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Preface

The birth act of the analytic theory of the Dirichlet series

AðsÞ ¼
X1

n¼1

ann
�s ð1Þ

can be rightly claimed to be the Dirichlet Arithmetic Progression Theorem. In that
case, the arithmetical function is n 7! an, the indicator function of the integers n
congruent to q mod b for some given pair ðq; bÞ of coprime integers, and its
properties are reflected in a subtle way in the “analytic” properties of the function A,
although for the Dirichlet the variable s remains real. Later on, in the case of the
zeta function, Riemann in his celebrated Memoir allowed complex values for s and
opened the way to the proof by Hadamard and de la Vallée-Poussin of the Prime
Number Theorem.

The utility of those Dirichlet series for the study of arithmetical functions and
of their summatory function

A�ðxÞ ¼
X

n� x

an

was widely confirmed during the first half of the twentieth century, with the
expansion of Tauberian theorems, including those related to Fourier and harmonic
analysis, in the style of Wiener, Ikehara, Delange, etc. The hope was of course that
progress on those series would imply progress on the distribution of primes, and
perhaps a solution to the Riemann hypothesis, the last big question left open in
Riemann’s Memoir.
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A parallel aspect also appeared in the work of H.Bohr, where the series (1) and
their generalization

X1

n¼1

ane
�‚ns ð2Þ

began to be studied for themselves. In particular, Bohr proved a fundamental
theorem relating the uniform convergence of a Dirichlet series (and therefore
almost-periodicity properties) and the boundedness of its sum A in some half-plane.
This naturally led him to his famous question on the maximal gap between
abscissas of uniform and absolute convergence. Surprisingly, this question turned
out to be very deep and led him to develop fairly sophisticated tools of other
branches, either of complex or harmonic analysis or of diophantine approximation,
through the Kronecker approximation theorem (what is called nowadays the Bohr
point of view: the unique factorization in primes is seen as the linear independence
of the logarithms of those primes). The central importance of this theorem in the
theory of the Dirichlet series was quickly recognized by him. A solution to his
question, found by Bohnenblust and Hille in a famous paper of the Annals, was
obtained along the lines suggested by Bohr. Many notions of harmonic analysis
(Littlewood’s multilinear inequality, p-Sidon sets, Rudin–Shapiro polynomials,
etc.) were underlying in that work.

The Kronecker theorem (simultaneous, non-homogeneous, approximation)
points at two other aspects: on the one hand, at ergodic theory through its for-
mulation and proof, which will be used again in the final chapter on universality,
and on the other hand, at diophantine approximation, which as a consequence is
very present in the book. In particular, a thorough treatment of the continued
fraction expansion of a real number is presented, as well as its ergodic aspects
through the Gauss map (ergodic theory again). This in turn allows a sharp study
of the abscissas of convergence of classes of the Dirichlet series, which extends a
previous study by Hardy–Littlewood for the (easier) case of the Taylor series. The
simultaneous approximation is still not well understood, except in some cases as the
sequence of powers of some given real number, like the Euler basis e, through the
use of Padé approximants. A detailed presentation of those approximants and their
applications to a streamlined proof of the transcendency of e is given in Chap. 3.

Needless to say, the hope of solving Riemann’s hypothesis through the study of
series (1) has not been completely met, in spite of many efforts. But along the lines
of Bohr, Landau (also S.Mandelbrojt as concerns the series (2)) and others, those
series continued to be studied for their own sake. Then came a period of relative
lack of interest for that point of view, from 1960 to 1995, with several noticeable
exceptions, among which was the Voronin theorem (1975) which emphasized the
universal role of the zeta function, even if it made no specific progress on the
Riemann hypothesis. It seems that the subject was rather suddenly revived by an
important paper of Hedenmalm, Lindqvist, and Seip (1997), where several of the
forgotten properties of the Dirichlet series were successfully revisited for the
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solution of a Hilbertian problem dating back to Beurling (Riesz character of a
system of dilates of a given function), and new Hilbert and Banach spaces of the
Dirichlet series were defined and studied. That paper stimulated a series of other,
related, works, and this is part of those works, dating back to the past 30 years,
which is exposed in those pages.

The aim of this introductory book, which has the ambition of being essentially
self-contained, is therefore twofold:

(1) On the one hand, the basic tools of diophantine approximation, ergodic theory,
harmonic analysis, probability, necessary to understand the fundamentals of the
analytic theory of the Dirichlet series, are displayed in detail in the first
chapters, as well as general facts about those series, and their products.

(2) On the other hand, in the last two chapters, especially in Chap. 6 more recent
and striking aspects of the analytic theory of the Dirichlet are presented, as an
application of the techniques coined before.

One fascinating aspect of that theory is that it touches many other aspects of
number theory (obviously!) but also of functional, harmonic or complex analysis, so
that its detailed comprehension requires a certain familiarity with several other
subjects. Accordingly, this book has been divided in seven chapters, which we now
present one by one.

