		3
	1.3	Opera	tional Saf	Tety and Cybersecurity of Chemical Processes	6
		1.3.1	Continu	ously Stirred Tank Reactor	7
		1.3.2	Case Stu	Idy: Process Operational Safety in EMPC	8
		1.3.3	Case Stu	udy: Cybersecurity in Tracking MPC	10
	1.4	Objec	tives and	Organization of the Book	11
2	Bac	kgroun	d		15
	2.1	Notati	on		15
	2.2	Stabili	ity of Nor	nlinear Systems	16
		2.2.1	Lyapund	ov's Direct Method	18
		2.2.2	LaSalle'	's Invariance Principle	18
	2.3	Contro	ol of Non	linear Systems	19
		2.3.1	Control	Lyapunov Functions and Stabilization	19
		2.3.2	Model F	Predictive Control	23
			2.3.2.1	Main Components of MPC	23
			2.3.2.2	Process Model	24
			2.3.2.3	Receding Horizon Implementation	25
			2.3.2.4	Sample-and-Hold Implementation	
				of Controllers	25
			2.3.2.5	MPC Formulation	26
		2.3.3	Lyapund	ov-Based MPC	27
			2.3.3.1	Closed-Loop Stability Under LMPC	28
			2.3.3.2	Feasibility Analysis	31
		2.3.4	Lyapund	ov-Based Economic MPC	32
			2.3.4.1	Closed-Loop Stability Under LEMPC	34
				· ·	

3	Safe	eness Index-Based MPC and EMPC	35
	3.1	Introduction	35
		3.1.1 Class of Nonlinear Systems	35
	3.2	Process Operational Safety	37
		3.2.1 Safeness Index	38
		3.2.2 Choosing Thresholds for Safeness Index	41
	3.3	Safeness Index-Based MPC and EMPC	43
		3.3.1 Stability, Safety, and Feasibility Analyses	46
	3.4	Application to a Chemical Process Example	50
		3.4.1 Process Description	50
		3.4.2 Simulation Results	53
	3.5	Conclusions	58
4	One	rational Safety Via Control I vanunov-Barrier	
Τ.	Fun	ction-Resed MPC	59
	<u>4</u> 1	Introduction	59
	7.1	4.1.1 Class of Nonlinear Systems	60
		4.1.2 Characterization of Unsafe Regions	60
	12	Control Barrier Function	61
	4.2	Control Lyanunov Barrier Function	63
	4.5	4.3.1 Stabilization and Safaty via Control Lyapunov Barrier	05
		Function	64
		A 2 1 1 Stabilizability Assumptions	64
		4.5.1.1 Stabilization and Safety via CLDE	64
		4.5.1.2 Stabilization and Safety Via CLDF	04
		4.5.1.5 Closed-Loop Stability and Safety Under	66
		4.2.2 Design of Constrained CLDE	70
	4.4	4.5.2 Design of Constrained CLDF	70
	4.4	4.4.1 Somple and Hold Implementation of CLDE Decad	12
		4.4.1 Sample-and-noid implementation of CLBF-based	70
		4.4.2 Exampletion of CLDE MDC	75
		4.4.2 Formulation of CLBF-MPC	70
		4.4.3 Application to a Chemical Process Example	/8
		4.4.3.1 Case Study: Bounded Unsate Region	/9
	4.5	4.4.3.2 Case Study: Unbounded Unsafe Region	84
	4.5	CLBF-Based Economic Model Predictive Control	85
		4.5.1 CLBF-Based EMPC Formulation	85
		4.5.2 Application to a Chemical Process Example	91
	4.6	Conclusions	94
5	Inte	gration of Safety Systems with Control Systems	95
	5.1	Introduction	95
	5.2	Integration of Safety and Control Systems	96
		5.2.1 Case Study: Thermal Runaway in a CSTR System	96
		5.2.1.1 MIC Reaction and CSTR Process	
		Description	97
		5.2.1.2 Lyapunov-Based MPC Design	<u>98</u>

Contents

			5.2.1.3	Simulation Results Under Disturbances	99
			5.2.1.4	Integration of MPC with Safety System	101
			5.2.1.5	Integration of Control and Safety Systems	102
			5.2.1.6	Closed-Loop Simulation Results	103
		5.2.2	Case St	udy: High Pressure in a Flash Drum	105
			5.2.2.1	Flash Drum Process Description and Relief	
				Valve Design	105
			5.2.2.2	Feedback Controller Design	107
			5.2.2.3	Closed-Loop Simulation Results	109
	5.3	Safene	ess Index-	-Based MPC	113
		5.3.1	Case St	udy: Flash Drum	113
			5.3.1.1	Flash Drum Process Description and Control	
				Objective	113
			5.3.1.2	Safeness Index-Based MPC	114
			5.3.1.3	Formulation of Safeness Index-Based MPC	116
			5.3.1.4	Closed-Loop Simulation Results	117
		5.3.2	Case St	udy: Ammonia Process	121
			5.3.2.1	Ammonia Process Descriptions	
				and Simulations	121
			5.3.2.2	Safeness Index-Based MPC	125
			5.3.2.3	Closed-Loop Simulation Results	128
		5.3.3	Case St	udy: Ammonia Process Network	130
			5.3.3.1	Ammonia Process Description	130
			5.3.3.2	Disturbance and Process Operational Safety	132
			5.3.3.3	Feedback Controller Design	133
			5.3.3.4	Closed-Loop Simulation Results	138
	5.4	Concl	usions .		142
6	Mac	chine L	earning i	in Process Operational Safety	143
	6.1	Introd	uction .	· · · · · · · · · · · · · · · · · · ·	143
		6.1.1	Class of	f Nonlinear Systems	144
		6.1.2	Stabiliz	ability Assumption	145
	6.2	Recur	rent Neur	al Network Modeling	146
		6.2.1	RNN Le	earning Algorithm	148
		6.2.2	Develop	oment of RNN Model	151
			6.2.2.1	Data Generation	151
			6.2.2.2	Training Process	151
		6.2.3	Ensemb	le Regression Modeling	153
	6.3	CLBF	-MPC Us	sing RNN Models	156
		6.3.1	Stabiliza	ation and Safety via CLBF-Based Control	156
		6.3.2	CLBF-t	based MPC Using an Ensemble of RNN Models	159
			6.3.2.1	CLBF-Based Control Using RNN Models	161
			6.3.2.2	Sample-and-Hold Implementation	
				of CLBF-Based Controller	164
			6.3.2.3	Formulation of CLBF-MPC	166

