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Preface

The design of passenger and freight railroad vehicle systems, which are complex
transportation systems, involves many areas of science and engineering, including
mechanical, civil, electrical, and electronic engineering. Because a comprehensive treat-
ment of such complex systems cannot be covered in a single book, the focus of this book is
on developing the mathematical foundation of railroad vehicle systems with an emphasis
on the integration of geometry and mechanics. Such a geometry/mechanics integration
is necessary for developing a sound mathematical foundation, accurate formulation of
nonlinear dynamic equations, and general computational algorithms that can be used
effectively in the virtual prototyping, analysis, design, and performance evaluation of
railroad vehicle systems. Geometry is particularly important in the formulation of the
railroad system dynamic equations of the motion generated by contact between the wheel
and rail surfaces. The surface geometry, therefore, plays a fundamental role in formulating
the kinematics, forces, and equations of motion of such systems. The theory of curves is
equally important, and it is central in the description of the track geometry. For this reason,
the subject of differential geometry plays a fundamental role in formulating the equations
that govern the motion of railroad vehicle systems.

In addition to basic geometry concepts, principles of mechanics are required in order
to formulate railroad kinematic relationships and dynamic equations of motion. These
mechanics principles allow for systematically modeling motion constraints resulting from
mechanical joints and specified motion trajectories. Railroad vehicles have components
that experience large displacements, including finite rotations; therefore, it is necessary
to avoid linearization of the kinematic and dynamic equations when developing general
computational algorithms. In the mechanics approaches used in this book, a fully non-
linear motion description is used in the formulation of dynamic equations of motion. As
demonstrated in this book, applying mechanics principles can lead to different forms of
dynamic equations of motion. Regardless of the form of the equations of motion obtained,
the integration of geometry and mechanics is necessary.

This book is written to complement a previous book, Railroad Vehicle Dynamics: A Com-
putational Approach. Both books are designed to be self contained, and therefore, overlap
of some topics cannot be avoided. This book is designed for an introductory course on
railroad vehicle system dynamics suitable for senior undergraduate and first-year gradu-
ate students. It can also be used as a reference book by researchers and practicing engi-
neers. The book consists of seven chapters that are organized to introduce the reader to the
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basic concepts, formulations, and computational algorithms used in railroad vehicle system
dynamics. Unlike other texts in the area of railroad vehicle dynamics, this book empha-
sizes geometry/mechanics integration throughout. It is shown how new mechanics-based
approaches, such as the absolute nodal coordinate formulation (ANCF), can be used to
achieve the geometry/mechanics integration necessary for developing accurate virtual pro-
totyping algorithms.

Chapter 1 introduces the reader to several topics that are covered in subsequent chapters.
Basic geometry concepts are discussed, and the need to integrate geometry and mechan-
ics in the formulation of the railroad vehicle system equations is explained. The hunting
oscillations that characterize the dynamic behavior of railroad vehicles and can lead to
instabilities and derailments are discussed, and the methods used to describe wheel and
track geometries are introduced. During curve negotiations, the effect of centrifugal forces
must be taken into account to define the allowable balance speed that ensures the safe oper-
ation of the rail vehicle. This important topic, as well as the wheel/rail contact formulations
and their integration with multibody system (MBS) computational algorithms, are intro-
duced in Chapter 1. The chapter also discusses other important topics, including derailment
criteria, high-speed rail, pantograph/catenary systems, and linear algebra, which can be
conveniently used to formulate the kinematic and dynamic equations of railroad vehicle
systems.

Chapter 2 covers topics in differential geometry that are fundamental in developing the
nonlinear equations that govern the motion of the vehicle. Curve and surface geometries
and their application to railroad vehicle systems are discussed. It is shown how the principal
curvatures and principal directions of surfaces can be determined using the coefficients
of the first and second fundamental forms of surfaces. The numerical representation of
wheel and rail profile geometries using spline functions is discussed. The use of ANCF
finite elements to describe the rail surface geometry is explained. It is shown that arbitrary
surface geometry for the rail can be systematically described using the displacement field
of fully parameterized ANCEF finite elements.

