

Advanced Multifunctional Lightweight Aerostructures

Design, Development, and Implementation

Kamran Behdinan and Rasool Moradi-Dastjerdi

Wiley-ASME Press Series

Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation Kamran Behdinan and Rasool Moradi-Dastjerdi.

Vibration Assisted Machinery: Theory, Modelling, and Applications

Li-Rong Zheng, Wanqun Chen, and Dehong Huo

Two-Phase Heat Transfer

Mirza Mohammed Shah

Computer Vision for Structural Dynamics and Health Monitoring

Dongming Feng, Maria Q Feng

Theory of Solid-Propellant Nonsteady Combustion

Vasily B. Novozhilov, Boris V. Novozhilov

Introduction to Plastics Engineering

Vijay K. Stokes

Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines Jamil Ghoiel

Offshore Compliant Platforms: Analysis, Design, and Experimental Studies

Srinivasan Chandrasekaran, R. Nagavinothini

Computer Aided Design and Manufacturing

Zhuming Bi, Xiaoqin Wang

Pumps and Compressors

Marc Borremans

Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and

Engineering Aspects

Bijan Kermani and Don Harrop

Design and Analysis of Centrifugal Compressors

Rene Van den Braembussche

Case Studies in Fluid Mechanics with Sensitivities to Governing Variables

M. Kemal Atesmen

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

J. Robert Mahan

Dynamics of Particles and Rigid Bodies: A Self-Learning Approach

Mohammed F. Daqaq

Primer on Engineering Standards, Expanded Textbook Edition

Maan H. Jawad and Owen R. Greulich

Engineering Optimization: Applications, Methods and Analysis

R. Russell Rhinehart

Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach

C. Ranganayakulu and Kankanhalli N. Seetharamu

Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation

Mou Chen, Shuyi Shao, and Peng Shi

Robot Manipulator Redundancy Resolution

Yunong Zhang and Long Jin

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components

Maan H. Jawad

 $Combined\ Cooling,\ Heating,\ and\ Power\ Systems:\ Modeling,\ Optimization,\ and\ Operation$

Yang Shi, Mingxi Liu, and Fang Fang

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine

Abram S. Dorfman

Bioprocessing Piping and Equipment Design: A Companion Guide for the ASME BPE Standard William M. (Bill) Huitt

Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments

R. Russell Rhinehart

Geothermal Heat Pump and Heat Engine Systems: Theory and Practice

Andrew D. Chiasson

Fundamentals of Mechanical Vibrations

Liang-Wu Cai

Introduction to Dynamics and Control in Mechanical Engineering Systems

Cho W.S. To

Advanced Multifunctional Lightweight Aerostructures

Design, Development, and Implementation

Kamran Behdinan and Rasool Moradi-Dastjerdi University of Toronto, Toronto, Canada

This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.

© 2021 John Wiley & Sons Ltd

This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Kamran Behdinan and Rasool Moradi-Dastjerdi to be identified as the authors of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Behdinan, Kamran, 1961- editor. | Moradi-Dastjerdi, Rasool, 1984-editor. | John Wiley & Sons, Inc., publisher.

Title: Advanced multifunctional lightweight aerostructures: design, development, and implementation / Kamran Behdinan and Rasool Moradi-Dastjerdi, University of Toronto.

Other titles: Wiley-ASME Press series.

Description: First edition. | Hoboken, NJ : John Wiley & Sons, Inc., 2021. | Series: Wiley—ASME Press Series | Includes bibliographical references and index.

Identifiers: LCCN 2020033775 (print) | LCCN 2020033776 (ebook) | ISBN 9781119756712 (cloth) | ISBN 9781119756729 (adobe pdf) | ISBN 9781119756736 (epub)

Subjects: LCSH: Airplanes—Design and construction. | Lightweight construction. | Aerospace engineering.

Classification: LCC TL671.2 .A3195 2021 (print) | LCC TL671.2 (ebook) | DDC 629.134/1–dc23

LC record available at https://lccn.loc.gov/2020033775

LC ebook record available at https://lccn.loc.gov/2020033776

Cover Design: Wiley

Cover Image: © guvendemir/Shutterstock

Set in 9.5/12.5pt STIXTwoText by SPi Global, Chennai, India

Professor Kamran Behdinan affectionately dedicates this book to his wife, Nasrin, without her love, patience and sacrifices, this and much else would not be possible, and to his dear daughters, Dr. Tina Behdinan and Dr. Asha Behdinan, for their love and unwavering support.