	6.3.3	Parallel Computing and Ensemble of RNN Models	168
		6.3.3.1 Training Multiple RNNs in Parallel	169
		6.3.3.2 Parallel Operation of CLBF-MPC Using	
		an Ensemble of RNNs	169
	6.3.4	Online Learning of RNN Models	171
		6.3.4.1 Implementation Strategy For Online RNN	
		Learning within CLBF-MPC	173
	6.3.5	Computational Implementation Issues of RNN Models	175
		6.3.5.1 Long Prediction Horizon	175
		6.3.5.2 Approximation Via Numerical Methods	176
	6.3.6	Application to a Chemical Process Example	177
		6.3.6.1 Development of RNN Models	178
		6.3.6.2 Closed-Loop Simulation Results	179
		6.3.6.3 Comparison with A Linear State-Space	
		Model	182
		6.3.6.4 Real-Time CLBF-MPC with Online	
		Learning of RNN Models	183
6.4	CLBF	-EMPC Using RNN Models	185
	6.4.1	Stability and Safety Under CLBF-EMPC	186
		6.4.1.1 Online Learning of RNN Models	190
	6.4.2	Application to a Chemical Process Example	191
		6.4.2.1 Closed-Loop Simulation Results	191
		6.4.2.2 Real-Time CLBF-EMPC with Online	
		6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196
6.5	Concl	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198
6.5	Concl	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198
6.5 Pro	Conclucters Cy	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201
6.5 Pro 7.1	Concle cess Cy Introd	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 201
6.5 Pro 7.1	Conclu cess Cy Introd 7.1.1	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 201 202
6.5 Pro (7.1	Concluctors Cy Introd 7.1.1 7.1.2	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC	196 198 201 201 202 203
6.5Proc7.17.2	Conclu cess Cy Introd 7.1.1 7.1.2 Intelli	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks	196 198 201 201 202 203 205
6.5Proo7.17.2	Conclu cess Cy Introd 7.1.1 7.1.2 Intelli, 7.2.1	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 202 203 205 206
6.5Pro7.17.2	Concle cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 	196 198 201 202 203 205 206 206
6.5Pro7.17.2	Concle cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 	196 198 201 202 203 205 206 206 206
6.5Pro7.17.2	Conclu cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 202 203 205 206 206 206 207 207
6.5Pro7.17.2	Conclusion cess Cy Introd 7.1.1 7.1.2 Intellig 7.2.1	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 7.2.1.3 Replay Cyber-Attack 7.2.1.4 Surge Cyber-Attack 	196 198 201 202 203 205 206 206 206 207 207
6.5Proo7.17.2	Concluctors Cy Introd 7.1.1 7.1.2 Intellia 7.2.1	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions	196 198 201 202 203 205 206 206 207 207 207 207
 6.5 Proo 7.1 7.2 7.3 	Concli cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 7.2.1.3 Replay Cyber-Attack 7.2.1.4 Surge Cyber-Attack 7.2.1.5 Simulation Design Guide tion of Cyber-Attacks Targeting MPC Systems 	196 198 201 202 203 205 206 206 207 207 207 207 207 207 207
 6.5 Prov 7.1 7.2 7.3 	Concli cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 7.2.1.3 Replay Cyber-Attack 7.2.1.4 Surge Cyber-Attack 7.2.1.5 Simulation Design Guide tion of Cyber-Attacks Targeting MPC Systems Choice of Detection Input Variable 	196 198 201 202 203 205 206 206 207 207 207 207 207 207 207 207 207
 6.5 Prod 7.1 7.2 7.3 7.3 	Concl ¹ cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1 Detect 7.3.1 7.3.2	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 202 203 205 206 207 207 207 207 207 209 211 214 215
 6.5 Prod 7.1 7.2 7.3 7.4 	Conclu cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1 Detect 7.3.1 7.3.2 Cyber	 6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 7.2.1.3 Replay Cyber-Attack 7.2.1.4 Surge Cyber-Attack 7.2.1.5 Simulation Design Guide tion of Cyber-Attacks Targeting MPC Systems Choice of Detection Input Variable Sliding Detection Window -Attack Resilient Control Systems 	1966 198 201 202 203 205 206 207 207 207 207 207 207 209 211 214 215 2177
 6.5 Proo 7.1 7.2 7.3 7.4 	Conclu cess Cy Introd 7.1.1 7.1.2 Intellig 7.2.1 Detect 7.3.1 7.3.2 Cyber 7.4.1	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions bersecurity Via Machine Learning Detection uction Class of Nonlinear Systems Lyapunov-Based MPC and EMPC gent Cyber-Attacks Types of Intelligent Cyber-Attacks 7.2.1.1 Min-Max Cyber-Attack 7.2.1.2 Geometric Cyber-Attack 7.2.1.3 Replay Cyber-Attack 7.2.1.4 Surge Cyber-Attack 7.2.1.5 Simulation Design Guide tion of Cyber-Attacks Targeting MPC Systems Choice of Detection Input Variable Sliding Detection Window Attack Resilient Control Systems Redundant Sensors Choice On Provide Control Systems	196 198 201 202 203 205 206 207 207 207 207 207 207 209 211 214 217 217
 6.5 Proo 7.1 7.2 7.3 7.4 	Concli cess Cy Introd 7.1.1 7.1.2 Intelli 7.2.1 Detect 7.3.1 7.3.2 Cyber 7.4.1 7.4.2	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models usions	196 198 201 202 203 205 206 207 207 207 207 207 207 207 211 214 215 217
 6.5 Proo 7.1 7.2 7.3 7.4 	Concli cess Cy Introd 7.1.1 7.1.2 Intelli, 7.2.1 Detect 7.3.1 7.3.2 Cyber 7.4.1 7.4.2	6.4.2.2 Real-Time CLBF-EMPC with Online Learning of RNN Models	196 198 201 202 203 205 206 207 207 207 207 207 207 211 214 215 217 217

7

Contents

			7.4.3.1 Recurrent Neural Network	222
			7.4.3.2 Online Reconstruction	224
			7.4.3.3 Closed-Loop Control with Reconstructed	
			States	224
	7.5	Applic	cation to a Chemical Process Example	227
	7.6	Concl	usions	240
8	АТ	wo-Tie	r Control Architecture For Cybersecurity	
	and	Opera	tional Safety	241
	8.1	Introd	uction	241
		8.1.1	Class of Nonlinear Systems	242
	8.2	Cyber	-Secure Two-Tier Control Architecture	243
		8.2.1	Lower-Tier Control System	243
		8.2.2	Upper-Tier Model Predictive Control System	244
	8.3	Cyber	-Attack Design and Detection	247
		8.3.1	Attack Scenarios	248
		8.3.2	Mitigation Measures via Reconfiguration of Control	
			System	249
		8.3.3	Integration of Safety Systems with Two-Tier Control	
			Systems	251
	8.4	Applic	cation to a Chemical Process Example	252
		8.4.1	Cyber-Attacks and Detector Training	257
		8.4.2	Cyber-Attack Detection Results	258
	8.5	Concl	usions	265
D	e			267
ĸ	eren	ices	• • • • • • • • • • • • • • • • • • • •	207