1. Chapter 1 is a review of harmonic analysis on locally compact abelian groups,
with its most salient features, including the Haar measure, dual group,
Plancherel and Pontryagin’s theorems. It also insists on some more recent
aspects, like the uncertainty principle for the line or a finite group (Tao’s ver-
sion) and on the connection with the Dirichlet series (embedding theorem of
Montgomery and Vaughan).

2. Chapter 2 presents the basics of ergodic theory (von Neumann, Oxtoby and
Birkhoff theorems) with special emphasis on the applications to the Kronecker
theorem (whose precised forms will be of essential use in Chap. 7), to one or
multi-dimensional equidistribution problems and also to some classes of alge-
braic numbers (Pisot and Salem numbers).

3. Chapter 3 deals more specifically with diophantine approximation (continued
fractions) in relationship with ergodic theory (Gauss transformation, which is
proved to be strong mixing) and aims at giving a classification of real numbers
according to their rate of approximation by rationals with controlled denomi-
nator. This classification is given by a theorem of Khintchine, fully proved here.
As a corollary, the transcendency of the Euler basis e is completely proved.

4. Chapter 4 presents the basics of the general Dirichlet series of the form (1), with
the Perron formulas and the way to compute the three abscissas of simple,
uniform, absolute convergence, and with some comments and examples on a
fourth abscissa (the holomorphy abscissa). Several classes of examples are
examined in detail, including the series
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X1

n¼1

n�s

jjnhjj ð3Þ

according to the diophantine properties of the real number h. An exact formula
for the abscissa of convergence of this series is given in terms of the continued
fraction expansion of h. A section on so-called “automatic Dirichlet series”, in
connection with “automatic sequences” like the Morse or Rudin–Shapiro
sequences, has been added. The problem of products of the Dirichlet series and
some of its specific aspects is examined in depth, with emphasis on the role
of the translation 1/2. And the Bohr point of view, which allows to look at a
Dirichlet series as at a holomorphic function in several complex variables, is
revisited, with some applications like the form of Wiener’s lemma for the
Dirichlet series (Hewitt–Williamson’s theorem). The chapter ends with a
striking application of this point of view to a density result of Jessen and Bohr.

5. Chapter 5 is a short intermediate chapter establishing the basics of random
Dirichlet polynomials through a multidimensional Bernstein inequality and an
approach due to Kahane. It will play, technically speaking, an important role in
the rest of the book. The tools introduced here remain quite elementary but will
turn out to be sufficient for our purposes.

6. Chapter 6 is the longest in the book. It is devoted to the detailed study of new
Banach spaces of the Dirichlet series (the Hp-spaces), which extend the initial
work of Bohr and turn out to be of basic importance in completeness problems
for systems of dilates in the Hilbert space L2ð0; 1Þ, and seem to open the way to
new directions of study, like those of Hankel operators (Helson operators) in
infinite dimension. A positive answer to Helson’s conjecture, and related
questions, are presented, relying on Harper’s recent finding, admitted here.
A complete presentation of a recent, very sharp, version of the Bohnenblust–
Hille theorem is also given, using the tools of the previous chapters as well as
tools borrowed from number theory, in particular the properties of the function
wðx; yÞ, the number of integers � x which are free of prime divisors [y.

7. Chapter 7 gives a complete proof of the universality theorems of Voronin (zeta
function) and Bagchi (L-functions), and needs first a reminder of some prop-
erties of those functions in the critical strip. This complete proof is long and
involved, but some essential tools (like the Birkhoff–Oxtoby ergodic theorem)
have already been introduced in the previous chapters. New, important, tools are
an extended version of Carlson’s identity seen in Chap. 6, and Hilbertian
(Bergman) spaces of analytic functions. Those two results have the advantage of
showing the pivotal role of zeta and L-functions in analysis and function theory,
in the wide sense, and more or less independently of the Riemann hypothesis.

8. Chapter 8 is a new addition in this second edition. It is devoted to the study of
composition operators Cu on the Hardy space H2 and their complete charac-
terization by Gordon and Hedenmalm. Some recent works on the membership
of Cu in Schatten classes, and to the decay of its singular values, are also
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presented. Finally, using the recent breakthrough of A. Harper on, among
others, the L1-norm of the “Dirichlet kernel”

DNðtÞ ¼
X1

n¼1

n�it;

we also touch the Hp case when 0\p\2, a case which is not yet completely
elucidated.

Each of the eight chapters is continued by quite a few exercises, of reasonable
difficulty for whoever has read the corresponding chapter. We hope that they can
bring additional information and be useful to the reader.

Lille, France Hervé Queffélec
Martine Queffélec
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Chapter 1
A Review of Commutative Harmonic
Analysis

1.1 The Haar Measure

1.1.1 Locally Compact Abelian Groups

This chapter might be skipped at first reading. But we have the feeling that a minimal
knowledge of basic facts in harmonic analysis is necessary to understand certain
aspects of the analytic theory of Dirichlet series, especially those connected with
almost-periodicity, ergodic theory, the Bohr point of view to be developed later, and
also universality problems. Therefore, in this introductory chapter, we begin with
reminding several basic results of commutative harmonic analysis. Those results,
although standard by now, are not so easy to prove, and deserve a careful treatment.