Dr. Rasool Moradi-Dastjerdi warmly dedicates this book to his wife, Arezou, and to his parents for their encouragement, love, and unlimited support.

Contents

Preface xii

2.4

Results and Discussion 31

	Biographies xv
	Part I Multi-Disciplinary Modeling and Characterization 1
1	Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate 3 Rasool Moradi-Dastjerdi and Kamran Behdinan
1.1	Introduction 3
1.2	Modeling of 5LMSSP 5
1.2.1	Porous Layer 7
1.2.2	Nanocomposite Layers 7
1.2.3	Governing Equations 8
1.3	Mesh-Free Solution 10
1.3.1	MLS Shape Function 10
1.3.2	Discretization of Domain 11
1.3.3	Essential Boundary Conditions (Mechanical Supports) 12
1.4	Numerical Results 13
1.4.1	Validation 13
1.4.2	Static Deflections in 5LMSSPs 15
1.5	Conclusions 21
	References 21
2	Heat Transfer Behavior of Graphene-Reinforced Nanocomposite
	Sandwich Cylinders 25
	Kamran Behdinan and Rasool Moradi-Dastjerdi
2.1	Introduction 25
2.2	Modeling of Sandwich Cylinders 27
2.2.1	Dispersion of Graphene Sheets 27
2.2.2	Thermal Properties 29
2.2.3	Governing Thermal Equations 29
2.3	Mesh-Free Formulations 30

Contents	
2.4.1	Thermal Conductivity of Graphene/PE Nanocomposite 32
2.4.2	Verification 32
2.4.3	Heat Transfer Response 33
2.5	Conclusions 36
	References 40
3	Multiscale Methods for Lightweight Structure and Material Characterization 43
	Vincent Iacobellis and Kamran Behdinan
3.1	Introduction 43
3.2	Overview of Multiscale Methodologies and Applications 44
3.2.1	Hierarchical Methods 44
3.2.2	Concurrent Methods 45
3.3	Bridging Cell Method 46
3.4	Applications 48
3.4.1	Crack Propagation in Nickel Single Crystals 48
3.4.2	Aluminum–Carbon Nanotube Nanocomposite 50
3.4.3	Ceramic Composites 52
3.5	Multiscale Modeling of Lightweight Composites 55
3.5.1	Nano to Microscale: BCM 56
3.5.2	Micro to Macroscale: Cohesive Zone Modeling 58
3.6	Conclusion 61
	References 61
4	Characterization of Ultra-High Temperature and Polymorphic
	Ceramics 67
	Ali Radhi and Kamran Behdinan
4.1	Introduction 67
4.2	Crystalline Characterization of UHTCs 69
4.3	Chemical Characterization of a UHTC Composite 71
4.4	Polymeric Ceramic Crystalline Characterization 75
4.5	Multiscale Characterization of the Anatase–Rutile Transformation 78
4.6	Conclusion 85
	References 86
	Part II Multifunctional Lightweight Aerostructure Applications 91
5	Design Optimization of Multifunctional Aerospace Structures 93
	Mohsen Rahmani and Kamran Behdinan
5.1	Introduction 93
5.2	Multifunctional Structures 94
5.3	Computational Design and Optimization 95
5.4	Applications 98
5.4.1	Design Optimization of a Novel NLG Shimmy Damper 98

viii

5.5	Conclusions 106
	References 106
6	Dynamic Modeling and Analysis of Nonlinear Flexible Rotors
	Supported by Viscoelastic Bearings 109
	Mohammed Khair Al-Solihat and Kamran Behdinan
6.1	Introduction 109
6.2	Dynamic Modeling 110
6.2.1	Equations of Motion and Method of Solution 112
6.2.2	Force Transmissibility 113
6.2.3	Method of Solution 114
6.3	Free Vibration Characteristics 114
6.4	Nonlinear Frequency Response 115
6.5	Conclusions 120
	References 121
7	Modeling and Experimentation of Temperature Calculations for Belt
,	Drive Transmission Systems in the Aviation Industry 123
	Xingchen Liu and Kamran Behdinan
7.1	Introduction 123
7.1	Analytical–Numerical Thermal Model 125
7.2.1	Creation of the Analytical Thermal Model 125
7.2.1	Belt Thermal Analysis 128
7.2.2	Heat Exchange at the Pulley–Belt Contact Surfaces 129
7.2.3	Pulley Internal Thermal Analysis 129
7.2.4.1	Mathematical Algorithm 129
7.2.4.2	Numerical Method 133
7.2.5	Overall Structure 137
7.2.3	Experimental Setup 139
7.3.1	Operating Conditions 139
7.3.2	Belt Drive Layout 139
7.3.3	Equipment Setup 139
7.4	Results and Discussion 140
7.4.1	Verification of the Belt's Uniform Temperature 141
7.4.2	Verification of Curve of $E_n(\omega_{pn})$ 141
7.4.3	Model Verification 144
7.4.4	Temperature Plot Verification 145
7.5	Conclusion 146
7.5	References 147
8	An Efficient Far-Field Noise Prediction Framework for the Next
	Generation of Aircraft Landing Gear Designs 151
	Sultan Alqash and Kamran Behdinan
8.1	Introduction and Background 151
8.1.1	Numerical Landing Gear Aeroacoustics 153

