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Preface

Traditionally, the operational safety of chemical processes has been addressed
throughprocess design considerations and through a hierarchical, independent design
of control and safety systems. By developing safety systems including alarms, emer-
gency shutdown, and further emergency response systems to be activated when
control systems fail to operate chemical processes in a normal operating region,
process operational safety has been improved to prevent incidents that can lead to
property damage, human injuries, and environmental impact.However, the consistent
accidents throughout chemical process plant history (including several high-profile
disasters in the last decade) havemotivated researchers to design control systems that
explicitly account for process operational safety considerations. In particular, a new
design of control systems such as model predictive controllers (MPC) that incor-
porates safety considerations and can be coordinated with safety systems has the
potential to significantly improve process operational safety and avoid unnecessary
triggering of alarm systems. However, the rigorous design of safety-based control
systems poses new challenges that cannot be addressed with traditional process
control methods, including, for example, proving simultaneous closed-loop stability
and safety. On the other hand, cybersecurity has become increasingly important
in chemical process industries in recent years as cyber-attacks that have grown in
sophistication and frequency have become another leading cause of process safety
incidents.While the traditional methods of handling cyber-attacks in control systems
still rely partly on human analysis and mainly fall into the area of fault diagnosis,
the intelligence of cyber-attacks and their accessibility to control system information
have recently motivated researchers to develop cyber-attack detection and resilient
operation control strategies to address directly cybersecurity concerns.

The book covers several rigorous methods for the design of MPC systems
that improve process operational safety and cybersecurity for chemical processes
described by nonlinear dynamic models. Beginning with the motivation and organi-
zation of this book, a background on nonlinear systems analysis, Lyapunov-based
control techniques, andMPC designs is first presented. Then, twoMPC schemes that
use a Safeness Index function and a control Lyapunov-barrier function, respectively,
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vi Preface

are presented with rigorous analysis provided on their closed-loop stability, opera-
tional safety, and recursive feasibility properties, followed by case studies of large-
scale chemical processes under integrated process control and safety systems. Subse-
quently, the use of machine learning techniques to develop data-driven nonlinear
dynamic process models to be used in the MPC schemes is presented with closed-
loop stability and safety analysis as well as discussion on computational imple-
mentation issues. Next, the development of an integrated detection and control
system for process cybersecurity is developed, in which several types of intelligent
cyber-attacks, machine learning detection methods, and resilient control strategies
are presented. The book closes with a two-tier control architecture that possesses
inherent cybersecurity properties and could provide a blueprint for the design of
cybersecure industrial process control systems. Throughout the book, the control
methods are applied to numerical simulations of nonlinear chemical process exam-
ples and Aspen simulations of large-scale chemical process networks to demonstrate
their effectiveness and performance.

The book requires someknowledge of nonlinear systems, nonlinear control theory,
and nonlinear programming methods, and is intended for researchers, graduate
students, and process control and safety engineers.

In conclusion, we would like to acknowledge Prof. Helen Durand, Prof. Fahad
Albalawi, Dr. Anas Alanqar, Dr. Anh Tran, Dr. David Rincon, Dr. Zhihao Zhang, and
Ms. Scarlett Chen, all at UCLA, who have contributed substantially to the research
efforts and results included in this book. We would like to thank them for their
hard work and contributions. We would also like to thank all the other people who
contributed in some way to this project. In particular, we would like to thank our
colleagues at UCLA, and the United States National Science Foundation and Depart-
ment of Energy for financial support. Last but not the least, we would like to express
our deepest gratitude to our families for their dedication, encouragement, and support
over the course of this project. We dedicate this book to them.

Los Angeles, CA, USA Zhe Wu
Panagiotis D. Christofides
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Chapter 1
Introduction