Let G be an additive abelian group equipped with a Hausdorff topology τ , which
is compatible with the group structure. This means that the operations of the group
(addition and inverse) are continuous for that topology. We then say that G is a
topological group. Throughout that book, the topology τ will be locally compact,
and G will be called a locally compact, abelian group (in short, an LCA group).
In most cases, G will indeed be compact. A basic example is that of the compact
multiplicative group T of unimodular complex numbers, that is the unit circle of the
complex plane C. This particular group plays a fundamental role in the theory.

For a ∈ G, we will denote by Ta the operator of translation by a (a homeomor-
phism of G, also acting on functions), namely

Tax = x + a, Ta f (x) = f (x + a). (1.1.1)

A simple and useful result is the following:

Proposition 1.1.1 Let G be a topological group and H a subgroup of G. If H has
non-empty interior, H is open and closed in G.
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2 1 A Review of Commutative Harmonic Analysis

Proof Let a be interior to H and V a neighbourhood of 0 with a + V ⊂ H . For any
b ∈ H , we have b + V = (b − a) + (a + V ) ⊂ H , showing that H is open, as well
as its cosets x + H . Now, we can write G as a disjoint union G = H � E , where E
is a union of cosets mod H and is open. So that H = G\E is closed. �

1.1.2 Existence and Properties of the Haar Measure

A basic fact, expressing the strong ties between the topology and the group structure,
is the following theorem:

Theorem 1.1.2 A locally compact abelian group G always possesses a non-zero,
positive and regular Borel measure m which is translation invariant, i.e.

∫
G
f (x)dm(x) =

∫
G
f (Tax)dm(x) ∀ f ∈ L1(G,m), ∀a ∈ G. (1.1.2)

This measure (also written dx) is unique up to multiplication by a positive scalar and
we write L1(G) instead of L1(G,m).

A very simple proof can be found in [1] (pp. 570–571) in the case of a compact,
metrizable, group, abelian or not. A clear and modern proof can be found for the
general (abelian, but not necessarily metrizable) case in [2], Chap. 9. This generality
will sometimes be needed, as shown by the forthcoming examples. The measure m
is called the Haar measure of G. Three important properties of m are the following:

Proposition 1.1.3 The Haar measure verifies:

m (V ) > 0 for each open non-void set V ⊂ G. (1.1.3)

m(−B) = m (B) for all Borel subsets of G. (1.1.4)

m (G) < ∞ ⇐⇒ G is compact. (1.1.5)

Indeed, suppose that m(V ) = 0. Let K ⊂ G be a compact set. This set can be
covered by finitely many translates of V , and therefore, m(K ) = 0. But since m is
regular, we have m(G) = supK⊂G m(K ) so that m(G) = 0, which is absurd. Now,
themeasure m̃ defined by m̃(B) = m(−B) is translation invariant, therefore m̃ = cm
where c is a scalar. Let then V be a compact and symmetric neighbourhood of 0, so
that by (1.1.3) we have 0 < m(V ) < ∞. The equation cm(V ) = m(V ), therefore,
implies c = 1 and m̃ = m. Suppose thatG is not compact, and observe that (just take
x outside the compact set K − L):

If K , L ⊂ G are compact, there exists x ∈ G : (x + L) ∩ K = ∅. (1.1.6)
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Now, let V be a compact neighbourhood of 0, so thatm(V ) > 0 by (1.1.3). Using
(1.1.6), we can inductively find a sequence (xn) ⊂ G such that the translated sets
x j + V are disjoint. Therefore, for any n ≥ 1:

m(G) ≥ m
[ n⋃
j=1

(x j + V )
]

=
n∑
j=1

m(x j + V ) = n × m(V ),

and this shows that m(G) = ∞. If G is compact, m is clearly finite and we always
normalize it to have m(G) = 1, i.e. m is a probability measure. �

In the general case, let M(G) be the set of regular, complex Borel measures on G,
normed with the total variation of measures. By the Riesz representation theorem,
M(G) can be isometrically identified with the dual of the Banach space C0(G) of
continuous functions f : G → C which tend to zero at infinity, namely:

∀ε > 0, ∃K ⊂ G, K compact; x /∈ K =⇒ | f (x)| ≤ ε.

The convolution λ ∗ μ of λ and μ in M(G) is the element σ of M(G) defined on
Borel sets E by:

σ(E) =
∫
G

λ(E − x)dμ(x) =
∫
G

μ(E − x)dλ(x),

equivalently
∫

f dσ =
∫∫

f (x + y)dλ(x)dμ(y).

One can define an involution μ �→ μ̃ on M(G) by the formula:

μ̃(E) = μ(−E).