х	Contents		
	8.1.2	Problem Statement 154	
	8.2	Modeling and Numerical Method 155	
8.2.1		Hybrid Computational Aeroacoustic Method 155	
	8.2.2	Near-Field Flow Numerical Method 155	
	8.2.3	Far-Field Acoustic Numerical Method 157	
	8.2.3.1	Acoustic Analogies Formulation 157	
	8.2.3.2	Ffowcs Williams and Hawkings Equation 159	
	8.2.4	The Motivation of the Multiple Two-Dimensional Simulations Method 160	
	8.2.5	New Approach for Noise Calculation at the Far-Field of LG 160	
	8.3	Implementation of the Multiple Two-Dimensional Simulations Method 163	
		2D CFD Setup 163	
	8.3.2	Computation of Acoustic at Far-Field 165	
	8.4	Results and Discussion 170	
	8.4.1	The Effects of the Receiver Locations 170	
	8.4.2	The Effects of the Acoustic Source 172	
	8.4.3	The LAGOON NLG Overall Far-Field Acoustic Results 174	
	8.5	Summary and Conclusions 179	
	References 181		
	9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph		
		Theory 187	
		Seyed Ehsan Mir-Haidari and Kamran Behdinan	
9.1 Introduction <i>187</i>		Introduction 187	
	9.2	Overview of TPA Methodologies 188	
9.2.1 Measuring Interface Loads Using the Classical TPA Approach 189			
	9.2.1.1 Mount Stiffness Measurement Technique 189		
	9.2.1.2 Matrix Inversion Method 190		
	9.2.2 Operational Path Analysis 190		
	9.2.2.1	OPA Theory 191	
	9.2.3 OPAX Method <i>192</i>		
	9.2.4	Global Transfer Direct Transfer TPA Method 192	
	9.2.5	Bond Graph TPA Method 193	
	9.3	Bond Graph Formulation 194	
9.3.1 Developing Bond Graphs 194			
	9.4	Bond Graph Modeling of an Aeroengine 196	
	9.4.1	Reduced Aeroengine Model 196	
	9.4.2	Aeroengine Bond Graph 197	
	9.4.3	State Space Equation of the Reduced Aeroengine 198	
	9.4.4	Sample Calculation: Output and Direct Transmissibility Matrices 200	
	9.5	Transmissibility Principle 204	
	9.6	Bond Graph Transfer Function 204	
	9.7	Aeroengine Global Transmissibility Formulation 205	
	9.8	Design Guidelines to Minimize Vibration Transfer 208	
	9.9	Conclusion 212	
		References 212	

10	Structural Health Monitoring of Aeroengines Using Transmissibility			
	and Bond Graph Methodology 215			
	Seyed Ehsan Mir-Haidari and Kamran Behdinan			
10.1	Introduction 215			
10.2	Fundamentals of Transmissibility Functions 219			
10.3	Bond Graphs 220			
10.3.1	Bond Graph Theory 220			
10.3.2	Graphical Representation and Modeling of Bond Graphs 221			
10.3.3	Determination of State-Space Equations Using Bond Graph Theory 221			
10.3.4	Determination of Transmissibility Functions Using the Bond Graph			
	Concept 222			
10.4	Structural Health Monitoring Damage Indicator Factors 223			
10.5	Aircraft Aeroengine Parametric Modeling 223			
10.6	Results and Discussion 225			
10.7	Conclusion 234			
	References 235			

Index 237

Preface

In the aerospace industry, innovative designs, which can simultaneously address concerns about safety and fuel efficiency, have created demands for novel materials and structures. These demands have persuaded researchers to propose and investigate advanced structures made of multifunctional lightweight materials. Some notable mentions include porous, composite, nanocomposite, ultra-high temperature ceramic, piezoelectric, and functionally graded materials.