Railroad vehicle motion and geometry descriptions are the subject of Chapter 3, which
demonstrates how body motion equations and geometry are integrated. The coordinate sys-
tems used to describe rigid-body kinematics are first introduced, and different parameters
for describing body orientation are presented. Among the orientation parameters discussed
in this chapter are direction cosines, Euler angles, and Euler parameters. These orientation
parameters are used to define the position, velocity, and acceleration equations in terms of
the body generalized coordinates. The chapter explains the use of Euler angles in railroad
vehicle system mechanics for two fundamentally different purposes: motion description
and track geometry description. Using Euler angles as field variables to describe track geom-
etry is explained. In Chapter 3, geometric motion constraints that result from mechanical
joints used to connect vehicle components are introduced, and the trajectory coordinates
used to develop specialized railroad vehicle system computer programs are defined.

While Chapters 2 and 3 deal, for the most part, with basic geometry and motion kinematic
approaches and concepts, the focus of Chapter 4 is on railroad geometry. Wheel geome-
try equations are first defined, and it is shown how these geometry equations are used to
define curvatures at an arbitrary point on the wheel surface. Two methods are introduced
for describing rail geometry: semi-analytical and ANCF. Limitations of the semi-analytical
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approach are discussed to provide a justification for using the more general ANCF approach
to describe rail geometry. Using the ANCEF interpolation to define the tangents and nor-
mal at an arbitrary point on the rail surface is explained. As discussed in this chapter,
such an ANCF approach, which employs position gradients, allows using higher-order
interpolation for the position coordinates and avoids the interpolation of rotations. Fully
parametrized ANCF finite elements can be used to systematically define surfaces by intro-
ducing a functional relationship between the element spatial coordinates. The structure of
the track data used in computer simulations of railroad vehicle systems is discussed, and
methods for describing track deviations that represent track irregularities are presented.
The chapter concludes by providing a comparison between the semi-analytical and ANCF
approaches used to describe rail geometry.

The contact problem is covered in Chapter 5, starting with a discussion of the wheel/rail
contact mechanism in order to provide a better understanding of the need to account for
the creep phenomenon in railroad vehicle system applications. The constraint contact for-
mulation (CCF) and the elastic contact formulation (ECF), which are used to determine the
locations of wheel/rail contact points online, are introduced. As explained in this chapter,
the CCF approach does not allow wheel/rail separation, but the ECF approach does allow
this separation. Therefore, when the ECF approach is used, no degrees of freedom are
eliminated. Determining the normal contact force in both the CCF and ECF approaches
is discussed in this chapter, and it is explained how the surface geometry and Hertz con-
tact theory can be used to determine the dimensions of the contact area. To determine the
tangential creep forces, velocity creepages used in wheel/rail creep force formulations are
defined. Several creep force formulations are discussed in Chapter 5, and the assumptions
used in these formulations are highlighted. The chapter concludes with a discussion of mag-
netically levitated (maglev) trains.

Methods for developing the nonlinear dynamic equations of motion of railroad vehi-
cle systems are introduced in Chapter 6. The Newtonian and Lagrangian approaches are
compared to highlight the basic concepts used in the two approaches. As discussed in this
chapter, the Lagrangian approach does not require the use of free-body diagrams or mak-
ing cuts at the joints because this approach is based on using connectivity conditions. The
constraint forces can be defined systematically using algebraic constraint equations, and
therefore, the Lagrangian approach lends itself to developing general computational algo-
rithms for railroad vehicle systems. Using generalized coordinates, the inertia and applied
and contact forces can be formulated and used to develop equations of motion. The form of
the equations of motion can be defined using the augmented formulation or the embedding
technique. The augmented formulation leads to a large, sparse system expressed in terms
of redundant coordinates and constraint forces, while the embedding technique leads to
a minimum number of equations of motion expressed in terms of the system degrees of
freedom; therefore, these equations do not include any constraint forces. The chapter also
discusses the formulation of other force elements used in railroad vehicle dynamics and
explains using trajectory coordinates to develop longitudinal train dynamics (LTD) algo-
rithms. Simple models that can be used to study hunting oscillations are also developed in
Chapter 6. The chapter concludes with a discussion of MBS modeling of electromechanical
systems.