1.1 Motivation

Process operational safety has been a long-standing research problem in optimal
operation and control of dynamic systems and processes. The traditional approach to
process operational safety is to employ a hierarchical approach as shown in Fig. 1.1.
Specifically, a complete control and safety system used in industries includes basic
process control systems (BPCSs), alarm systems, emergency shutdown systems
(ESSs), and safety relief devices. Ideally, BPCS regulates process variables to their
set-points, while the layers of the safety system should not be activated regularly.
When the BPCS fails to maintain the process variables within acceptable ranges due
to, for example, equipment faults or unusually large process disturbances, alarms are
triggered that alert operators so that actions can be taken to prevent further unsafe
deviations. If the process variables subsequently further exceed allowable values, the
ESS is triggered, which takes automatic and extreme actions such as forcing a valve
to its fully open position to bring the process to a safer state of operation. Safety relief
devices such as relief valves are used on vessels that can become highly pressurized
quickly to prevent an explosion. Containments are used to prevent hazardous mate-
rials from entering the environment or injuring workers when the other layers of the
safety hierarchy fail to prevent the release of the materials. The emergency response
plan is used in severe cases that cannot bemitigated by any other layers. The layers are
independent of each other and of the control system (i.e., they have separate sensors,
computing elements, and actuators) to allow redundancy and improve safety [119].
Design decisions for the location and sizing of the safety systems are aided through
qualitative and quantitative studies (e.g., hazards and operability (HAZOP) studies,
fault trees, event trees, what-if or worst-case scenarios, security indices, and lay-
ers of protection analysis (LOPA)) of the damage that may result from an accident
(including life losses, capital equipment loss, and damage to the environment) which
is evaluated to determine whether it is within an acceptable level of risk [55, 119,
125, 199].
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Fig. 1.1 Control/safety
system layers [119]
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Though safety systems and feedback control systems are critical to safe plant oper-
ation, they act fully independently in the hierarchical multilevel system of Fig. 1.1
and are not integrated to yield cooperative actions to ensure both operational safety
and economic performance. This has resulted in staggering profit losses for the chem-
ical process industries; for example, it was reported that the 20 major accidents in
the hydrocarbon industry from 1974 to 2015 cost over $15 billion, with the total
accumulated value of the 100 largest losses at more than $33 billion (estimates in
2015 dollars) [121]. It is clear from these numbers that it is necessary to coordinate
the actions of process safety and control systems from both the ethical perspective of
saving lives and property, and also from an economics standpoint for the chemical
process industry. One potential solution is to incorporate safety considerations and
safety system actions within optimization-based control schemes, e.g., model pre-
dictive control (MPC). While MPC has been widely used in real-time operation of
industrial chemical plants to optimize chemical process performance accounting for
closed-loop stability and control actuator constraints [66, 124, 130, 133, 160, 165],
currentMPCdesigns do not account for process safety considerations and actions and
thus may lead to process operation in certain regions of the state space from which
migration to an unsafe state may quickly occur. Therefore, a systematic methodology
needs to be developed with rigorous analysis of process stability, operational safety,
and recursive feasibility to coordinate MPC systems and safety systems to ensure
operational safety while achieving desired operation performance.

In addition to process operational safety, cybersecurity has become crucially
important in recent years due to increasing risks of cyber-attacks with the devel-
opment of modern communication in industrial process controls and operations.
Since both process safety and cybersecurity aim to prevent or mitigate events involv-
ing a loss of control of safety- and security-critical systems, the layers of protection
analysis for safety systems can also be employed in the development of a defense-in-
depth strategy for cyber-defense systems, where cybersecurity is incorporated into
control network designs. Industrial control systems or supervisory control and data
acquisition (SCADA) systems are generally large-scale, geographically dispersed,
and life-critical systems in which embedded sensors, actuators, and controller net-



1.1 Motivation 3

works are utilized to sense and control the physical devices [59]. The unsafe process
operation due to the failure of cybersecurity can lead to catastrophic consequences in
chemical process industries, causing environmental damage, capital loss, and human
injuries. Cyber-attacks are essentially a series of computer actions that are designed
to compromise the integrity, stability, and safety of control systems [58, 64, 152,
230]. Among cyber-attacks, targeted attacks are designed with the aim of modify-
ing the control actions applied to an industrial process (for example, the Stuxnet
worm was designed to attack the SCADA system by modifying the data sent to Pro-
grammable Logic Controllers [43]). Additionally, since targeted attacks are designed
to be process and controller behavior aware and can have access to process opera-
tion information such as process state measurement, operating region, and control
algorithms, they are stealthy and difficult to detect using conventional detectionmeth-
ods. Nevertheless, as the development of most of the existing detection methods still
depends partly on human analysis, intelligent cyber-attacks that are process-aware
and stealthy pose great challenges to the development of efficient detection meth-
ods with high detection accuracy for modern industrial control system where cyber-
and physical components closely interact. Therefore, designing advanced detection
systems and integrating themwithMPC to handle cyber-attacks in safety-critical sys-
tems is a new frontier in control systems that will significantly improve the security
of chemical production.