In the design of aerostructures, strength to weight ratio is the key point where the use of lightweight materials results in a considerable reduction in structural weight. However, the decrease of structural strength usually comes with an ordinary reduction in the weight of the utilized materials such as embedding porosity, or use of lighter materials. This reduction in the structural strength can be compensated using multifunctional materials or by improving the design of the structures. These facts were the key drivers in the development of new lightweight technologies where traditional composite materials as lightweight materials have seen greater integration into aerostructure applications over the past two decades. Furthermore, the introduction of nanotechnology into the design of composite materials presents another leap in the increasing effort to reduce weight and tailor the material properties to suit specific aerostructure applications. In this new generation of composites, nanoscale fillers highly affect the overall properties of the resulting nanocomposite materials.

Another class of multifunctional materials which can have specific applications in the aerospace industry are piezoelectric materials. Employing piezoelectric components with the ability to convert electrical charge to mechanical load or vice versa provides self-controlling property with fast response for the whole structure. This converting ability also provides the benefit of harvesting energy, strain measurements, and damage detection in the structures.

Moreover, aerostructures are mainly subjected to either mechanical or thermal loads where ceramic materials can be prospective candidates. Among them, ultra-high temperature ceramics are an advanced class of material that experience superior structural and thermal stability, reaching temperature over 3000 °C without a noticeable sacrifice in strength.

In aerostructures, the use of architected structures along with multifunctional lightweight materials has opened up possibilities for designs previously unimaginable. The analysis of such advanced materials and structures necessitates the application of novel methods which are precise, reliable, and computationally efficient. The necessity

of utilizing advanced methods complement complex geometrical shapes, different applied loads, a multi-physics environment, and a wide range of scales from nano up to macro scales.

To cover recent developments about the aforementioned concerns and their most exciting aspects, this book is divided into two parts with 10 chapters overall where the state of the art in the respective fields are comprehensively discussed.

The first part deals with multi-disciplinary modeling and characterization of some advanced materials and structures by developing new methods. This part is composed of four chapters. Specifically, layer arrangement impact on deflections of a proposed five-layer smart sandwich plate subjected to electromechanical loads is investigated in Chapter 1. The layers of the sandwich plates are assumed to be made of three different advanced multifunctional materials including porous, graphene-reinforced nanocomposite, and piezoelectric materials. In Chapter 2, heat transfer analysis of sandwich cylinders consisting of a polymeric core and functionally graded graphene-reinforced faces is studied. Chapter 3 presents the application of a new multiscale approach in the modeling and design of lightweight materials and structures that demonstrate complex phenomena that span multiple spatial and temporal scales. In Chapter 4, chemical kinetics and the multiscale characterization of crystallinity in ultra-high temperature ceramics, polymorphic structures and their composites are described.

In the second part of this book, behaviors of some critical parts of aircraft are discussed as practical benchmark problems. Chapter 5 presents an optimization study on the design of a novel shimmy damper mechanism for aircraft nose landing gears as a practical case in aerostructures. In Chapter 6, a widely used component of helicopters, jet engines and aircraft, a flexible rotor supported by viscoelastic bearings, is modeled to study its nonlinear dynamic behavior. Chapter 7 proposes an innovative analytical-numerical method to efficiently predict the real-time temperature of belt drive systems. Chapter 8 develops an efficient and reliable physics-based approach to predict noise at the far-field of a nose landing gear of an aircraft. Another important part of aircraft is the aeroengine. In the aeroengine, the vibrations and noises can be transferred to the aircraft fuselage and this transmissibility significantly affects the aircraft crew and passenger comfort and safety. In this regard, Chapter 9 develops and implements a reliable analytical transmissibility method to analyze and investigate the vibration energy propagation in an aeroengine structure. This method results in design guidelines which can significantly reduce the development costs as well as the ability of addressing noise and vibration problems in the structure. Chapter 10 also utilizes the developed method in Chapter 9 to perform structural health monitoring to detect and classify the importance of defects and damage in the considered aeroengine using the obtained frequency response functions. Accordingly, this chapter proposes design guidelines which significantly improve the reliability and operational lifetime of the aeroengine at the lowest possible cost.

This book delivers extensive updated investigations and information to address the latest demands for the effective and efficient design and precise characterization of advanced multifunctional lightweight aerostructures. The authors believe that it is a comprehensive and useful reference for graduate students who want to increase their knowledge. This book provides innovative and practical solutions for active engineers, especially in the aerospace

xiv | Preface

industry, who are looking for alternative materials, structures or methodologies to solve their current problems.

