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Preface

In the aerospace industry, innovative designs, which can
simultaneously address concerns about safety and fuel
efficiency, have created demands for novel materials and
structures. These demands have persuaded researchers to
propose and investigate advanced structures made of
multifunctional lightweight materials. Some notable
mentions include porous, composite, nanocomposite, ultra-
high temperature ceramic, piezoelectric, and functionally
graded materials.

In the design of aerostructures, strength to weight ratio is
the key point where the use of lightweight materials results
in a considerable reduction in structural weight. However,
the decrease of structural strength usually comes with an
ordinary reduction in the weight of the utilized materials
such as embedding porosity, or use of lighter materials.
This reduction in the structural strength can be
compensated using multifunctional materials or by
improving the design of the structures. These facts were
the key drivers in the development of new lightweight
technologies where traditional composite materials as
lightweight materials have seen greater integration into
aerostructure applications over the past two decades.
Furthermore, the introduction of nanotechnology into the
design of composite materials presents another leap in the
increasing effort to reduce weight and tailor the material
properties to suit specific aerostructure applications. In
this new generation of composites, nanoscale fillers highly
affect the overall properties of the resulting nanocomposite
materials.

Another class of multifunctional materials which can have
specific applications in the aerospace industry are



piezoelectric materials. Employing piezoelectric
components with the ability to convert electrical charge to
mechanical load or vice versa provides self-controlling
property with fast response for the whole structure. This
converting ability also provides the benefit of harvesting
energy, strain measurements, and damage detection in the
structures.

Moreover, aerostructures are mainly subjected to either
mechanical or thermal loads where ceramic materials can
be prospective candidates. Among them, ultra-high
temperature ceramics are an advanced class of material
that experience superior structural and thermal stability,
reaching temperature over 3000 °C without a noticeable
sacrifice in strength.

In aerostructures, the use of architected structures along
with multifunctional lightweight materials has opened up
possibilities for designs previously unimaginable. The
analysis of such advanced materials and structures
necessitates the application of novel methods which are
precise, reliable, and computationally efficient. The
necessity of utilizing advanced methods complement
complex geometrical shapes, different applied loads, a
multi-physics environment, and a wide range of scales from
nano up to macro scales.

To cover recent developments about the aforementioned
concerns and their most exciting aspects, this book is
divided into two parts with 10 chapters overall where the
state of the art in the respective fields are comprehensively
discussed.

The first part deals with multi-disciplinary modeling and
characterization of some advanced materials and
structures by developing new methods. This part is
composed of four chapters. Specifically, layer arrangement
impact on deflections of a proposed five-layer smart



sandwich plate subjected to electromechanical loads is
investigated in Chapter 1. The layers of the sandwich plates
are assumed to be made of three different advanced
multifunctional materials including porous, graphene-
reinforced nanocomposite, and piezoelectric materials. In
Chapter 2, heat transfer analysis of sandwich cylinders
consisting of a polymeric core and functionally graded
graphene-reinforced faces is studied. Chapter 3 presents
the application of a new multiscale approach in the
modeling and design of lightweight materials and
structures that demonstrate complex phenomena that span
multiple spatial and temporal scales. In Chapter 4,
chemical kinetics and the multiscale characterization of
crystallinity in ultra-high temperature ceramics,
polymorphic structures and their composites are described.

In the second part of this book, behaviors of some critical
parts of aircraft are discussed as practical benchmark
problems. Chapter 5 presents an optimization study on the
design of a novel shimmy damper mechanism for aircraft
nose landing gears as a practical case in aerostructures. In
Chapter 6, a widely used component of helicopters, jet
engines and aircraft, a flexible rotor supported by
viscoelastic bearings, is modeled to study its nonlinear
dynamic behavior. Chapter 7 proposes an innovative
analytical-numerical method to efficiently predict the real-
time temperature of belt drive systems. Chapter 8 develops
an efficient and reliable physics-based approach to predict
noise at the far-field of a nose landing gear of an aircraft.
Another important part of aircraft is the aeroengine. In the
aeroengine, the vibrations and noises can be transferred to
the aircraft fuselage and this transmissibility significantly
affects the aircraft crew and passenger comfort and safety.
In this regard, Chapter 9 develops and implements a
reliable analytical transmissibility method to analyze and
investigate the vibration energy propagation in an



aeroengine structure. This method results in design
guidelines which can significantly reduce the development
costs as well as the ability of addressing noise and
vibration problems in the structure. Chapter 10 also utilizes
the developed method in Chapter 9 to perform structural
health monitoring to detect and classify the importance of
defects and damage in the considered aeroengine using the
obtained frequency response functions. Accordingly, this
chapter proposes design guidelines which significantly
improve the reliability and operational lifetime of the
aeroengine at the lowest possible cost.

This book delivers extensive updated investigations and
information to address the latest demands for the effective
and efficient design and precise characterization of
advanced multifunctional lightweight aerostructures. The
authors believe that it is a comprehensive and useful
reference for graduate students who want to increase their
knowledge. This book provides innovative and practical
solutions for active engineers, especially in the aerospace
industry, who are looking for alternative materials,
structures or methodologies to solve their current
problems.

All contributions to this book are the result of years of
research and development conducted by the research team
under the direct supervision of the principal investigator,
Professor Kamran Behdinan, in the Advanced Research
Laboratory for Multifunctional Lightweight Structures
(ARL-MLS) at the University of Toronto. We would like to
acknowledge the funding received from the Canadian
Foundation for Innovation as well as the Natural Science
Engineering Research Council of Canada in support of the
ARL-MLS facilities and training of highly qualified
personnel. Furthermore, we wish to take this opportunity
to sincerely express our appreciation to the ARL-MLS
graduate students and postdoctoral fellows for their



outstanding research in addressing problems of utmost
significance to the aerospace research community/industry
in the field of advanced multifunctional lightweight
aerostructures. Their informative contributions have
allowed our ideas and dreams to become a reality in this
book. We are also grateful to Wiley and its team of editors
for helping us to finalize this book.

Toronto, June 2020

Kamran Behdinan
Rasool Moradi-Dastjerdi
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