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Preface

In the aerospace industry, innovative designs, which can simultaneously address concerns
about safety and fuel efficiency, have created demands for novel materials and structures.
These demands have persuaded researchers to propose and investigate advanced structures
made of multifunctional lightweight materials. Some notable mentions include porous,
composite, nanocomposite, ultra-high temperature ceramic, piezoelectric, and functionally
graded materials.

In the design of aerostructures, strength to weight ratio is the key point where the use
of lightweight materials results in a considerable reduction in structural weight. However,
the decrease of structural strength usually comes with an ordinary reduction in the weight
of the utilized materials such as embedding porosity, or use of lighter materials. This
reduction in the structural strength can be compensated using multifunctional materials
or by improving the design of the structures. These facts were the key drivers in the
development of new lightweight technologies where traditional composite materials as
lightweight materials have seen greater integration into aerostructure applications over
the past two decades. Furthermore, the introduction of nanotechnology into the design
of composite materials presents another leap in the increasing effort to reduce weight
and tailor the material properties to suit specific aerostructure applications. In this new
generation of composites, nanoscale fillers highly affect the overall properties of the
resulting nanocomposite materials.

Another class of multifunctional materials which can have specific applications in
the aerospace industry are piezoelectric materials. Employing piezoelectric components
with the ability to convert electrical charge to mechanical load or vice versa provides
self-controlling property with fast response for the whole structure. This converting ability
also provides the benefit of harvesting energy, strain measurements, and damage detection
in the structures.

Moreover, aerostructures are mainly subjected to either mechanical or thermal loads
where ceramic materials can be prospective candidates. Among them, ultra-high tempera-
ture ceramics are an advanced class of material that experience superior structural and ther-
mal stability, reaching temperature over 3000 ∘C without a noticeable sacrifice in strength.

In aerostructures, the use of architected structures along with multifunctional
lightweight materials has opened up possibilities for designs previously unimagin-
able. The analysis of such advanced materials and structures necessitates the application
of novel methods which are precise, reliable, and computationally efficient. The necessity
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of utilizing advanced methods complement complex geometrical shapes, different applied
loads, a multi-physics environment, and a wide range of scales from nano up to macro
scales.

To cover recent developments about the aforementioned concerns and their most exciting
aspects, this book is divided into two parts with 10 chapters overall where the state of the
art in the respective fields are comprehensively discussed.

The first part deals with multi-disciplinary modeling and characterization of some
advanced materials and structures by developing new methods. This part is composed
of four chapters. Specifically, layer arrangement impact on deflections of a proposed
five-layer smart sandwich plate subjected to electromechanical loads is investigated in
Chapter 1. The layers of the sandwich plates are assumed to be made of three different
advanced multifunctional materials including porous, graphene-reinforced nanocom-
posite, and piezoelectric materials. In Chapter 2, heat transfer analysis of sandwich
cylinders consisting of a polymeric core and functionally graded graphene-reinforced
faces is studied. Chapter 3 presents the application of a new multiscale approach in the
modeling and design of lightweight materials and structures that demonstrate complex
phenomena that span multiple spatial and temporal scales. In Chapter 4, chemical kinetics
and the multiscale characterization of crystallinity in ultra-high temperature ceramics,
polymorphic structures and their composites are described.

In the second part of this book, behaviors of some critical parts of aircraft are discussed
as practical benchmark problems. Chapter 5 presents an optimization study on the design
of a novel shimmy damper mechanism for aircraft nose landing gears as a practical case in
aerostructures. In Chapter 6, a widely used component of helicopters, jet engines and air-
craft, a flexible rotor supported by viscoelastic bearings, is modeled to study its nonlinear
dynamic behavior. Chapter 7 proposes an innovative analytical–numerical method to effi-
ciently predict the real-time temperature of belt drive systems. Chapter 8 develops an effi-
cient and reliable physics-based approach to predict noise at the far-field of a nose landing
gear of an aircraft. Another important part of aircraft is the aeroengine. In the aeroengine,
the vibrations and noises can be transferred to the aircraft fuselage and this transmissibil-
ity significantly affects the aircraft crew and passenger comfort and safety. In this regard,
Chapter 9 develops and implements a reliable analytical transmissibility method to analyze
and investigate the vibration energy propagation in an aeroengine structure. This method
results in design guidelines which can significantly reduce the development costs as well as
the ability of addressing noise and vibration problems in the structure. Chapter 10 also uti-
lizes the developed method in Chapter 9 to perform structural health monitoring to detect
and classify the importance of defects and damage in the considered aeroengine using the
obtained frequency response functions. Accordingly, this chapter proposes design guide-
lines which significantly improve the reliability and operational lifetime of the aeroengine
at the lowest possible cost.