All contributions to this book are the result of years of research and development conducted by the research team under the direct supervision of the principal investigator, Professor Kamran Behdinan, in the Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS) at the University of Toronto. We would like to acknowledge the funding received from the Canadian Foundation for Innovation as well as the Natural Science Engineering Research Council of Canada in support of the ARL-MLS facilities and training of highly qualified personnel. Furthermore, we wish to take this opportunity to sincerely express our appreciation to the ARL-MLS graduate students and postdoctoral fellows for their outstanding research in addressing problems of utmost significance to the aerospace research community/industry in the field of advanced multifunctional lightweight aerostructures. Their informative contributions have allowed our ideas and dreams to become a reality in this book. We are also grateful to Wiley and its team of editors for helping us to finalize this book.

Toronto, June 2020

Kamran Behdinan Rasool Moradi-Dastjerdi

Biographies

Professor Kamran Behdinan

Professor Behdinan earned his PhD in Mechanical Engineering from the University of Victoria in British Columbia in 1996 and has considerable experience in both academic and industrial settings. He was appointed to the academic staff of Ryerson University in 1998, tenured and promoted to the level of associate professor in 2002 and subsequently to the level of professor in 2007 and served as the director of the aerospace engineering program (2002-2003), and the founding Chair of the newly established Department of Aerospace Engineering (July 2003-July 2011). Professor Behdinan was a founding member and the Executive Director of the Ryerson Institute for Aerospace Design and Innovation (2003-2011). He was also a founding member and the coordinator of the Canadian-European Graduate Student Exchange Program in Aerospace Engineering at Ryerson University. He held the NSERC Design Chair in "Engineering Design and Innovation," 2010-2012, sponsored by Bombardier Aerospace and Pratt and Whitney Canada. He joined the Department of Mechanical and Industrial Engineering, University of Toronto, as a professor in September 2011. He is the NSERC Design Chair in "Multidisciplinary Design and Innovation - UT IMDI," sponsored by NSERC, University of Toronto, and 13 companies including Bombardier Aerospace, Pratt and Whitney Canada, United Technology Aerospace Systems, Magna International, Honeywell, SPP Canada Aircraft, Ford, and DRDC Toronto. He is the founding director of the "University of Toronto Institute for Multidisciplinary Design and Innovation," an industry-centered, project-based learning institute in partnership with major aerospace and automotive companies.

Professor Behdinan is a past President of the Canadian Society of Mechanical Engineering (CSME), and served as a member of the International Union of Theoretical and Applied Mechanics (IUTAM) – General Assembly and the IUTAM Canadian National Committee, and a member of technical and scholarship committees of the High-Performance Computing Virtual Laboratory (HPCVL). He is the founding director and principal investigator of the University of Toronto, Department of Mechanical and Industrial Engineering "Advanced Research Laboratory for Multifunctional Lightweight Structures," funded by the Canadian Foundation for Innovation as well as Ontario Research Fund. His research interests include Design and Development of Light-weight Structures and Systems for biomedical, aerospace, automotive, and nuclear applications, Multidisciplinary Design Optimization of Aerospace and Automotive Systems, Multi-scale Simulation of

Nano-structured Materials and Composites. He has supervised 32 PhDs, 120 Masters, and 40 Post-Doctoral Fellows and Scholars. He has also published more than 370 peer-reviewed journal and conference papers, and 9 book chapters. He has been the recipient of many prestigious awards and recognitions such as the Research Fellow of Pratt and Whitney Canada and Fellows of the CSME, ASME, the Canadian Academy of Engineering, EIC, AAAS, as well as Associate Fellow of AIAA.

Dr. Rasool Moradi-Dastjerdi

Dr. Moradi-Dastjerdi is currently a postdoctoral fellow in the Advanced Research Laboratory for Multifunctional Lightweight Structures at the University of Toronto. He obtained his PhD degree in Mechanics at Shahid Rajaee Teacher Training University, Tehran, Iran in 2016.

His research focuses on the coupled thermo-electro-mechanical analysis of smart multifunctional lightweight structures made of advanced materials such as piezoelectric materials, nanocomposites, functionally graded materials, and foams. He mainly utilizes advanced numerical methods including mesh-free and finite element methods. He has been an advisor for two PhD and six MSc theses. He has also contributed to more than 50 peer-reviewed journal papers. He was the recipient of the best researcher award from the Young Researcher and Elite Club of Isfahan Azad University in 2011, 2012, 2013, and 2016. Part I