Once equipped with the variation-norm, convolution and involution, M(G) is
a commutative, unital (the unit being the Dirac measure δ0 at the origin), stellar
(meaning that ‖μ̃‖ = ‖μ‖)Banach algebra. But this is not aC∗-algebra: the equation
‖μ ∗ μ̃‖ = ‖μ‖2 does not hold in general. The Banach space L1(G) = L1(G,m) is
a closed ideal of M(G), the ideal of measures which are absolutely continuous
with respect to m. It is itself a commutative Banach algebra once equipped with the
convolution f ∗ g as multiplication:

( f ∗ g)(x) =
∫
G
f (x − y)g(y)dm(y) = (g ∗ f )(x),

for almost every x ∈ G. We have ‖ f ∗ g‖1 ≤ ‖ f ‖1‖g‖1 and the algebra L1(G) is
unital if and only if G is compact. This is an involutive algebra with the induced
involution defined by f̃ (x) = f (−x), i.e. we have ‖ f̃ ‖1 = ‖ f ‖1. But this is not a
C∗-algebra either: the equation ‖ f ∗ f̃ ‖1 = ‖ f ‖21 does not hold in general (see the
exercises). Another important property of L1(G) is the following general fact:
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Theorem 1.1.4 Let f ∈ L p(G), 1 ≤ p < ∞. Then, the mapping a �→ Ta f :
G → L p(G) is (uniformly) continuous.

Proof The result holds, by uniform continuity, for h ∈ C00(G), the space of func-
tions: G → C which are continuous and compactly supported. This space is dense
in L p(G) since p < ∞. And by translation invariance of m, we clearly have:

‖Ta f − f ‖p ≤ 2‖h − f ‖p + ‖Tah − h‖p,

which gives the general result, since ‖Ta f − Tb f ‖p = ‖Ta−b f − f ‖p. �

We will see that the spectrum of L1(G) can be identified, whereas a complete
description of the spectrum of M(G) is difficult to obtain, and to work with [3]. To
that effect, we first have to define the dual of an LCA group.

1.2 The Dual Group and the Fourier Transform

1.2.1 Characters and the Algebra L1(G)

The dual group Ĝ or � of the LCA groupG is the group of all continuousmorphisms
γ : G → T, i.e.

|γ(x)| = 1; γ(x + y) = γ(x)γ(y) ∀x, y ∈ G.

The elements of � are called the (continuous, or strong) characters of G. Some-
times, wewill consider all the characters, continuous or not, onG. They are called the
weak characters. The set �, equipped with the natural multiplication of characters,
is itself an abelian group (for multiplication) whose zero element is the character
identical to one. And γ−1 = γ for each γ ∈ �. This group appears naturally for the
following reason:

Theorem 1.2.1 The spectrum L of the Banach algebra L1(G) can be naturally
identified with �, in the following sense:

(1) Each γ ∈ � defines hγ ∈ L by the formula

hγ( f ) =
∫
G

γ(−x) f (x)dm(x).

(2) Each element h ∈ L is of the form h = hγ .

Generally,
∫
G γ(−x) f (x)dm(x) is denoted by f̂ (γ) and is called the Fourier

transform of f at γ. If G is compact and moreover f ∈ L2(G), we see that
f̂ (γ) = 〈 f, γ〉, the scalar product of f and γ. In view of Theorem 1.2.1 (see [4],
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p. 7 for a detailed proof), we will naturally equip � with the Gelfand topology of
L, which is the weak-star topology inherited from the dual space Y of L1(G). This
makes � a compact Hausdorff space if L is unital, which happens if and only if G
is discrete, and a locally compact Hausdorff space in the general case (since L ∪ {0}
is weak-star-closed and therefore weak-star-compact in the unit ball of Y ). But this
topology is fairly abstract and difficult to describe, and we will see later a more con-
crete and tractable definition. It is first useful to study in detail this Fourier transform,
whose main properties are listed in the simple, following theorem, and with obvious
notations.

Theorem 1.2.2 The Fourier transform on L1(G) satisfies

(1) If f ∈ L1(G), f̂ ∈ C0(�) and ‖ f̂ ‖∞ ≤ ‖ f ‖1
(2) If γ1 �= γ2, there exists f ∈ L1(G) ∩ L2(G); f̂ (γ1) �= f̂ (γ2)
(3) For any γ ∈ �, there exists f ∈ L1(G) ∩ L2(G); f̂ (γ) �= 0
(4) If f , g ∈ L1(G), f̂ ∗ g = f̂ ĝ
(5) f ∗ γ = f̂ (γ)γ; T̂a f = γ(a) f̂ and γ̂0 f (γ) = f̂ (γγ0).

Let us denote by A(�) the subspace of C0(�) formed by functions of the form
g (γ) = f̂ (γ) for some f ∈ L1(G). This set is called the Wiener algebra of �. We
have the following corollary of Theorem 1.2.2:

Corollary 1.2.3 The space A(�) is a dense, self-adjoint, subalgebra ofC0(�), stable
under translation and multiplication by a character.

Proof Using the items of Theorem 1.2.2, we see that A(�) is a subalgebra, which

separates points of � and has no common zeros. If g = f̂ ∈ A(�), so does g = ̂̃f as
we easily see. Therefore, the complexStone–Weierstrass theorem for locally compact
spaces applies and A(�) is uniformly dense in C0(�). �

1.2.2 Topology on the Dual Group

Here is now an alternative description of the topology on � ([4], pp. 10–11). One
interest of this description is that it shows the following: the set �, which is so far an
abelian group and a locally compact Hausdorff space, is indeed a locally compact
abelian group.