Fig. 3.3	Manipulated input profiles for the closed-loop CSTR	
	under the LEMPC design of Eq. 2.35 and under the Safeness	
	Index-based EMPC design of Eq. 3.7 for the initial $T = r_0 k^{\text{mol}} o K^{-1}$	5.4
E. 2.4	condition $x_0^2 = \begin{bmatrix} 0 & \frac{1}{m^3} & 0 & K \end{bmatrix}$	54
F1g. 3.4	The state profiles for the closed-loop CSTR	
	under the LEMPC design of Eq. 2.35 and under the Safeness	
	index-based ENIPC design of Eq. 5.7 for the initial condition $T_{\rm eff}$ for kmol o K1	5.4
E:= 2.5	condution $x_0^2 = [0 \frac{m^2}{m^3} 0 \text{ K}]$	54
Fig. 5.5	CSTD under the LEMPC design of Eq. 2.25	
	CSTR under the LEMPC design of Eq. 2.55	
	and under the Saleness index-based EMPC design of Eq. 2.7 for the initial condition $uT = 10$ km ^{ol} 0 Kl	50
E. 26	of Eq. 5.7 for the initial condition $x_0^2 = [0 \frac{1}{m^3} 0 \text{ K}] \dots \dots$	30
F1g. 3.6	The state-space profile for the closed-loop USTR	
	under the LEMPC design of Eq. 2.35 (black trajectory)	
	and under the Sateness Index-based EMPC design	
	of Eq. 5.7 (dark gray trajectory) for the initial condition $T_{\rm eff}$ to kmol $\alpha K_{\rm eff}$	50
E:= 27	$x_0^* = [0 \xrightarrow{m^3} 0 \text{ K}]$	30
Fig. 5.7	The Saleness index function $S(x)$ for the closed-loop CSTD under the Saferrees Index based EMDC design	
	of Eq. 2.7 for the initial condition u^T [0 km ⁰] 0 Kl	
	of Eq. 5.7 for the initial condition $x_0 = [0 \frac{1}{m^3} 0 \text{ K}]$	
F: 2.0	with bounded process disturbances	57
F1g. 3.8	The state-space profile for the closed-loop USTR	
	under the Safeness Index-based EMPC design of Eq. 3.7	
	for the initial condition $x_0^2 = \begin{bmatrix} 0 & \frac{1}{m^3} & 0 \end{bmatrix}$ with bounded	
	process disturbances	57
F1g. 4.1	A schematic showing an initial condition x_0 from which	
	the state trajectory converges to x_e and passes around	
	a bounded unsafe set \mathscr{D}_b embedded within the operating	
	region either in the up or down direction using	(7
E. 4.2	a discontinuous control action	67
F1g. 4.2	A schematic representing an unbounded unsafe set \mathcal{D}_u	
	in state-space, where the trajectories start from any initial	(0)
E. 4.2	condition x_0 avoid \mathcal{D}_u and converge to the origin x_s^*	69
F1g. 4.3	A schematic showing the relationship among the sets $A = \frac{1}{2} \frac{1}$	
	$\varphi_{uc}, \mathcal{D}, \mathcal{D}_H$, and H , where \mathcal{U}_{ρ_c} is the invariant set shown	71
F 4.4	as an ellipse subtracting \mathcal{D}_H	/1
F1g. 4.4	A schematic representing the sets \mathscr{U}_{ρ_c} , $\mathscr{U}_{\rho_{\min}}$, and \mathscr{U}_{ρ_s} ,	
	where an example of the state trajectory (dotted line)	
	for the closed-loop system under the sample-and-hold implementation of $u = \Phi(u) \in U$ is shown to ultimate 1	
	implementation of $u = \varphi(x) \in U$ is snown to ultimately	
	enter and remain in $\mathscr{U}_{\rho_{\min}}$ while avoiding the unsafe region	7.4
	\mathscr{D} at all times from the initial state $x_0 \in \mathscr{U}_{\rho_c}$	/4

Fig. 4.5	Closed-loop state trajectories for four different initial	
	conditions $(-0.19, 5.5)$ (red line), $(0.2, -5)$ (green line),	
	(-0.235, 6.5) (blue line), and $(-0.35, 7)$ (black line)	
	under CLBF-MPC. The set \mathscr{U}_{ρ} is the region between the set	
	H and the largest ellipse, and the set of unsafe states \mathcal{D} is	
Fig. 4.6	represented by the solid black ellipse Closed-loop state profiles under the MPC with state	80
	constraints (dashed line) and the CLBF-MPC of Eq. 4.27	
	(solid line) with the same initial condition $(-0.235, 6.5)$,	
	where the unsafe region \mathscr{D} is represented by the solid	
	black ellipse	81
Fig. 4.7	Closed-loop state profile for the disturbed system	
0	under CLBF-MPC (solid line) with the initial condition	
	(-0.235, 6.5)	82
Fig. 4.8	Manipulated input profiles $(u_1 = \Delta C_{A0} \text{ and } u_2 = \Delta Q)$	
8	for the disturbed system under CLBF-MPC with the initial	
	condition $(-0.235, 6.5)$	82
Fig 49	Closed-loop state profiles under the CLBE-based controller	02
1.9	of Eq. 4.11 (dashed line) and the CLBE-MPC of Eq. 4.27	
	(solid line) for the initial condition $(-0.235, 6.5)$	83
Fig 4 10	(solid line) for the initial condition $(-0.255, 0.5)$ Manipulated input profiles $(u_1 - \Lambda C_{10} \text{ and } u_2 - \Lambda Q)$	05
115. 1.10	under the CLBE-based controller of Eq. 4.11 (dashed line)	
	and the CLBE-MPC of Eq. 4.27 (solid line) for the initial	
	condition $(-0.235, 6.5)$	83
Fig. 4.11	Closed loop state trajectories (with different initial	05
1 lg. 4.11	conditions marked by stars) for the system of Eq. 4.28	
	under CLRE-MPC where the unbounded unsafe region	
	\mathscr{D} is represented by the red area on the top	84
Fig. 4.12	\mathcal{D}_u is represented by the red area on the top \dots	0-
1 lg. 4 .12	under the CLRE-EMPC of Eq. 4.33 and the standard	
	LEMPC of Eq. 2.35 with the same initial condition $(0, 0)$	92
Fig. 4.13	Manipulated input profiles $(u_1 - \Lambda C_{10}, u_2 - \Lambda O)$	12
Fig. 4.15	for the CSTP under the CLBE EMPC of Eq. (4.3)	
	and the standard LEMPC of Eq. 2.35 with the same initial	
	and the standard ELMI C of Eq. 2.35 with the same initial condition $(0, 0)$	03
Fig. 5.1	State space profile (top) and input trajectory (bottom)))
11g. J.1	under a small disturbance	100
Eig 5.2	State space profile (top) and input trainatory (bottom)	100
11g. J.2	under a large disturbance	100
Eig 52	Soloty system for the CCTD with on MIC hydrolysis	100
F1g. 5.5	salety system for the CSTK with an MIC hydrolysis	102
		102