1.2 Background

Chemical process safety has traditionally been addressed through process design
decisions (e.g., designing the process to be inherently safe in terms of its chemistry
andphysics [68, 77]) and control and safety systemdesign decisions (e.g., adding sen-
sors for critical process variables that trigger an alarm when a measurement outside
of the desired range is obtained [119]). Inherently safer designs are achieved through
four primary principles: minimize (reduce the quantity of hazardous substances used
and stored by a process), substitute (utilize less hazardous process chemicals), mod-
erate (dilute chemicals or change operating conditions), and simplify (choose designs
with less complexity and less potential to create hazardous conditions when faults
or errors occur) [71, 92]. However, it is not possible to eliminate all hazards at a
plant, so a safety system, comprised of several independent layers, should be added
(Fig. 1.1). While the hierarchical approach that utilizes control and safety systems
independently for process safety has been successfully deployed in chemical process
industries, the accidents throughout chemical plant history [96, 98, 117] have led
some researchers to suggest that the philosophy used in the design of the control and
safety system layers (i.e., designing barriers against specific unsafe scenarios using
the safety system) is quite limited, particularly as economic considerations drive
more optimized and integrated system designs [70, 75, 112, 140], and that a systems
approach coordinating directly the actions of control and safety systems and analyz-
ing closed-loop process operational safety should instead be used [7, 27, 54, 84, 109,
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116, 195]. One step toward this systems approach is by incorporating safety consider-
ations and safety system actions within the BPCS. However, the single-input/single-
output controllers (e.g., proportional–integral–derivative controller (PID controller))
traditionally used within the BPCS cannot account for factors that are important to
process safety such as multivariable interactions and state/input constraints. On the
other hand, advanced model-based control methodologies such as model predictive
control (MPC) can account for these factors and thus can be integrated with safety
considerations [109, 124, 130, 160]. A large number of works in the MPC litera-
ture have addressed the robustness, performance, and closed-loop stability of MPC
(e.g., [42, 62, 76, 82, 124, 128, 133, 146, 233] and the references therein), but
have not considered explicit safety considerations and safety system actions in their
formulations.

Several works have looked at coordinating control with safety considerations. For
example, safety in the sense of fault/abnormality diagnosis and monitoring has been
addressed, e.g., [53, 65, 197], as well as integrating fault tolerance within process
control, e.g., [12, 35, 89, 105, 131, 229]; however, these methods do not address
system-wide safety considerations and safety system actions in control. Furthermore,
the coordination of control and safety systems through a system-wide safety metric
(while operating the systems independently) has not been performed, though this
has the potential to significantly reduce unnecessary triggering of the safety system
and to help in the design of triggers and appropriate actions for automated ele-
ments of the ESS and relief systems. Thresholds on a recently developed state-based
Safeness Index [8] may be incorporated as triggers for safety system activation that
allow the safety system to be aware of system-level safety considerations; the same
metric, with different thresholds, can be utilized in MPC design to provide some
coordination between the designs. This can be particularly beneficial for mitigat-
ing alarm overloading [39, 69, 204], which is the triggering of too many alarms at
once, either because of poor alarm design creating frequent alarms that require no
operator actions, or too many correct alarms sounding at once triggered by the same
root cause. The number of alarms that sound at a chemical process plant each day
can be over seven times the recommended number [61, 172], making it difficult for
operators to adequately address the alarms, which can lead to environment and plant
damage, danger to lives [181, 184], and reduced operator confidence in the alarm
system [204]. Industry [172] and academia [14, 20, 38, 44, 134, 137, 186, 203, 204]
have addressed alarm issues with techniques based on, for example, models, statisti-
cal analysis, and metrics. Despite these efforts, the integration of operational safety
considerations such as safeness metrics that characterize the safeness of chemical
processes based on the values of the process states, as well as safety system actions
(like on/off behavior of relief valves) within control system designs, has received
limited attention.