Multi-Disciplinary Modeling and Characterization

1

Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate

Rasool Moradi-Dastjerdi and Kamran Behdinan

Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

1.1 Introduction

The reversible effect of piezoelectricity is the ability to generate electrical charge as a result of subjecting to mechanical loads. This active effect is observed in some specific materials called piezoelectric materials. Such active materials are usually employed as attachments or layers in passive structures to provide a self-controlling property with fast response in the resulting smart structures [1]. The application of such active materials mainly relies on their passive structures. In the design of aerostructures, weight and strength are two key points which can be addressed using sandwich structures as they generally contain a thick lightweight core for stabilizing the structures and two thin stiff faces to provide structural strength [2-4]. In this regard, attaching thin layers made of polymer base nanocomposites onto the faces of polymeric porous cores results in multifunctional sandwich structures [5]. Moreover, the use of such passive structures as the host of piezoceramic attachments reduces failure risks due to the brittle structure of piezoceramics. Depending on the application, a wide range of nanofillers with astonishing thermomechanical properties have been proposed and utilized in nanocomposites. Among them, the extraordinary nanofillers of graphene and carbon nanotubes (CNTs) have aroused the interest of researchers in both academia and industry [6-8]. Although there are different parameters in the electromechanical design of five-layer multifunctional smart sandwich plates (5LMSSPs), protecting brittle layers of piezoceramic is also an important issue. Changing the location of piezoceramic layers from faces to middle layers (i.e. between porous core and nanocomposite faces) provides protecting layers. This change in layer arrangements can affect both the mechanical and electrical response of such structures.

In recent literature, different passive structures have been considered as host for piezoelectric sensors/actuators to introduce smart structures with potential applications in energy harvesters [9], noise and vibration reduction [10], fluid delivery [11, 12] and structural damage monitoring [13] where piezoelectricity plays an essential role. In these structures, piezoelectric components come as attached pieces, separate layers or

(nano)fillers. Askeri et al. [14] proposed attaching two lead zirconate titanate (PZT) layers on the faces of a transversely isotropic nonpiezoelectric plate to introduce a smart plate. Functionally graded (FG) metal/ceramic materials, as advanced materials, have been considered as the passive part of smart structures activated by piezoelectric materials. In this regard, passive plates and shells made of such FG materials and PZT-activated layer(s) were considered under thermo-electro-mechanical loads to study their nonlinear dynamic responses in [15-17]. The deflections of FG titanium/aluminum oxide plates integrated between PZT faces under static and dynamic electromechanical loads were presented in [18]. Khoa et al. [19] covered the outer layer of imperfect FG metal/ceramic cylindrical shells with a PZT layer and studied its buckling resistance. In another setting, laminated composites have been also employed as the passive part of piezoelectric activated smart structures. Talebitooti et al. [20] considered such plates covered with PZT sensor and actuator layers to optimally control the vibrations of the obtained smart plates using a feedback algorithm. By developing an isogeometric finite element method (FEM), Phung-Van et al. [21] aimed to outline the static deflections and vibrations of the same composite plates actuated by PZT layers. To reduce structural weight, nanocomposite materials have also been used as the host of piezoelectric actuated smart structures. In addition, there are different types of nanofillers that can be utilized in specific applications. The use of composite plates enhanced with wavy CNTs and carbon fibers as the multifunctional host of two piezoelectric patches was proposed by Kundalwal et al. [10]. They utilized piezoelectric patches made of piezoceramic fibers embedded in a polymer to provide smart damping property for host plates. Mohammadimehr et al. [22] employed nanofillers of CNTs and piezoelectric nanotubes of boron nitride in passive and active polymers and considered double sandwich plates. They presented the vibration behaviors of such smart structures subjected to magnetic and electric fields. Moradi-Dastjerdi et al. [23] proposed the use of nanocomposite plates enhanced with nanoclays in aggregated and intercalated forms as the passive layers of a smart plate with two PZT faces. Arani et al. [24] utilized two piezoelectric faces made of polyvinylidene fluoride to control the frequencies of CNT/polymer microplates under magnetic field and located on an elastic foundation. Malekzadeh et al. [25] considered a graphene/polymer multi-layered circular plate with a randomly located hole activated with two PZT faces and outlined its vibration behavior. For further reduction of structural weight in the passive layer, porous material can be utilized. Jabbari et al. [26, 27] suggested the use of circular plates with FG dispersions of embedded porosities for passive layers activated by attaching two PZT faces and investigated the stability resistances of the obtained smart circular plates. Askari et al. [28] considered rectangular plates with FG patterns of porosity dispersion between two PZT faces to determine porosity impact on the natural frequencies of the resulted active plates. Barati and Zenkour [29] studied the vibrations of active porous plates made of an FG mixture of two different piezoceramics. Mohammadi et al. [30] considered aluminum cylindrical pressure vessels with three patterns of porosity dispersion integrated between two inner and outer PZT faces as sensor and actuator. They presented the electromechanical responses of such smart pressure vessels located in elastic media. In a more advanced setting of smart structures, the combination of nanocomposite and porous materials have been utilized as multifunctional passive structures. Nguyen et al. [31, 32] proposed three-layer smart sandwich plates with a metal porous layer enhanced with graphene platelets (GPLs) as a