Fig. 5.4	A schematic showing, in the $C_A - T$ state-space,	
	the stability region (white region), unsafe operating region	
	(light gray region), and the thermal runaway region (dark	
	gray region), together with an example trajectory starting	
	from the origin	103
Fig. 5.5	State-space plot and input plot of LMPC integrated	
C	with the safety system for the MIC hydrolysis reaction	
	in a CSTR	104
Fig. 5.6	A schematic of the flash process with a heat exchanger, flash	
0	drum, pump (from left to right), valves, and controllers	
	that control the temperature and liquid level. The	
	temperature controller (marked by "Designing") is	
	designed to account for the safety system activation	
	for handling vapor effluent valve failure (marked	
	by "Device failure")	106
Fig. 5.7	Manipulated input and controlled output profiles	100
1.8.017	for the temperature controller with varying tuning	
	parameters to account for the activation of the safety	
	system in a flash drum	110
Fig 58	Drum pressure profile under the temperature controller	110
1 15. 5.0	with varying tuning parameters to account for the activation	
	of the safety system in a flash drum	110
Fig 59	Elash drum temperature profile under the temperature	110
1 15. 5.7	controllers with fixed parameters, and varying tuning	
	parameters to account for the activation of the safety	
	system respectively	111
Fig 5 10	Drum temperature and heating duty profiles	
115. 5.10	under the temperature controller with varying tuning	
	parameters to account for the activation of the relief valve	
	with the reseating pressure of 9.2 har in a flash drum	111
Fig. 5.11	Drum pressure profile under the temperature controller	111
1 Ig. J.11	with varying tuning parameters to account for the activation	
	of the relief value with the reseating pressure of 0.2 bar	
	in a flash drum	112
Fig. 5.12	a Drum pressure and b temperature profiles under Safeness	112
1 lg. J.12	Index_based MPC with a device failure that changes	
	the top vapor value opening from 50% to 45%	118
Fig. 5.13	a Manipulated input and b Safeness Index profiles	110
1 lg. J.15	a Manipulated input and b Satchess index promes	
	that changes the top value opening from 50% to 45%	118
Fig. 5.14	a Drum pressure and b temperature profiles under Safenass	110
11g. J.14	a Drum pressure and b temperature promes under Satelless Index based MPC with a device failure that abanges the top	
	vanor valve opening from 50% to 25% when the top vanor	
	value is closed from 50% to 35%. when the top vapor	110
		110

Fig. 5.15	a Manipulated input and b Safeness Index profiles under Safeness Index-based MPC with a device failure	
	that changes the top vapor valve opening from 50% to 35%	119
Fig. 5.16	a Drum pressure and b temperature profiles under Safeness	
	Index-based MPC with a device failure that changes	
	the top vapor valve opening from 50% to 10%	120
Fig. 5.17	a Manipulated input and b Safeness Index profiles	
	under Safeness Index-based MPC with a device failure	
	that changes the top vapor valve opening from 50% to 10%	121
Fig. 5.18	A schematic of an ammonia process	122
Fig. 5.19	A schematic of all simulated units,	
	where the high-temperature shift reactor, heat	
	exchanger, low-temperature shift reactor, CO_2 removal,	
	and methanator are denoted by HT-SHIFT, HE, LT-SHIFT,	
	CO ₂ REMOVAL, and METHANATOR, respectively	123
Fig. 5.20	Methanator outlet temperature profiles, from which it	
	is shown that $T - T_{ss}$ increases more than a 80 °C	
	after the catalyst activity decreases from 1 to 0.1	
	in 300 s, and b 60 °C after the feed temperature	
	decreases from 380 °C to 280 °C in 300 s, respectively,	
	in the high-temperature shift reactor	126
Fig. 5.21	Close-loop methanator \mathbf{a} outlet temperature and \mathbf{b} feed	
	temperature profiles when the catalyst activity decreases	
	from 1 to 0.1 within 300 s in the high-temperature shift	
	reactor	129
Fig. 5.22	Close-loop methanator a outlet temperature and b feed	
	temperature profiles when the feed temperature decreases	
	from 380 °C to 280 °C within 300 s in the high-temperature	
	shift reactor	129
Fig. 5.23	A schematic of the entire ammonia process network	131
Fig. 5.24	A schematic of the control structure that uses two	
	control loops, where C_1 and C_2 represent controller 1	
	and controller 2	132
Fig. 5.25	A schematic of disturbance propagation showing	
	that a reaction thermal runaway may occur due	
	to the increasing concentration of CO in high-temperature	
D : 5 .000	shift reactor	133
Fig. 5.26	Open-loop methanator outlet temperature profile	
	for the ammonia process under a decrease of catalyst	
	activity from 1 to 0.2 within 300 s in the high-temperature	100
F: 5.07	sniit reactor	133
F1g. 5.27	Closed-loop a outlet temperature and b inlet temperature	
	promises of the high-temperature shift reactor using	
	the proposed MPC and Safeness Index-based MPC for C_1	120
	and C_2 , respectively	139