Theorem 1.2.4 The natural topology on � is that of uniform convergence on com-
pact subsets of G. More precisely, K, C being compact subsets of G and �, respec-
tively, and r a positive number, we have

(1) The function (x, γ) �→ γ(x) is continuous on G × �.
(2) Let N (K , r) = {γ ∈ �; |1 − γ(x)| < r for all x ∈ K }. Then, N (K , r) is an open

subset of �.
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(3) The family of all sets N (K , r) and their translates is a base for the topology
of �.

(4) Let M(C, r) = {x ∈ G; |1 − γ(x)| < r for all γ ∈ C}. Then, M(C, r) is an open
subset of G.

(5) � itself is a locally compact abelian group.

Proof (1) Let (x0, γ0) ∈ G × �. By Theorem 1.2.2, there is f ∈ L1(G) such that
f̂ (γ0) �= 0, and we can write, near (x0, γ0):

γ(x) = T̂x f (γ)

f̂ (γ)
.

The denominator is continuous at (x0, γ0) by Theorem 1.2.2. The numerator as
well, since setting g = Tx0 f , we see that

|̂Tx f (γ) − T̂x0 f (γ0)| ≤ |̂Tx f (γ) − T̂x0 f (γ)| + |T̂x0 f (γ) − T̂x0 f (γ0)|
≤ ‖Tx f − Tx0 f ‖1 + |̂g(γ) − ĝ(γ0)|,

and the right-hand side tends to 0 as (x, γ) → (x0, γ0), by Theorems 1.1.4 and 1.2.2.
(2) Now, fix γ0 ∈ N (K , r). For each x ∈ K , there are open neighbourhoods Vx

and Wx of x and γ0 respectively such that

y ∈ Vx and γ ∈ Wx =⇒ |γ(y) − 1| < r.

Let Vx1 , . . . , Vxp be a finite covering of K and W = ∩p
j=1Wxj . The set W is a

neighbourhood of γ0 and W ⊂ N (K , r), so that N (K , r) is open in �.
(3) Conversely, let V be a neighbourhood of γ0. We may assume that γ0 = 1. By

definition of the Gelfand topology on �, there are functions f1, . . . , fn ∈ L1(G) and
ε > 0 such that

W =
n⋂
j=1

{γ; | f̂ j (γ) − f̂ j (1)| < ε} ⊂ V . (1.2.1)

By density, we may assume that f1, . . . , fn ∈ C00(G), so that they vanish out-
side a compact set K ⊂ G. If r < ε/max j ‖ f j‖1, one easily checks that N (K , r) −
W ⊂ V , since

| f̂ j (γ) − f̂ j (1)| ≤
∫
K

|1 − γ(−x)‖ f j (x)|dx =
∫
K

|1 − γ(x)‖ f j (x)|dx < ε.

(4) The same proof applies to M(C, r), with a significant difference: the sets
M(C, r) and their translates will turn out to be a base for the topology of G. But
so far we are unable to establish that fact, which will be proved and used later, and
have to content ourselves with the sets N (K , r).
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(5) The obvious inequality

|1 − δ1(x)δ2(x)| ≤ |1 − δ1(x)| + |1 − δ2(x)|,∀δ1, δ2 ∈ �,∀x ∈ G

shows that [γ1 × N (K , r/2)][γ2 × N (K , r/2)] ⊂ γ1γ2 × N (K , r). This and the pre-
vious description of the topology of � shows that the map (γ1, γ2) �→ γ1γ2 is con-
tinuous, so that � is a LCA group. �

1.2.3 Examples and Basic Facts

Let us now list, sometimes without proof, some basic examples and facts about Haar
measures and dual groups.
1.2.3.1 The dual of a compact group is a discrete one, and the dual of a discrete group
is a compact one.

1.2.3.2 T̂d = Z
d and if γ = (n1, . . . , nd) ∈ Z

d , z = (z1, . . . , zd) ∈ T
d we have

γ(z) = ∏d
j=1 z

n j

j . The Haar measure m of T
d acts on continuous functions by the

formula ∫
Td

f dm =
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (e2iπt1 , . . . , e2iπtd )dt1 . . . dtd .

Similarly, Ẑd = T
d . This last fact will later appear as a consequence of the Pon-

tryagin duality theorem. More generally, if G1, . . . ,Gd are locally compact abelian
groups with Haar measures m1, . . . ,md and dual groups �1, . . . , �d , the product
group G = G1 × · · · × Gd has the Haar measure m = m1 ⊗ · · · ⊗ md and its dual
group is � = �1 × · · · × �d .
1.2.3.3 T̂∞ = Z

(∞) where the LHS is the product of countably many copies of T and
the RHS is the set of all sequences ν = (n1, . . . , nd , . . .) of integers which vanish
for d large enough, with γ(z) = ∏∞

j=1 z
n j

j , all but a finite number of the factors being
equal to 1. The Haar measure of T