This book delivers extensive updated investigations and information to address the lat-
est demands for the effective and efficient design and precise characterization of advanced
multifunctional lightweight aerostructures. The authors believe that it is a comprehensive
and useful reference for graduate students who want to increase their knowledge. This book
provides innovative and practical solutions for active engineers, especially in the aerospace
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industry, who are looking for alternative materials, structures or methodologies to solve
their current problems.

All contributions to this book are the result of years of research and development
conducted by the research team under the direct supervision of the principal investigator,
Professor Kamran Behdinan, in the Advanced Research Laboratory for Multifunctional
Lightweight Structures (ARL-MLS) at the University of Toronto. We would like to acknowl-
edge the funding received from the Canadian Foundation for Innovation as well as the
Natural Science Engineering Research Council of Canada in support of the ARL-MLS
facilities and training of highly qualified personnel. Furthermore, we wish to take this
opportunity to sincerely express our appreciation to the ARL-MLS graduate students
and postdoctoral fellows for their outstanding research in addressing problems of utmost
significance to the aerospace research community/industry in the field of advanced
multifunctional lightweight aerostructures. Their informative contributions have allowed
our ideas and dreams to become a reality in this book. We are also grateful to Wiley and its
team of editors for helping us to finalize this book.

Toronto, June 2020 Kamran Behdinan
Rasool Moradi-Dastjerdi
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1

Layer Arrangement Impact on the Electromechanical
Performance of a Five-Layer Multifunctional Smart
Sandwich Plate
Rasool Moradi-Dastjerdi and Kamran Behdinan

Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical &
Industrial Engineering, University of Toronto, Toronto, Canada

1.1 Introduction

The reversible effect of piezoelectricity is the ability to generate electrical charge as a result
of subjecting to mechanical loads. This active effect is observed in some specific materials
called piezoelectric materials. Such active materials are usually employed as attachments
or layers in passive structures to provide a self-controlling property with fast response in
the resulting smart structures [1]. The application of such active materials mainly relies on
their passive structures. In the design of aerostructures, weight and strength are two key
points which can be addressed using sandwich structures as they generally contain a thick
lightweight core for stabilizing the structures and two thin stiff faces to provide structural
strength [2–4]. In this regard, attaching thin layers made of polymer base nanocomposites
onto the faces of polymeric porous cores results in multifunctional sandwich structures [5].
Moreover, the use of such passive structures as the host of piezoceramic attachments
reduces failure risks due to the brittle structure of piezoceramics. Depending on the
application, a wide range of nanofillers with astonishing thermomechanical properties
have been proposed and utilized in nanocomposites. Among them, the extraordinary
nanofillers of graphene and carbon nanotubes (CNTs) have aroused the interest of
researchers in both academia and industry [6–8]. Although there are different parameters
in the electromechanical design of five-layer multifunctional smart sandwich plates
(5LMSSPs), protecting brittle layers of piezoceramic is also an important issue. Changing
the location of piezoceramic layers from faces to middle layers (i.e. between porous core
and nanocomposite faces) provides protecting layers. This change in layer arrangements
can affect both the mechanical and electrical response of such structures.

In recent literature, different passive structures have been considered as host for
piezoelectric sensors/actuators to introduce smart structures with potential applications
in energy harvesters [9], noise and vibration reduction [10], fluid delivery [11, 12] and
structural damage monitoring [13] where piezoelectricity plays an essential role. In
these structures, piezoelectric components come as attached pieces, separate layers or

Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation,
First Edition. Kamran Behdinan and Rasool Moradi-Dastjerdi.
© 2021 John Wiley & Sons Ltd. This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.
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(nano)fillers. Askeri et al. [14] proposed attaching two lead zirconate titanate (PZT) layers
on the faces of a transversely isotropic nonpiezoelectric plate to introduce a smart plate.
Functionally graded (FG) metal/ceramic materials, as advanced materials, have been
considered as the passive part of smart structures activated by piezoelectric materials. In
this regard, passive plates and shells made of such FG materials and PZT-activated layer(s)
were considered under thermo-electro-mechanical loads to study their nonlinear dynamic
responses in [15–17]. The deflections of FG titanium/aluminum oxide plates integrated
between PZT faces under static and dynamic electromechanical loads were presented
in [18]. Khoa et al. [19] covered the outer layer of imperfect FG metal/ceramic cylindrical
shells with a PZT layer and studied its buckling resistance. In another setting, laminated
composites have been also employed as the passive part of piezoelectric activated smart
structures. Talebitooti et al. [20] considered such plates covered with PZT sensor and
actuator layers to optimally control the vibrations of the obtained smart plates using a feed-
back algorithm. By developing an isogeometric finite element method (FEM), Phung-Van
et al. [21] aimed to outline the static deflections and vibrations of the same composite
plates actuated by PZT layers. To reduce structural weight, nanocomposite materials have
also been used as the host of piezoelectric actuated smart structures. In addition, there
are different types of nanofillers that can be utilized in specific applications. The use of
composite plates enhanced with wavy CNTs and carbon fibers as the multifunctional
host of two piezoelectric patches was proposed by Kundalwal et al. [10]. They utilized
piezoelectric patches made of piezoceramic fibers embedded in a polymer to provide smart
damping property for host plates. Mohammadimehr et al. [22] employed nanofillers of
CNTs and piezoelectric nanotubes of boron nitride in passive and active polymers and
considered double sandwich plates. They presented the vibration behaviors of such smart
structures subjected to magnetic and electric fields. Moradi-Dastjerdi et al. [23] proposed
the use of nanocomposite plates enhanced with nanoclays in aggregated and intercalated
forms as the passive layers of a smart plate with two PZT faces. Arani et al. [24] utilized
two piezoelectric faces made of polyvinylidene fluoride to control the frequencies of
CNT/polymer microplates under magnetic field and located on an elastic foundation.
Malekzadeh et al. [25] considered a graphene/polymer multi-layered circular plate with a
randomly located hole activated with two PZT faces and outlined its vibration behavior. For
further reduction of structural weight in the passive layer, porous material can be utilized.
Jabbari et al. [26, 27] suggested the use of circular plates with FG dispersions of embedded
porosities for passive layers activated by attaching two PZT faces and investigated the
stability resistances of the obtained smart circular plates. Askari et al. [28] considered
rectangular plates with FG patterns of porosity dispersion between two PZT faces to deter-
mine porosity impact on the natural frequencies of the resulted active plates. Barati and
Zenkour [29] studied the vibrations of active porous plates made of an FG mixture of two
different piezoceramics. Mohammadi et al. [30] considered aluminum cylindrical pressure
vessels with three patterns of porosity dispersion integrated between two inner and outer
PZT faces as sensor and actuator. They presented the electromechanical responses of
such smart pressure vessels located in elastic media. In a more advanced setting of smart
structures, the combination of nanocomposite and porous materials have been utilized
as multifunctional passive structures. Nguyen et al. [31, 32] proposed three-layer smart
sandwich plates with a metal porous layer enhanced with graphene platelets (GPLs) as a
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passive core integrated between two active PZT faces. They considered FG patterns for the
dispersions of GPLs and porosities in the passive layer and obtianed two different sets of
results including vibrational response and its active control using PZT layers. However,
GPLs in the core layer of these three-layer smart plates interfere with the electrical
charge and potential field obtained in PZT faces. In addition, according to the concept of
sandwich panels, the use of separated layers of nanocomposite and porous materials leads
to five-layer multifunctional smart panels with higher structural stiffness to weight ratio.
In these regards, Setoodeh et al. [33] proposed such five-layer smart curved shells including
two PZT faces, two CNT-enhanced nanocomposite middle layers and one porous core
with FG patterns for the dispersions of nanofillers and porosities. Another set of five-layer
smart plates including PZT faces, graphene/polymer middle layers and porous core were
also proposed and thermo-electro-mechanical behaviors of such 5LMSSPs are presented in
[34–37].

Five-layer multifunctional smart sandwich plates with layers made of porous,
GPL/polymer and PZT have been proposed in the literature. However, considering
piezoceramic layers as the faces of such plates is a challenging point because of their brittle
nature. Therefore, in this work, a comparison study has been conducted to explore the
impact of changing the location of piezoceramic layers from faces to middle layers on the
electromechanical performances of 5LMSSPs. In this regard, a mesh-free solution has
been developed based on Reddy’s third-order shear deformation theory (TSDT). Moreover,
Halpin–Tsai equations with the ability to capture the shape of nanofillers are employed to
define the mechanical properties of GPL/polymer nanocomposite layers. In addition to the
impact of layer arrangement, the effects of GPL volume and dispersion, porosity volume
and the thickness of each layer are investigated in this chapter.

1.2 Modeling of 5LMSSP

The considered multifunctional smart sandwich plates have five layers including one
porous, two piezoelectric and two GPL-reinforced nanocomposite layers to provide a wide
range of industrial applications. There is no doubt in the use of a porous layer as the core
because embedding porosity in the core results in a remarkable structural weight reduction
without a significant loss of structural stiffness. However, the locations of nanocomposite
and piezoelectric layers could be changed based on the operating conditions of 5LMSSPs.
As shown in Figure 1.1, two different layer arrangements have been examined: case I,
considering piezoceramics as faces; and case II, considering nanocomposite layers as the
faces of 5LMSSP to protect the piezoelectric from environmental and loading issues. In
both cases, 5LMSSPs are assumed under a uniform mechanical pressure f 0 on their top
faces. In addition, the piezoelectric layers are subjected to an electrical input such that
their outer faces are connected to a uniform voltage V 0 and their inner faces are grounded
to provide a voltage difference of V 0 through the thickness of each piezoelectric layer. In
this chapter, square 5LMSSPs with side length of a and thickness of h are considered. The
thicknesses of porous, piezoelectric and nanocomposite layers are represented by hc, hp,
and hn, respectively.
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Figure 1.1 Two different layer arrangements of the considered five-layer sandwich plates with one porous, two piezoelectric and two GPL-reinforced
nanocomposite layers: (a) 5LMSSP case I; and (b) 5LMSSP case II.
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1.2.1 Porous Layer