Fig. 5.28	Closed-loop a outlet temperature and b inlet temperature profiles of the methanator using the proposed MPC	
	and Safeness Index-based MPC for C_1 and C_2 , respectively	139
Fig. 5.29	Closed-loop a outlet mole fraction of carbon monoxide	
	of the methanator, and b Safeness Index profiles using	
	the proposed MPC and Safeness Index-based MPC for C_1	
	and C_2 , respectively, where the solid line is the actual	
	process threshold, and the dashed line is the threshold used	
	in the controller	139
Fig. 5.30	Methanator outlet temperature profiles under C_2 only, and under both C_1 and C_2	140
Fig. 5.31	Comparison of methanator outlet temperature under MPC	
	(both C_1 and C_2) and under PI (both C_1 and C_2) control	
	schemes	141
Fig. 5.32	Methanator outlet temperature profiles under the MPC	
C .	with and without Safeness Index constraints	142
Fig. 6.1	A recurrent neural network (left) and its unfolded structure	
	(right), where x, u, o, and Θ are the input vector, the state	
	vector, the output vector, and the weight matrix, respectively	147
Fig. 6.2	The top figure shows the discretization of the operating	
	region Ω_{ρ} for open-loop simulations with initial conditions	
	$x_0 \in \Omega_{\rho}$, and the bottom figure shows the data processing	
	step for the RNNs with a prediction horizon of P_{nn} . Ω_{ρ}	
	and $\Omega_{\hat{\rho}}$ are the closed-loop stability region for the actual	
	nonlinear system of Eq. 6.1, and the RNN model,	
	respectively	152
Fig. 6.3	A schematic of the implementation of ensemble learning	
	method based on k-fold cross validation, where $u \in \mathbf{R}^m$	
	and $x \in \mathbf{R}^n$ are the input vector, and the state vector,	
	respectively, and H_1 , H_2 are the number of neurons	
	in the two hidden layers	155
Fig. 6.4	Parallel computation of the ensemble of RNN models	
	in CLBF-MPC, where $u^{g}(t_{k})$ represents the guess	
	of control action sent to the RNN models	171
Fig. 6.5	Evolution of CLBF $W_c(x)$ (blue trajectory)	
	under the CLBF-MPC of Eq. 6.34 with error-triggered	
	condition of Eq. 6.37 and event-triggered condition	
	of Eq. 6.35, where the threshold lines in Eq. 6.35 are	
	represented by the dashed lines with the slope $-\varepsilon_w$	174
Fig. 6.6	The state-space profiles for the open-loop simulation	
	using the first-principles model of Eq. 6.40 and the RNN	
	model, respectively, for various sets of inputs and initial	
	conditions (marked as blue stars) x_0 in the operating region	179

xviii

Fig. 6.7	State trajectories for the closed-loop CSTR of Eq. 6.40 under the CLBF-MPC using an ensemble of RNN models.	
	The gray area on the top represents the set of unbounded	
	unsafe states \mathcal{D}_u , and the circles represent the initial	
	conditions	180
Fig. 6.8	State trajectories for the closed-loop system of Eq. 6.40 under the CLBF-MPC using an ensemble of RNN	
	models. The grav area embedded within $\mathscr{U}_{\hat{\alpha}}$ represents	
	the set of bounded unsafe states, and the circles represent	
	the initial conditions	181
Fig. 6.9	State trajectories for the closed-loop CSTR system	
1.8.012	the CLBF-MPC using a linear state-space model. The grav	
	ellipse in state-space represents the set of bounded unsafe	
	states \mathcal{D}_{k} and the circles represent the initial conditions	183
Fig 6 10	Closed-loop state trajectories under the CLBF-MPC using	100
1 ig. 0.10	an ensemble of RNN models (solid trajectory) and a linear	
	state-space model (dashed trajectory) respectively. The	
	gray ellipse in state-space represents the set of bounded	
	unsafe states \mathcal{D}_{L} and the circles represent the initial	
	conditions	183
Fig 6 11	The state-space profiles for the closed-loop CSTR subject	105
115.0.11	to time-varying disturbances under the CLBE-MPC	
	of Eq. 6.34 with (red trajectory) and without online	
	RNN update (blue trajectory) respectively for an initial	
	condition (-1570)	184
Fig. 6.12	Manipulated input profiles $(u_1 = \Delta C_{A0}, u_2 = \Delta Q)$	101
119.0.12	for the closed-loop CSTR subject to time-varying	
	disturbances under the CLBE-MPC of Eq. 6.34 with (red	
	profile) and without online RNN update (blue profile).	
	respectively, for an initial condition $(-1.5.70)$	185
Fig. 6.13	Value of $E_{rm}(t)$ at each sampling time for the closed-loop	100
1.8. 0.10	CSTR subject to time-varying disturbances	
	under the CLBE-MPC of Eq. 6.34 with (red. right v-axis)	
	and without online RNN update (blue left y-axis)	
	respectively, where the threshold E_{T} is set to 0.15 (dashed	
	horizontal line corresponding to the right y-axis)	185
Fig. 6.14	State trajectories for the closed-loop system	100
1.8.011	of Eq. 6.40 within one operating period under LEMPC	
	and CLBF-EMPC, respectively, where the grav area	
	on the top of \mathcal{U}_{α} represents the unbounded set of unsafe	
	states \mathscr{D}_{μ} and the initial condition is (0, 0)	192
	ω_{u} , and the initial condition is $(0, 0)$	174

Fig. 6.15	Closed-loop state trajectories for the system of Eq. 6.40 within four operating periods under CLBF-EMPC	
	and LEMPC, respectively, where the initial condition is (0,	
	o) and the unbounded set of unsafe states \mathcal{D}_u is the gray area on the top of \mathcal{D}_u	193
Fig. 6.16	Input profiles for the closed-loop system of Eq. 6.40	175
1.8.0110	within four operating periods under CLBF-EMPC,	
	where the unsafe region is the gray area on the top of \mathcal{U}_0	194
Fig. 6.17	Closed-loop state trajectories for the system of Eq. 6.40	
-	within four operating periods under CLBF-EMPC	
	and LEMPC, respectively, where the initial condition is (0,	
	0) and the bounded set of unsafe states \mathcal{D}_b is embedded	
	within \mathscr{U}_{ρ}	195
Fig. 6.18	Input profiles for the closed-loop system of Eq. 6.40	
	within four operating periods under CLBF-EMPC,	
	where the bounded set of unsafe states \mathscr{D}_b is embedded	105
E' (10	within \mathscr{U}_{ρ}	195
F1g. 6.19	The state-space profiles for the closed-loop CSTR	
	subject to time-varying disturbances under CLBF-EMPC	
	trajectory) respectively for an initial condition (0.0)	106
Fig. 6.20	The state-space profiles for the closed-loop CSTR	190
1 Ig. 0.20	subject to time-varying disturbances under CLBE-EMPC	
	with (red trajectory) and without online RNN undate (blue	
	trajectory), respectively, for two consecutive operating	
	periods with an initial condition (0,0)	197
Fig. 6.21	Manipulated input profiles $(u_1 = \Delta C_{A0}, u_2 = \Delta Q)$	
-	for the closed-loop CSTR subject to time-varying	
	disturbances under CLBF-EMPC with (red trajectory)	
	and without online RNN update (blue trajectory),	
	respectively, for two consecutive operating periods	
	with an initial condition (0,0)	197
Fig. 6.22	Value of $E_{rnn}(t)$ at each sampling time for the closed-loop	
	CSTR subject to time-varying disturbances	
	under CLBF-EMPC with and without online RNN update,	100
E. 7.1	respectively, where the threshold E_T is set to 0.15	198
F1g. /.1	A two-nidden-layer feedforward neural network structure with inputs $p(\bar{x})$ being a penlinear function of state	
	with inputs $p(x)$ being a nonlinear function of state measurements within the detection window N and output	
	being the probability of each class label that indicates	
	the status and/or type of cyber-attack	212
Fig 72	The sliding detection window with a length of N	212
8. /.2	where D_i is the indicator for the detection triggered every	
	N_a sampling steps	216