passive core integrated between two active PZT faces. They considered FG patterns for the dispersions of GPLs and porosities in the passive layer and obtianed two different sets of results including vibrational response and its active control using PZT layers. However, GPLs in the core layer of these three-layer smart plates interfere with the electrical charge and potential field obtained in PZT faces. In addition, according to the concept of sandwich panels, the use of separated layers of nanocomposite and porous materials leads to five-layer multifunctional smart panels with higher structural stiffness to weight ratio. In these regards, Setoodeh et al. [33] proposed such five-layer smart curved shells including two PZT faces, two CNT-enhanced nanocomposite middle layers and one porous core with FG patterns for the dispersions of nanofillers and porosities. Another set of five-layer smart plates including PZT faces, graphene/polymer middle layers and porous core were also proposed and thermo-electro-mechanical behaviors of such 5LMSSPs are presented in [34-37].

Five-layer multifunctional smart sandwich plates with layers made of porous, GPL/polymer and PZT have been proposed in the literature. However, considering piezoceramic layers as the faces of such plates is a challenging point because of their brittle nature. Therefore, in this work, a comparison study has been conducted to explore the impact of changing the location of piezoceramic layers from faces to middle layers on the electromechanical performances of 5LMSSPs. In this regard, a mesh-free solution has been developed based on Reddy's third-order shear deformation theory (TSDT). Moreover, Halpin-Tsai equations with the ability to capture the shape of nanofillers are employed to define the mechanical properties of GPL/polymer nanocomposite layers. In addition to the impact of layer arrangement, the effects of GPL volume and dispersion, porosity volume and the thickness of each layer are investigated in this chapter.

Modeling of 5LMSSP 1.2

The considered multifunctional smart sandwich plates have five layers including one porous, two piezoelectric and two GPL-reinforced nanocomposite layers to provide a wide range of industrial applications. There is no doubt in the use of a porous layer as the core because embedding porosity in the core results in a remarkable structural weight reduction without a significant loss of structural stiffness. However, the locations of nanocomposite and piezoelectric layers could be changed based on the operating conditions of 5LMSSPs. As shown in Figure 1.1, two different layer arrangements have been examined: case I, considering piezoceramics as faces; and case II, considering nanocomposite layers as the faces of 5LMSSP to protect the piezoelectric from environmental and loading issues. In both cases, 5LMSSPs are assumed under a uniform mechanical pressure f_0 on their top faces. In addition, the piezoelectric layers are subjected to an electrical input such that their outer faces are connected to a uniform voltage V_0 and their inner faces are grounded to provide a voltage difference of V_0 through the thickness of each piezoelectric layer. In this chapter, square 5LMSSPs with side length of a and thickness of h are considered. The thicknesses of porous, piezoelectric and nanocomposite layers are represented by h_c , h_p , and h_n , respectively.

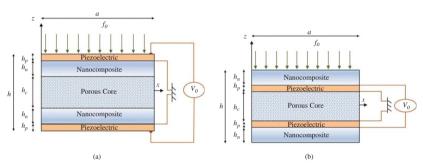


Figure 1.1 Two different layer arrangements of the considered five-layer sandwich plates with one porous, two piezoelectric and two GPL-reinforced nanocomposite layers: (a) 5LMSSP case I; and (b) 5LMSSP case II.

1.2.1 **Porous Layer**

Embedding pores in a body affects the material properties of the host body. In this chapter, the distribution of pores is considered as a symmetric profile through the thickness of the core layer such that the outer faces of the core i.e. $z = \pm h_c/2$ has no pores, but the highest volume of pores is located at z = 0. Using Gaussian random field technique [38], Young's modulus E^p , density ρ^p and Poisson's ratio v^p of such porous layer can be estimated as [31]:

$$E^{p}(z) = \left(1 - q_0 \cos\left(\frac{\pi z}{h_c}\right)\right) E^{m} \tag{1.1}$$

$$\rho^{p}(z) = \left(1 - q_{m} \cos\left(\frac{\pi z}{h_{c}}\right)\right) \rho^{m} \tag{1.2}$$