Additionally, industrial process control systems rely heavily on information and
communication technologies for automated operations. Particularly, industrial con-
trol systems integrate computers, data communications networks, and physical pro-
cess components to seamlessly combine hardware and software resources for reli-
able operation and robust control. In more recent years, Internet communication and
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wireless networks are starting to replace or complement existingwired point-to-point
communications in traditional large-scale process operations as well [49]. As these
new developments bring efficiency to the existing system by enabling transmission
of signals to remote locations without adding or altering the current hardwire infras-
tructure, heightened concern for security also arises [28]. Each device and communi-
cation channel in the control system network expand the possible attack surface that
cyber-attacks can exploit, thereby increasing the vulnerability of the industrial cyber-
physical system. Due to the connectivity and interaction between physical and cyber-
components in these processes, a different strategy from the traditional information
technology (IT) approaches is required for operational cybersecurity. Therefore, the
design and implementation of cyber-defense in industrial control systems remain an
ongoing scientific and practical issue. Moreover, with the increasing sophistication
of attacks, they may lead to negative consequences beyond critical asset damage
and the net economic loss of the system. Since the attackers may have full access
to technical details of the process control system and production processes in the
plant, process safety and operational integrity may also be compromised. In recent
years, a number of industrial cyber-attacks have caused detrimental physical damage,
for example, the Stuxnet worm compromising Iran’s nuclear centrifuges, the 2014
cyber-attack attacking a German steel mill, and the 2015 cyber-attack compromis-
ing information systems of three energy distribution companies in Ukraine [94]. In
light of conducting hazard analysis as part of standard process safety practice, there
have been recent calls to incorporate cybersecurity-integrated hazard evaluations,
where cyber-vulnerabilities in the production units are assessed and understood, and
countermeasures are outlined to reduce these cyber-risks. However, at this stage, no
systematic approach has been developed to actively monitor, detect, and mitigate the
impact of these intrusions using the data network on the digital platform. Considering
this gap, developing detection algorithms and mitigation measures from within the
control system is fundamental to addressing the problem.

Recent IT developments such as enhancement of firewalls for guarding network
security have given an edge to enterprise cybersecurity. As a huge amount of oper-
ational and instrumentation data is generated, collected and archived for process
monitoring, control, and troubleshooting in production plants, safeguarding method-
ologies such as big data analyticsmay also be used to secure devicemeasurements for
safe process operation. With the rapid development of computing power and digital
technologies, the potential application of these data goes beyond fault detection and
preventative maintenance. One example usage of these process operational data is
to detect and predict cyber-attacks in the industrial control systems. In recent years,
cybersecurity and cyber-defense have garnered increasing research interests with the
rise of virtualization and big data [26, 57, 99], where machine learning techniques
that can learn the system pattern from big data provide a powerful tool to analyze
industrial process data for the development of cyber-attack detection algorithms. In
fact, machine learning has increasingly gained more popularity in classical engineer-
ing fields in addition to computer science and engineering [11, 30, 159, 161, 166,
177, 196, 211], and has shown promising potential for use in the detection of cyber-
attacks. For example, [136] proposed amodel-based fault diagnostic method for fault
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diagnosis and classification in electric drives, and [208] used hidden Markov models
for automated fault detection and diagnosis of heating, ventilation, and air condition-
ing (HVAC) systems. Additionally, in [78], various machine learning classification
methods were used to distinguish cyber-attacks on power systems from process dis-
turbances, and in [86], a behavior-based intrusion detection algorithmwas developed
to identify the types of attacks. Moreover, an extensive literature review of machine
learning methods deployed for attack detection are presented in [40, 147, 173, 192,
209, 236]. While the feasibility of data science and machine learning algorithms in
anomaly management has been demonstrated in these recent literature contributions,
the development of a protective safeguard through the integration of online machine-
learning-based detection algorithms and existing advanced control techniques such
as MPC to the multi-layer cyber-defense system that is of significant importance to
next-generation smart manufacturing is still in its infancy.

1.3 Operational Safety and Cybersecurity of Chemical
Processes

A chemical process example is presented in this section to provide the motivation for
developing novel control algorithms that account for operational safety and cyberse-
curity. In the first case study, the chemical process is operated in an off steady-state
manner under economic model predictive control (EMPC) to optimize process eco-
nomic performance. While the formal definition of EMPC will not be presented
until the subsequent chapters, we can think of EMPC as a predictive control scheme
that optimizes operating strategy in real time to dynamically operate chemical pro-
cesses in a bounded operating region in order to maximize process economic benefits
accounting for various economic factors such as time-varying material and energy
pricing. However, in the case that the economically optimal regions include unsafe
operating conditions, the time-varying operation of EMPC without accounting for
safety region constraints may lead to unsafe operations when attempting to maxi-
mize process economic profits. The second case study considers the same chemical
process and demonstrates the impact of cyber-attacks that compromise one of the
sensor measurements. Specifically, the system is normally operated at a pre-specified
steady-state (either originally at the steady-state or forced to the steady-state from
another operating condition) under feedback-based trackingmodel predictive control
(MPC) with secure sensor measurements of process variables, e.g., temperature and
species concentration; however, it will be demonstrated that process stability is no
longer guaranteed in the sense that the system may deviate from the steady-state and
even leave the normal operating region when sensor measurements are tampered by
cyber-attacks. The two case studies indicate the importance of having advanced con-
trol systems that account for process operational safety and cybersecurity, and have
motivated much of the work contained in this book. The chemical process example
and the two case studies are provided below.