Fig. 7.3	Basic structure of the proposed integrated NN-based detection and LMPC control method	218
Fig. 7.4	A schematic showing an example state trajectory	210
-	under the integrated cyber-attack detection and control	
	scheme	219
Fig. 7.5	Logic flowchart showing the implementation steps	
	of the attack-resilient operation of LEMPC that combines	
	open-loop and closed-loop control actions together	001
F . 76	for the system operated in a secure region $S_{\rho_{\text{secure}}}$	221
Fig. 7.6	Structures of recurrent neural network (left)	
	and of a restruction window (right), where the input	
	vectors are x, u, the output vector is x, and f_{NN} represents the hidden neurons that incomparate nonlinear activitien	
	functions	222
Fig 77	Evolution of measured process states within one material	222
1 lg. /./	constraint period under resilient L EMPC (blue trajectory)	
	and under LEMPC (red trajectory)	229
Fig 78	Evolution of attacked state measurements (vellow	22)
1 19. 7.0	trajectories) and true process states over one material	
	constraint period under resilient LEMPC (red trajectories)	
	and under LEMPC (blue trajectories) when a min-max.	
	b geometric, c replay, and d surge attacks are targeting	
	the temperature sensor, where the dashed ellipse is Ω_{accur}	
	and the dash-dotted ellipse is the stability region Ω_0	231
Fig. 7.9	Time-derivative of the reaction rate r_B of Eq. 7.27 based	
	on measured process states over one material constraint	
	period, when the temperature sensor is under no attack,	
	and under min-max, geometric, replay, and surge attacks,	
	respectively	233
Fig. 7.10	Evolution of attacked state measurements (red trajectories)	
	and true process states (blue trajectories) over two	
	material constraint periods under the resilient LEMPC	
	when a min-max, b geometric, and c surge attacks,	
	targeting the temperature sensor are successfully detected	
	by a NN detector at the end of the first material constraint	
	period, $t = 0.06$ h, where the dashed ellipse is $\Omega_{\rho_{\text{secure}}}$	
	and the dash-dotted ellipse is the stability region Ω_{ρ}	235
Fig. 7.11	a State-space trajectories, and b closed-loop profiles	
	of reconstructed state (marked by colored circles),	
	measured state (red), and true state (blue) for the CSTR	
	system of Eq. 7.26 under LEMPC when the temperature	• •
	sensor is attacked by a min-max cyber-attack at $t = 0.05$ h	237

Fig. 7.12	a State-space trajectories, and b closed-loop profiles	
	of reconstructed state (marked by colored circles),	
	measured state (red), and true state (blue) for the CSTR	
	system of Eq. 7.26 under LEMPC when the temperature	
	sensor is attacked by surge cyber-attacks at $t = 0.03$ h,	
	t = 0.21 h, and $t = 0.36$ h	238
Fig. 7.13	a State-space trajectories, and b closed-loop profiles	
0	of reconstructed state (marked by colored circles).	
	measured state (red), and true state (blue) for the CSTR	
	system of Eq. 7.26 under LEMPC when the temperature	
	sensor is attacked by geometric cyber-attacks at $t = 0.03$	
	b $t = 0.21$ h and $t = 0.36$ h	230
Fig 8 1	Two tier control detector architecture with the upper tier	23)
11g. 0.1	controller (i.e. MPC) using both networked	
	controller (i.e., MFC) using bour networked	
	and continuous (secure) sensor measurements,	
	and the lower-tier controllers using only continuous	
	(secure) sensor measurements, where the networked	246
F ' 0.0	sensors are vulnerable to cyber-attacks	240
F1g. 8.2	Schematic of the reactor-reactor-separator process	252
	with two CSTRs and a flash drum separator	252
Fig. 8.3	Measured and true state values (in deviation variable form)	
	of x_{A1} when a min-max, b replay, c geometric, and d	
	surge cyber-attacks are added on the sensor measurement	
	of concentration x_{A1} at 3.22 h, and no detection	
	or mitigation mechanisms are used	260
Fig. 8.4	Profiles of true process states when all 9 state measurement	
	sensors are attacked at 3.22 h by min-max cyber-attacks,	
	and no detection or reconfiguration of the two-tier control	
	architecture are implemented	261
Fig. 8.5	Profiles of true process states when the six sensors of mass	
	fraction are attacked at 3.22 h by min-max cyber-attacks;	
	the attacks are detected at 3.28 h, and the process is	
	re-stabilized at the steady-state by turning off upper-tier	
	LMPC and using lower-tier PIs	262
Fig. 8.6	Profiles of true process states when the six sensors of mass	
	fraction are attacked at 3.22 h by replay cyber-attacks;	
	the attacks are detected at 3.28 h, and the process is	
	re-stabilized at the steady-state by turning off upper-tier	
	LMPC and using lower-tier PIs	263
Fig. 8.7	Profiles of true process states when the six sensors of mass	
0	fraction are attacked at 3.22 h by geometric cyber-attacks:	
	the attacks are detected at 3.28 h. and the process is	
	re-stabilized at the steady-state by turning off upper-tier	
	LMPC and using lower-tier PIs	264
	<i>.</i>	

Profiles of true process states when the six sensors of mass	
fraction are attacked at 3.22 h by surge cyber-attacks;	
the attacks are detected at 3.28 h, and the process is	
re-stabilized at the steady-state by turning off upper-tier	
LMPC and using lower-tier PIs	265
	Profiles of true process states when the six sensors of mass fraction are attacked at 3.22 h by surge cyber-attacks; the attacks are detected at 3.28 h, and the process is re-stabilized at the steady-state by turning off upper-tier LMPC and using lower-tier PIs

List of Tables

Table 1.1	Process parameters of the CSTR	8
Table 4.1	Parameter values of the CSTR with a first-order reaction	79
Table 5.1	Parameter values for the CSTR with MIC reaction	97
Table 5.2	Parameter values of the empirical model of Eq. 5.5	
	when the pressure relief valve is open and closed,	
	respectively	108
Table 5.3	Parameter values of a PI temperature controller	
	for the cases when the relief valve is open and closed,	
	respectively	109
Table 5.4	Parameter values of the ammonia process simulation	124
Table 6.1	Parameter values of the CSTR system	178
Table 7.1	Detection accuracies of NN detectors in response	
	to different types of cyber-attacks	234
Table 8.1	Descriptions and values of process parameters	255