∞ is the tensor product of countably many copies
of the Haar measure of T. This fact has an obvious generalization to the countable
product of compact abelian groups, as in Example 2.
1.2.3.4 R̂d = R

d and if γ = (t1, . . . , td) ∈ R
d , x = (x1, . . . , xd) ∈ R

d we have
γ(x) = ei

∑d
j=1 t j x j . The Haar measure of R

d is simply the Lebesgue measure on
R

d . Those facts follow from the general remark of Example 2.
1.2.3.5LetG be a compact abelian groupwith dual�. Then,we have the equivalence:

G metrizable ⇐⇒ � countable. (1.2.2)

We use the following fact: if X is a topological compact space andC(X) the space
of continuous functions f : X → C equipped with the norm ‖ f ‖∞ = supt∈X | f (t)|,
we have the equivalence:
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X metrizable ⇐⇒ C(X) separable. (1.2.3)

Indeed, if the topology of X is defined by a metric d, let (xn) be a dense sequence
of X , and ϕn(x) = d(x, xn). The algebra generated by the ϕn is separable, and dense
in C(X) by the Stone–Weierstrass theorem. Conversely, if ( fn) is a dense subset of
C(X), the distance d defined by

d(x, y) =
∞∑
n=1

2−n | fn(x) − fn(y)|
1 + | fn(x) − fn(y)|

is easily seen to define the topology of X .
To prove (1.2.2), we observe that � ⊂ C(G) and that, if γ, γ′ ∈ � are distinct, we

have by orthogonality:

‖γ − γ′‖∞ ≥ ‖γ − γ′‖2 = √
2. (1.2.4)

Now, if � is countable, the set P of trigonometric polynomials is separable, and
dense in C(G) by Theorem 1.3.4 to come. Therefore, G is metrizable by (1.2.3).
Conversely, if G is metrizable, C(G) is separable, and then � has to be countable in
view of (1.2.4). This ends the proof of (1.2.2).
1.2.3.6 Let R be equipped with the Haar measure dx, the usual Lebesgue measure.
Its dual � can be identified to R, but then the Haar measure corresponding to the
forthcoming inversion Theorem 1.4.1 is dx/2π. Indeed, if f (t) = e−|t |, one easily
computes f̂ (x) = 2/(1 + x2) and the change of variable x = tan t shows that

1

2π

∫
R

| f̂ (x)|2dx = 4

π

∫ π
2

0
cos2 tdt = 1 =

∫
R

| f (t)|2dt.

1.2.3.7 IfG = {x1, . . . , xN } is a finite abelian groupwith dual� = {γ1, . . . , γN } (iso-
morphic toG), and ifwe equipGwith the normalizedHaarmeasurem = 1

N

∑N
i=1 δxi ,

the Haar measure on� corresponding to the inversion theorem is the non-normalized
measure μ = ∑N

j=1 δγ j as is easily checked. This corresponds to the fact that the
matrix ( 1√

N
γ j (xi ))(i, j) is unitary. This example is very important for Dirichlet char-

acters.
1.2.3.8 As an important specialization of Example 3, we have the following: let
G be the Cantor group, i.e. the compact abelian and metrizable group {−1, 1}N of
all choices of signs ω = (εn)n≥1 with εn = ±1 and co-ordinatewise multiplication,
equippedwith its normalizedHaarmeasurem. Its dual group (discrete and countable)
is called the Walsh group and can be described as the group of words wA indexed by
the finite subsets of N

∗ := {1, 2, . . .} defined by

wA(ω) =
∏
n∈A

εn(ω), w∅(ω) = 1.
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The coordinate functions εn are independent random variables on the probability
space (G,m) and are sometimes called the Rademacher, or centered Bernoulli, vari-
ables. They will play a very important role in the study of random polynomials and
random Dirichlet series.

1.3 The Bochner–Weil–Raikov and Peter–Weyl Theorems

1.3.1 An Abstract Theorem

The structure of stellar, Banach algebra ofM(G) is interesting for uswith a view to the
following fundamental theorem. Let A denote a commutative, stellar, unital Banach
algebra with unit e, with dual space A∗ (in the sense of Banach spaces), involution
x �→ x̃ and spectrum M. We recall that M is the set of non-zero homomorphisms
ϕ : A → C, which are automatically continuous with norm 1. This is a compact
Hausdorff space with the usual Gelfand topology, namely the weak-star topology
induced by A∗ onM. We denote by x̂(γ) = γ(x) the Gelfand transform of x ∈ A at
γ ∈ M, and by r(x) := ‖x̂‖∞ the spectral radius of x ∈ A. We then have the:

Theorem 1.3.1 (Bochner–Weil–Raikov) Let L be a positive linear form on A,
namely L (x x̃) ≥ 0 for all x ∈ A. Then, we have

(1) L is continuous.
(2) |L(x)| ≤ L(e)r(x) and |L (x x̃) | ≤ L(e)r(x)2 for all x ∈ A.
(3) There is a positive measure μ onM such that

L(x) =
∫
M

x̂(γ)dμ(γ), ∀x ∈ A.

(4) If L(x x̃) �= 0, there exists χ ∈ M such that χ(x) �= 0.