Xi
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Pantograph/catenary systems that provide the power supply for high-speed trains are
the subject of Chapter 7. The chapter discusses in detail their design and the formula-
tion of catenary equations of motion using ANCEF finite elements. The formulation of
pantograph/catenary contact forces is presented using the constraint and elastic contact
formulations. It is shown how to account for lateral relative sliding between the pan-head
and catenary when using the constraint and elastic contact formulations. Chapter 6 also
discusses pantograph/catenary force control, the effect of aerodynamic forces, and the
wear problem when such current-collection systems are used for high-speed trains.

The development of the materials presented in this book is based on research collabo-
ration between the author and many colleagues and students. The author would like to
acknowledge the contributions of his colleagues and students including UIC current and
former students and visiting scholars Zhengfeng Bai, Issac Banes, Dario Bettamin, Mah-
moud Elbakly, Ahmed Eldeek, Sibi Kandasamy, Hao Ling, Ramon Martinez, Huailong Shi,
and Dayu Zhang for their help in the preparation and proofreading of the book manuscript.
The author would like to thank Drs. Khaled Zaazaa and Hiroyuki Sugiyama for past col-
laboration on writing the book Railroad Vehicle Dynamics: A Computational Approach. The
editorial and production staff of Wiley & Sons deserve special thanks for their cooperation
and professional work in producing this book. Finally, the author would like to thank his
family for their patience and understanding during the time spent preparing this book.

Ahmed A. Shabana
Chicago, Illinois, USA



Chapter 1

INTRODUCTION

Passenger and freight railroad vehicles are complex transportation systems whose design
involves many areas of science and engineering, including mechanical, civil, electrical, and
electronic engineering. Because, a comprehensive treatment of such railroad vehicle sys-
tems cannot be covered in a single volume book, the focus of this book is on developing
the mathematical foundation with the emphasis placed on the integration of geometry and
mechanics.

Integration of Geometry and Analysis As will be explained in this book, a sound
mathematical foundation, the formulation of nonlinear dynamic equations, and the design
of general computational algorithms of such complex systems require the integration of
basic concepts of geometry and mechanics. Geometry is particularly important in formu-
lating the railroad system dynamic equations that govern the vehicle motion produced by
contact between the wheel and rail surfaces. The surface geometry, therefore, plays a fun-
damental role in formulating the kinematics, forces, and equations of motion of such trans-
portation systems. Without an accurate description of the surface geometry, it is not possible
to develop accurate formulations and computational algorithms that account for the non-
linear dynamic behavior of railroad vehicle systems. The theory of curves is equally impor-
tant, and it is central to the description of track geometry. High-speed trains are electrically
powered using pantograph/catenary systems. As discussed in this book, the catenary sys-
tem consists of wires whose geometry and deformations are critical in ensuring high-quality
electric current collection. These catenary wires also define space curves whose geometry
must be accurately described in order to better understand their dynamic behavior and their
response to contact and aerodynamic forces.

While geometry enters into formulating railroad kinematic relationships and dynamic
equations of motion, these equations are formulated using the principles of mechanics,
which allow for systematically modeling motion constraints resulting from mechanical
joints and specified motion trajectories. Because railroad vehicles have components
that experience large displacements, including finite rotations, it is important to avoid
linearization of the kinematic and dynamic equations when developing general computa-
tional algorithms. In the mechanics approaches used in this book, fully nonlinear motion
descriptions are adopted in formulating the dynamic equations of motion. Applying the
principles of mechanics can lead to different forms of the dynamic equations of motion,
as discussed in this book. Regardless of the form of the equations of motion obtained, the

Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics,
First Edition. Ahmed A. Shabana.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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integration of geometry and mechanics is necessary in order to establish the foundation of
those equations.

Passenger and Freight Trains The methods developed in this book are applicable to
both passenger and freight railroad vehicle systems. These two types of systems can oper-
ate at significantly different speeds, have significantly different axle loads, and require the
use of different track quality. Figure 1 shows a high-speed passenger train and a freight
train that operate under different rules and guidelines and require different track-quality

(b)