$$v^{p}(z) = 0.221\beta + v^{m}(0.342\beta^{2} - 1.21\beta + 1)$$
(1.3)

where superscripts m and p show the corresponding properties of perfect polymeric $(q_0 = 0)$ and porous $(q_0 \neq 0)$ core layer, respectively. In addition, q_0 is the porosity parameter which implies the porosity volume fraction of the core layer. q_m and β are determined as [31]:

$$q_m = \frac{1.121(1 - \sqrt[23]{1 - q_0 \cos(\pi z/h_c)})}{\cos(\pi z/h_c)}$$
(1.4)

$$\beta = 1 - \rho^p / \rho^m = q_m \cos(\pi z / h_c) \tag{1.5}$$

1.2.2 **Nanocomposite Layers**

Graphene platelets are assumed to be dispersed with functionally graded patterns in nanocomposite layers to optimize the volume of GPLs and to improve the structural performance of 5LMSSPs. The FG patterns of nanofillers in cases I and II can be described as the functions of GPL volume fraction V_r versus z location as follows [35]:

Case I:

Upper nanocomposite layer:
$$V_r(z) = [(2z - h_c)/2h_n]^p \times V_r^*$$
 (1.6)

Lower nanocomposite layer:
$$V_r(z) = [-(2z + h_c)/2h_n]^p \times V_r^*$$
 (1.7)

Case II:

Upper nanocomposite layer:
$$V_r(z) = [(2z - 2h_p - h_c)/2h_n]^p \times V_r^*$$
 (1.8)

Lower nanocomposite layer:
$$V_r(z) = \left[-(2z + 2h_p + h_c)/2h_n\right]^p \times V_r^*$$
 (1.9)

where V_r^* is the specific GPL volume fraction and p is the exponent of GPL volume fraction which controls the profile of GPL dispersion. The dispersion profiles of GPLs through the thickness of the considered 5LMSSP are illustrated in Figure 1.2.

To determine the effective mechanical properties of nanocomposite layers, Halpin-Tsai's approach [39, 40] capable of considering the rectangular shape of GPLs is employed.

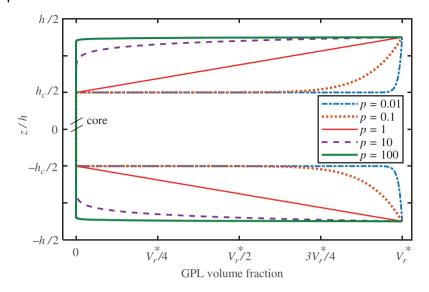


Figure 1.2 The dispersion profiles of GPLs through the thickness.

According to this approach, the effective Young's modulus of GPL/polymer nanocomposite is estimated as follows [39, 40]:

$$E(z) = \frac{3}{8} \left[\frac{1 + 2(a^g/h^g) \gamma_{11}^g V_r}{1 - \gamma_{11}^g V_r} \right] E^m + \frac{5}{8} \left[\frac{1 + 2(b^g/h^g) \gamma_{22}^g V_r}{1 - \gamma_{22}^g V_r} \right] E^m$$
 (1.10)

where

$$\gamma_{11}^{g} = \frac{E^{g}/E^{m} - 1}{E^{g}/E^{m} + 2a^{g}/h^{g}}, \gamma_{22}^{g} = \frac{E^{g}/E^{m} - 1}{E^{g}/E^{m} + 2b^{g}/h^{g}}$$
(1.11)

where E^g and E^m are the Young's moduli of GPL and polymeric matrix, respectively. Moreover, a^g , b^g , and h^g are the geometrical dimensions of GPL, respectively.

1.2.3 Governing Equations

To calculate the energy function of the considered 5LMSSPs, displacement field is needed to be defined by a plate theory. It is well established that the increase of the order of plate theory makes the theory more applicable to thicker plates. Therefore, an efficient TSDT reported by Reddy [41] is utilized to determine x, y and z components of displacement field (i.e. u, v, and w) in 5LMSSPs as:

$$\begin{split} u(x,y,z) &= u_0(x,y) + z\,\theta_x(x,y) + z^3c_1(\theta_x + w_{0,x}) \\ v(x,y,z) &= v_0(x,y) + z\,\theta_y(x,y) + z^3c_1(\theta_y + w_{0,y}) \\ w(x,y,z) &= w_0(x,y) \end{split} \tag{1.12}$$

where $c_1 = -4/3h^2$ and θ_x and θ_y are the rotations of mid-plane around the y and x axes, respectively. As Eq. (1.12) shows, the utilized plate theory has only five unknowns which is