Embedding pores in a body affects the material properties of the host body. In this chapter,
the distribution of pores is considered as a symmetric profile through the thickness of the
core layer such that the outer faces of the core i.e. z = ± hc/2 has no pores, but the highest
volume of pores is located at z = 0. Using Gaussian random field technique [38], Young’s
modulus Ep, density 𝜌p and Poisson’s ratio 𝜐p of such porous layer can be estimated as [31]:

Ep(z) =
(

1 − q0 cos
(
𝜋z
hc

))
Em (1.1)

𝜌p(z) =
(

1 − qm cos
(
𝜋z
hc

))
𝜌m (1.2)

𝜐p(z) = 0.221𝛽 + 𝜐m(0.342𝛽2 − 1.21𝛽 + 1) (1.3)

where superscripts m and p show the corresponding properties of perfect polymeric (q0 = 0)
and porous (q0 ≠ 0) core layer, respectively. In addition, q0 is the porosity parameter which
implies the porosity volume fraction of the core layer. qm and 𝛽 are determined as [31]:

qm =
1.121(1 − 2.3

√
1 − q0 cos(𝜋z∕hc))

cos(𝜋z∕hc)
(1.4)

𝛽 = 1 − 𝜌p∕𝜌m = qm cos(𝜋z∕hc) (1.5)

1.2.2 Nanocomposite Layers

Graphene platelets are assumed to be dispersed with functionally graded patterns in
nanocomposite layers to optimize the volume of GPLs and to improve the structural
performance of 5LMSSPs. The FG patterns of nanofillers in cases I and II can be described
as the functions of GPL volume fraction V r versus z location as follows [35]:

Case I:

Upper nanocomposite layer: Vr(z) = [(2z − hc)∕2hn]p × V∗
r (1.6)

Lower nanocomposite layer: Vr(z) = [−(2z + hc)∕2hn]p × V∗
r (1.7)

Case II:

Upper nanocomposite layer: Vr(z) = [(2z − 2hp − hc)∕2hn]p × V∗
r (1.8)

Lower nanocomposite layer: Vr(z) = [−(2z + 2hp + hc)∕2hn]p × V∗
r (1.9)

where V∗
r is the specific GPL volume fraction and p is the exponent of GPL volume fraction

which controls the profile of GPL dispersion. The dispersion profiles of GPLs through the
thickness of the considered 5LMSSP are illustrated in Figure 1.2.

To determine the effective mechanical properties of nanocomposite layers, Halpin–Tsai’s
approach [39, 40] capable of considering the rectangular shape of GPLs is employed.
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Figure 1.2 The dispersion profiles of GPLs through the thickness.

According to this approach, the effective Young’s modulus of GPL/polymer nanocomposite
is estimated as follows [39, 40]:

E(z) = 3
8

[
1 + 2(ag∕hg) γg

11 Vr

1 − γg
11 Vr

]
Em + 5

8

[
1 + 2(bg∕hg) γg

22 Vr

1 − γg
22 Vr

]
Em (1.10)

where

γg
11 =

Eg∕Em − 1
Eg∕Em + 2ag∕hg , γ

g
22 =

Eg∕Em − 1
Eg∕Em + 2bg∕hg (1.11)

where Eg and Em are the Young’s moduli of GPL and polymeric matrix, respectively. More-
over, ag, bg, and hg are the geometrical dimensions of GPL, respectively.

1.2.3 Governing Equations

To calculate the energy function of the considered 5LMSSPs, displacement field is needed
to be defined by a plate theory. It is well established that the increase of the order of plate
theory makes the theory more applicable to thicker plates. Therefore, an efficient TSDT
reported by Reddy [41] is utilized to determine x, y and z components of displacement field
(i.e. u, v, and w) in 5LMSSPs as:

u(x, y, z) = u0(x, y) + z 𝜃x(x, y) + z3c1(𝜃x + w0,x)

v(x, y, z) = v0(x, y) + z 𝜃y(x, y) + z3c1(𝜃y + w0,y)

w(x, y, z) = w0(x, y) (1.12)

where c1 = − 4/3h2 and 𝜃x and 𝜃y are the rotations of mid-plane around the y and x axes,
respectively. As Eq. (1.12) shows, the utilized plate theory has only five unknowns which is