Proof (1) First note that ẽ = e since ẽ is also a unit for A. Now recall that, for t real
and |t | ≤ 1, it holds:

√
1 − t =

∞∑
n=0

ant
n with an real and

∞∑
n=0

|an| < ∞.

So that, if x ∈ A and ‖x‖ ≤ 1, we can write

e − x x̃ = y2 with y = ỹ =
∞∑
n=0

an(x x̃)
n.

This proves that L(e − x x̃) = L(y ỹ) ≥ 0 and that L(x x̃) ≤ L(e). Moreover, the
assumptions imply that the map (x, y) �→ L(x ỹ) is a positive, Hermitian, form on
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A, therefore we have the Cauchy–Schwarz inequality:

|L(x ỹ)|2 ≤ L(x x̃)L(y ỹ).

Taking y = e, we get, for ‖x‖ ≤ 1, the following:

|L(x)|2 ≤ L(e)L(x x̃) ≤ [L(e)]2. (1.3.1)

(2) Using (1.3.1) and then iterating, we get

|L(x)| ≤ L(e)1/2+1/4+···+1/2n [L(x x̃)2
n−1]1/2n

≤ L(e)1/2+1/4+···+1/2n‖L‖1/2n‖(x x̃)2n−1‖1/2n .

Recall that, according to the spectral radius theorem, r(x) is given by

r(x) = lim
n→∞ ‖xn‖1/n. (1.3.2)

So that, letting n tend to infinity in the above, we get the first claimed inequality

|L(x)| ≤ L(e)r(x x̃)1/2 ≤ L(e)r(x).

Indeed, if χ ∈ M, so does ψ defined by ψ(x) = χ(x̃), and χ(x x̃) = χ(x)ψ(x),
so that r(x x̃) ≤ r(x)2. The second inequality follows by changing x into x x̃ .

(3) Let Â the subspace of C(M) formed by Gelfand transforms of elements of
A. Define a linear form S on Â by the formula S(̂x) = L(x). The preceding shows
that S is well-defined and that

|S(̂x)| ≤ L(e)‖x̂‖∞.

Therefore, S is continuous on Â and ‖S‖ ≤ L(e). The Hahn–Banach extension
theorem and the Riesz representation theorem now show that there exists a regular,
complex measure μ on M, with ‖μ‖ ≤ L(e), such that:

L(x) = S(̂x) =
∫
M

x̂(γ)dμ(γ).

In particular, L(e) = S(1) = ∫
M dμ(γ) ≥ ‖μ‖, so that μ is positive with norm

L(e).
(4) If L(x x̃) �= 0, item (1) shows that r(x) = ‖x̂‖∞ �= 0, which ends the proof.

�
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1.3.2 Applications to Harmonic Analysis

An important consequence of Theorem 1.3.1 is:

Theorem 1.3.2 The Fourier transform f �→ f̂ : L1(G) → A(�) is injective.

Proof Consider the unital subalgebra A = L1(G) + Cδ0 of M(G). Fix a function
ϕ in C00(G), the set of continuous, compactly supported functions G → C. Then,
define a linear form L = Lϕ on that algebra by the formula: L(σ) = (ϕ̃ ∗ ϕ ∗ σ) (0),
that is, if σ = f dm + cδ0 ∈ A:

L(σ) = (ϕ̃ ∗ ϕ ∗ f ) (0) + c (ϕ̃ ∗ ϕ) (0).

This linear form is positive, since one easily sees that: L(σ ∗ σ̃) = ‖σ ∗ ϕ‖22.
(Observe in passing that, by Cauchy–Schwarz, Fubini and the translation invariance
ofm, one has forσ ∈ M(G) : ϕ ∗ σ ∈ L2(G), withmoreover ‖ϕ ∗ σ‖2 ≤ ‖ϕ‖2‖σ‖).
Now, let f ∈ L1(G), f �= 0. Choose ϕ ∈ C00(G) such that

( f ∗ ϕ)(0) =
∫
G

ϕ(−x) f (x)dx �= 0. (1.3.3)

This implies that L( f ∗ f̃ ) = ‖ f ∗ ϕ‖22 �= 0 since f ∗ ϕ is continuous, does not
vanish at 0 by (1.3.3), and since the Haar measure charges all non-void open sets by
(1.1.3). Therefore, by Theorem 1.3.1, there is a character h of A such that h( f ) �= 0.
But the characters of A are of the form:

h( f dm + cδ0) = f̂ (γ) + c, for soe γ ∈ �.

Taking c = 0 here, we obtain h( f ) = f̂ (γ) �= 0, which gives the result. �

In functional analysis, the dual of a normed space has many elements thanks to
the Hahn–Banach theorem. It turns out that the dual of a locally compact abelian
group G has many elements as well. Namely, as a consequence of Theorem 1.3.2,
we have the Peter–Weyl theorem in the abelian case:

Theorem 1.3.3 (Peter–Weyl theorem) The dual � of any LCA group G separates
the points of G, namely:

I f x �= y, there exists γ ∈ �; γ(x) �= γ(y). (1.3.4)

Proof Let x , y ∈ G with x �= y. By the Tietze–Urysohn theorem, there exists
ϕ ∈ C00(G) such that ϕ(x) �= ϕ(y), that is Txϕ(0) �= Tyϕ(0). Applying Theo-

rem 1.3.2, we can find γ ∈ � such that T̂xϕ(γ) �= T̂yϕ(γ), equivalently:

ϕ̂(γ)γ(x) �= ϕ̂(γ)γ(y), so that γ(x) �= γ(y). �
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Let us indicate some important consequences of the Peter–Weyl theorem.We will
denote by P be the algebra of trigonometric polynomials on G, i.e. the vector space
of functions generated by �.