Chapter 1 Introduction

1.1 Motivation

Process operational safety has been a long-standing research problem in optimal operation and control of dynamic systems and processes. The traditional approach to process operational safety is to employ a hierarchical approach as shown in Fig. 1.1. Specifically, a complete control and safety system used in industries includes basic process control systems (BPCSs), alarm systems, emergency shutdown systems (ESSs), and safety relief devices. Ideally, BPCS regulates process variables to their set-points, while the layers of the safety system should not be activated regularly. When the BPCS fails to maintain the process variables within acceptable ranges due to, for example, equipment faults or unusually large process disturbances, alarms are triggered that alert operators so that actions can be taken to prevent further unsafe deviations. If the process variables subsequently further exceed allowable values, the ESS is triggered, which takes automatic and extreme actions such as forcing a valve to its fully open position to bring the process to a safer state of operation. Safety relief devices such as relief valves are used on vessels that can become highly pressurized quickly to prevent an explosion. Containments are used to prevent hazardous materials from entering the environment or injuring workers when the other layers of the safety hierarchy fail to prevent the release of the materials. The emergency response plan is used in severe cases that cannot be mitigated by any other layers. The layers are independent of each other and of the control system (i.e., they have separate sensors, computing elements, and actuators) to allow redundancy and improve safety [119]. Design decisions for the location and sizing of the safety systems are aided through qualitative and quantitative studies (e.g., hazards and operability (HAZOP) studies, fault trees, event trees, what-if or worst-case scenarios, security indices, and layers of protection analysis (LOPA)) of the damage that may result from an accident (including life losses, capital equipment loss, and damage to the environment) which is evaluated to determine whether it is within an acceptable level of risk [55, 119, 125, 199].

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 Z. Wu and P. D. Christofides, *Process Operational Safety and Cybersecurity*, Advances in Industrial Control, https://doi.org/10.1007/978-3-030-71183-2_1

Fig. 1.1 Control/safety system layers [119]

Emergency Response
Containment
Safety Relief Devices
ESS
Alarms
BPCS

Though safety systems and feedback control systems are critical to safe plant operation, they act fully independently in the hierarchical multilevel system of Fig. 1.1 and are not integrated to yield cooperative actions to ensure both operational safety and economic performance. This has resulted in staggering profit losses for the chemical process industries; for example, it was reported that the 20 major accidents in the hydrocarbon industry from 1974 to 2015 cost over \$15 billion, with the total accumulated value of the 100 largest losses at more than \$33 billion (estimates in 2015 dollars) [121]. It is clear from these numbers that it is necessary to coordinate the actions of process safety and control systems from both the ethical perspective of saving lives and property, and also from an economics standpoint for the chemical process industry. One potential solution is to incorporate safety considerations and safety system actions within optimization-based control schemes, e.g., model predictive control (MPC). While MPC has been widely used in real-time operation of industrial chemical plants to optimize chemical process performance accounting for closed-loop stability and control actuator constraints [66, 124, 130, 133, 160, 165], current MPC designs do not account for process safety considerations and actions and thus may lead to process operation in certain regions of the state space from which migration to an unsafe state may quickly occur. Therefore, a systematic methodology needs to be developed with rigorous analysis of process stability, operational safety, and recursive feasibility to coordinate MPC systems and safety systems to ensure operational safety while achieving desired operation performance.

In addition to process operational safety, cybersecurity has become crucially important in recent years due to increasing risks of cyber-attacks with the development of modern communication in industrial process controls and operations. Since both process safety and cybersecurity aim to prevent or mitigate events involving a loss of control of safety- and security-critical systems, the layers of protection analysis for safety systems can also be employed in the development of a defense-indepth strategy for cyber-defense systems, where cybersecurity is incorporated into control network designs. Industrial control systems or supervisory control and data acquisition (SCADA) systems are generally large-scale, geographically dispersed, and life-critical systems in which embedded sensors, actuators, and controller net-

works are utilized to sense and control the physical devices [59]. The unsafe process operation due to the failure of cybersecurity can lead to catastrophic consequences in chemical process industries, causing environmental damage, capital loss, and human injuries. Cyber-attacks are essentially a series of computer actions that are designed to compromise the integrity, stability, and safety of control systems [58, 64, 152, 230]. Among cyber-attacks, targeted attacks are designed with the aim of modifying the control actions applied to an industrial process (for example, the Stuxnet worm was designed to attack the SCADA system by modifying the data sent to Programmable Logic Controllers [43]). Additionally, since targeted attacks are designed to be process and controller behavior aware and can have access to process operation information such as process state measurement, operating region, and control algorithms, they are stealthy and difficult to detect using conventional detection methods. Nevertheless, as the development of most of the existing detection methods still depends partly on human analysis, intelligent cyber-attacks that are process-aware and stealthy pose great challenges to the development of efficient detection methods with high detection accuracy for modern industrial control system where cyberand physical components closely interact. Therefore, designing advanced detection systems and integrating them with MPC to handle cyber-attacks in safety-critical systems is a new frontier in control systems that will significantly improve the security of chemical production.

1.2 Background

Chemical process safety has traditionally been addressed through process design decisions (e.g., designing the process to be inherently safe in terms of its chemistry and physics [68, 77]) and control and safety system design decisions (e.g., adding sensors for critical process variables that trigger an alarm when a measurement outside of the desired range is obtained [119]). Inherently safer designs are achieved through four primary principles: minimize (reduce the quantity of hazardous substances used and stored by a process), substitute (utilize less hazardous process chemicals), moderate (dilute chemicals or change operating conditions), and simplify (choose designs with less complexity and less potential to create hazardous conditions when faults or errors occur) [71, 92]. However, it is not possible to eliminate all hazards at a plant, so a safety system, comprised of several independent layers, should be added (Fig. 1.1). While the hierarchical approach that utilizes control and safety systems independently for process safety has been successfully deployed in chemical process industries, the accidents throughout chemical plant history [96, 98, 117] have led some researchers to suggest that the philosophy used in the design of the control and safety system layers (i.e., designing barriers against specific unsafe scenarios using the safety system) is quite limited, particularly as economic considerations drive more optimized and integrated system designs [70, 75, 112, 140], and that a systems approach coordinating directly the actions of control and safety systems and analyzing closed-loop process operational safety should instead be used [7, 27, 54, 84, 109,

116, 195]. One step toward this systems approach is by incorporating safety considerations and safety system actions within the BPCS. However, the single-input/singleoutput controllers (e.g., proportional–integral–derivative controller (PID controller)) traditionally used within the BPCS cannot account for factors that are important to process safety such as multivariable interactions and state/input constraints. On the other hand, advanced model-based control methodologies such as model predictive control (MPC) can account for these factors and thus can be integrated with safety considerations [109, 124, 130, 160]. A large number of works in the MPC literature have addressed the robustness, performance, and closed-loop stability of MPC (e.g., [42, 62, 76, 82, 124, 128, 133, 146, 233] and the references therein), but have not considered explicit safety considerations and safety system actions in their formulations.