Theorem 1.3.4 If G is a compact abelian group, the set P of trigonometrical poly-
nomials is uniformly dense in the space C(G) of complex, continuous functions on
G. Conversely, if � is a subgroup of � separating the points of G, we have � = �.

Proof The set P is a self-adjoint algebra, since the conjugate of a character, and the
products of two of them, is still a character. It separates points ofG by the Peter–Weyl
Theorem 1.3.3, and contains the constant 1, the zero-character. Therefore, it is dense
in C(G) by the Stone–Weierstrass theorem. Now, let Q be the set of trigonometric
polynomials generated by �, i.e. the vector space generated by �. This is a self-
adjoint algebra since � is a subgroup, and it separates points of G, therefore is
uniformly dense in C(G) by the Stone–Weierstrass theorem again. Now, suppose
that γ ∈ �\�, and let Q ∈ Q. By orthogonality, we have:

‖ γ − Q ‖∞≥ ‖γ − Q ‖2= (1 + ‖Q‖22)1/2 ≥ 1,

which contradicts the uniform density of Q in C(G). �

A nice partial consequence of Theorem 1.3.4 is a kind of Hahn–Banach extension
theorem for certain subgroups. A more complete description will be given once we
have the Pontryagin theorem at our disposal.

Corollary 1.3.5 Let H be a subgroup of the LCA group G. Then:

(a) Any weak character of H extends to a weak character of G.
(b) If H is compact or open, any continuous character on H extends to a continuous

character on G.

Proof (a) We use a transfinite induction (or Zorn’s lemma) as follows: Let (K , δ)
be a maximal pair formed by a subgroup K with H ⊂ K ⊂ G and a weak character
δ on K extending γ. If K �= G, let x /∈ K and L be the group generated by K and
x . We separate two cases:

(1) nx /∈ K for any non-zero integer n. Let w ∈ T. Then, the formula ε(k + nx) =
δ(k)wn gives a well-defined extension of δ to a character ε on L .

(2) Otherwise, let p be the smallest positive integer such that px ∈ K and let z =
δ(px). We now use the (only) fact that T is a divisible group, namely:

∀z ∈ T, ∀p ∈ N, ∃w ∈ T; w p = z. (1.3.5)

We then set ε(k + nx) = δ(k)wn where w is as in (1.3.5) and this still gives a
well-defined extension of δ to a character ε on L .
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In all cases, we get a contradiction with maximality, so that we have K = G, as
we wish.
(b) Suppose first that H is compact. Let Ĥ be the dual of H and � the subgroup of
Ĥ formed by restrictions to H of characters in �. By the Peter–Weyl theorem, �

separates the points of H . By Theorem 1.3.4, we conclude that� = Ĥ . If H is open,
let γ ∈ Ĥ and δ be aweak character onG extending γ. This character is continuous at
the origin, since γ is continuous and H open. Therefore, it is continuous everywhere,
i.e. δ ∈ �. An extension of that corollary will be given after the Pontryagin duality
theorem. �

Another fundamental consequence of the Peter-Weyl theorem is:

Theorem 1.3.6 If G is compact, the group � is an orthonormal basis of the Hilbert
space L2(G).

Proof Wewill abbreviate dm(x) in dx. The set� is a normed system in L2(G), since
if γ ∈ �:

‖γ‖22 =
∫
G

|γ(x)|2dx =
∫
G
dx = 1.

If γ �= 1, let a such that γ(a) �= 1 and I = ∫
G γ(x)dx . We have

I =
∫
G

γ(x)dx =
∫
G

γ(x + a)dx =
∫
G

γ(x)γ(a)dx = γ(a)I,

and this implies I = 0. If γ1, γ2 ∈ � and γ1 �= γ2, setting γ = γ1γ2 �= 1, we get∫
G γ1(x)γ2(x)dx = ∫

G γ(x)dx = 0, showing that� is an orthonormal system.More-
over, the vector space P generated by � is dense in C(G) (by Theorem 1.3.4), itself
dense in L2(G), and that ends the proof. �

1.4 The Inversion and Plancherel Theorems

1.4.1 The Inversion Theorem

Throughout this section,G is a locally compact abelian group, � its dual andC00(G)

the set of continuous functions f : G → C with compact support. It will also be
useful to use the following test space:

E = L1(G) ∩ L2(G) ⊃ C00(G). (1.4.1)

This space, which is dense in both L1(G) and L2(G), will play an important role in
the rest of this section. We will denote by C the convex cone of functions υ : G → C

of the form