Several works have looked at coordinating control with safety considerations. For example, safety in the sense of fault/abnormality diagnosis and monitoring has been addressed, e.g., [53, 65, 197], as well as integrating fault tolerance within process control, e.g., [12, 35, 89, 105, 131, 229]; however, these methods do not address system-wide safety considerations and safety system actions in control. Furthermore, the coordination of control and safety systems through a system-wide safety metric (while operating the systems independently) has not been performed, though this has the potential to significantly reduce unnecessary triggering of the safety system and to help in the design of triggers and appropriate actions for automated elements of the ESS and relief systems. Thresholds on a recently developed state-based Safeness Index [8] may be incorporated as triggers for safety system activation that allow the safety system to be aware of system-level safety considerations; the same metric, with different thresholds, can be utilized in MPC design to provide some coordination between the designs. This can be particularly beneficial for mitigating alarm overloading [39, 69, 204], which is the triggering of too many alarms at once, either because of poor alarm design creating frequent alarms that require no operator actions, or too many correct alarms sounding at once triggered by the same root cause. The number of alarms that sound at a chemical process plant each day can be over seven times the recommended number [61, 172], making it difficult for operators to adequately address the alarms, which can lead to environment and plant damage, danger to lives [181, 184], and reduced operator confidence in the alarm system [204]. Industry [172] and academia [14, 20, 38, 44, 134, 137, 186, 203, 204] have addressed alarm issues with techniques based on, for example, models, statistical analysis, and metrics. Despite these efforts, the integration of operational safety considerations such as safeness metrics that characterize the safeness of chemical processes based on the values of the process states, as well as safety system actions (like on/off behavior of relief valves) within control system designs, has received limited attention.

Additionally, industrial process control systems rely heavily on information and communication technologies for automated operations. Particularly, industrial control systems integrate computers, data communications networks, and physical process components to seamlessly combine hardware and software resources for reliable operation and robust control. In more recent years, Internet communication and

wireless networks are starting to replace or complement existing wired point-to-point communications in traditional large-scale process operations as well [49]. As these new developments bring efficiency to the existing system by enabling transmission of signals to remote locations without adding or altering the current hardwire infrastructure, heightened concern for security also arises [28]. Each device and communication channel in the control system network expand the possible attack surface that cyber-attacks can exploit, thereby increasing the vulnerability of the industrial cyberphysical system. Due to the connectivity and interaction between physical and cybercomponents in these processes, a different strategy from the traditional information technology (IT) approaches is required for operational cybersecurity. Therefore, the design and implementation of cyber-defense in industrial control systems remain an ongoing scientific and practical issue. Moreover, with the increasing sophistication of attacks, they may lead to negative consequences beyond critical asset damage and the net economic loss of the system. Since the attackers may have full access to technical details of the process control system and production processes in the plant, process safety and operational integrity may also be compromised. In recent years, a number of industrial cyber-attacks have caused detrimental physical damage, for example, the Stuxnet worm compromising Iran's nuclear centrifuges, the 2014 cyber-attack attacking a German steel mill, and the 2015 cyber-attack compromising information systems of three energy distribution companies in Ukraine [94]. In light of conducting hazard analysis as part of standard process safety practice, there have been recent calls to incorporate cybersecurity-integrated hazard evaluations, where cyber-vulnerabilities in the production units are assessed and understood, and countermeasures are outlined to reduce these cyber-risks. However, at this stage, no systematic approach has been developed to actively monitor, detect, and mitigate the impact of these intrusions using the data network on the digital platform. Considering this gap, developing detection algorithms and mitigation measures from within the control system is fundamental to addressing the problem.

Recent IT developments such as enhancement of firewalls for guarding network security have given an edge to enterprise cybersecurity. As a huge amount of operational and instrumentation data is generated, collected and archived for process monitoring, control, and troubleshooting in production plants, safeguarding methodologies such as big data analytics may also be used to secure device measurements for safe process operation. With the rapid development of computing power and digital technologies, the potential application of these data goes beyond fault detection and preventative maintenance. One example usage of these process operational data is to detect and predict cyber-attacks in the industrial control systems. In recent years, cybersecurity and cyber-defense have garnered increasing research interests with the rise of virtualization and big data [26, 57, 99], where machine learning techniques that can learn the system pattern from big data provide a powerful tool to analyze industrial process data for the development of cyber-attack detection algorithms. In fact, machine learning has increasingly gained more popularity in classical engineering fields in addition to computer science and engineering [11, 30, 159, 161, 166, 177, 196, 211], and has shown promising potential for use in the detection of cyberattacks. For example, [136] proposed a model-based fault diagnostic method for fault diagnosis and classification in electric drives, and [208] used hidden Markov models for automated fault detection and diagnosis of heating, ventilation, and air conditioning (HVAC) systems. Additionally, in [78], various machine learning classification methods were used to distinguish cyber-attacks on power systems from process disturbances, and in [86], a behavior-based intrusion detection algorithm was developed to identify the types of attacks. Moreover, an extensive literature review of machine learning methods deployed for attack detection are presented in [40, 147, 173, 192, 209, 236]. While the feasibility of data science and machine learning algorithms in anomaly management has been demonstrated in these recent literature contributions, the development of a protective safeguard through the integration of online machinelearning-based detection algorithms and existing advanced control techniques such as MPC to the multi-layer cyber-defense system that is of significant importance to next-generation smart manufacturing is still in its infancy.

1.3 Operational Safety and Cybersecurity of Chemical Processes

A chemical process example is presented in this section to provide the motivation for developing novel control algorithms that account for operational safety and cybersecurity. In the first case study, the chemical process is operated in an off steady-state manner under economic model predictive control (EMPC) to optimize process economic performance. While the formal definition of EMPC will not be presented until the subsequent chapters, we can think of EMPC as a predictive control scheme that optimizes operating strategy in real time to dynamically operate chemical processes in a bounded operating region in order to maximize process economic benefits accounting for various economic factors such as time-varying material and energy pricing. However, in the case that the economically optimal regions include unsafe operating conditions, the time-varying operation of EMPC without accounting for safety region constraints may lead to unsafe operations when attempting to maximize process economic profits. The second case study considers the same chemical process and demonstrates the impact of cyber-attacks that compromise one of the sensor measurements. Specifically, the system is normally operated at a pre-specified steady-state (either originally at the steady-state or forced to the steady-state from another operating condition) under feedback-based tracking model predictive control (MPC) with secure sensor measurements of process variables, e.g., temperature and species concentration; however, it will be demonstrated that process stability is no longer guaranteed in the sense that the system may deviate from the steady-state and even leave the normal operating region when sensor measurements are tampered by cyber-attacks. The two case studies indicate the importance of having advanced control systems that account for process operational safety and cybersecurity, and have motivated much of the work contained in this book. The chemical process example and the two case studies are provided below.