Figure 1.1 Passenger and freight trains. Sources: (a) WANG SHIH-WEi/123 RF (2016); (b) Mike
Danneman/Moment/Getty Images.
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standards developed based on safety considerations. For both systems, however, regardless
of the power supply needed for their operation, motion is generated by the force of interac-
tion of wheels and rails like the ones shown in Figure 2. For the most part, freight trains use
diesel engines and often run on lower-quality tracks, so their speeds cannot exceed a cer-
tain limit. High-speed trains, on the other hand, are electrically powered and can operate
at a much higher speed as compared to freight trains. While the mathematical foundations
developed in this book can be applied to both cases, it is important to recognize that prac-
tical issues must be taken into consideration when modeling these two different systems.
While the basic geometric and mechanical formulations are the same, the analysis models,
including dimensions, system configurations, number of rail cars, suspension characteris-
tics, ride-comfort criteria, noise level, power supply, operating speeds, etc., can be signif-
icantly different. Developing accurate virtual prototyping models for both systems, based
on proper integration of geometry and mechanics, is necessary in order to avoid deadly,
costly, and environmentally damaging accidents. Passenger trains transport a large number
of people around the world, while freight trains transport goods and hazardous materials.
As the demand increases for higher-speed, heavier-axle loads; stricter operational and safety
guidelines; less noise; a greater degree of comfort; and more robust transportation systems;
more accurate virtual models with significant details are needed.

C —

Tread contact Flange contact

Figure 1.2 Wheel/rail contact.

Organization and Scope of This Chapter This chapter introduces the basic top-
ics discussed in this book, starting with the differential geometry that covers the theory of
curves and surfaces. The integration of geometry and motion description plays an important
role in formulating the railroad vehicle equations of motion, as discussed in Section 1.1. In
Section 1.2, the important topic of the integration of geometry and mechanics is discussed in
more detail. Railroad wheelsets exhibit a type of vibration known as hunting oscillations dur-
ing which the wheelset lateral displacement and yaw angle are related because of wheelset
conicity. Hunting oscillations are discussed in Section 1.3 based on pure geometric consid-
erations. Using a basic description of differential geometry and motion, track and wheel
geometries can be defined, as explained in Section 1.4. Section 1.5 explains the effect of
centrifugal forces during curve negotiations and presents a simple analysis for defining the
balance speed that must not be exceeded by the vehicle when it travels on a curved section
of track, to avoid derailment. Section 1.6 introduces the wheel/rail contact problem and the

3
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forces that influence vehicle stability. While the main focus in this book is on trains driven
by the wheel/rail contact forces, maglev trains are also briefly discussed in Section 1.6.
In Section 1.7, the multibody system (MBS) approach for formulating governing dynamic
equations using the principles of mechanics is discussed. Section 1.8 discusses existing
derailment criteria and the role of three-dimensional computational dynamics in devel-
oping more accurate and general derailment criteria. Section 1.9 reviews topics related to
the operation of high-speed trains, including the pantograph/catenary systems. Section 1.10
discusses some mathematical preliminaries that are used throughout the chapters and the
notations adopted in this book.

1.1 DIFFERENTIAL GEOMETRY

Figure 3 shows a train negotiating a curved track, the wheel and rail that come into con-
tact, and the pantograph/catenary system used to supply the electric power necessary for
the operation of high-speed trains. The description of the motion of the vehicle on the track,
the layout of the track, the mathematical definition of the surfaces of the wheel and rail that
come into contact to produce the train motion, and the geometry and deformations of the
catenary cables that carry the electric current necessary for the operation of the high-speed
rail system are examples that demonstrate the importance of geometry in railroad vehi-
cle system dynamics. For this reason, understanding the differential-geometry theories of
curves and surfaces is the first step in correctly formulating the dynamic equations that
govern the motion of these complex systems (Do Carmo 1976; Goetz 1970; Kreyszig 1991).

For example, the track and wheel geometries must be accurately described in order to
correctly predict the wheel/rail contact forces. Using both the differential-geometry theory
of curves and the theory of surfaces is necessary in order to be able to formulate the wheel
and rail kinematic and force equations. These theories are used to define nonlinear geo-
metric equations that can be solved for the locations of the wheel/rail contact points, as
discussed in this book. Furthermore, the spatial wheel and rail geometric representation
is crucial in the study of railroad vehicle nonlinear dynamics in different motion scenar-
ios, including curve negotiations and travel on tracks with irregularities and worn profiles
that influence ride comfort, vehicle stability, and safe operation. Therefore, geometric con-
cepts are an integral part of formulating nonlinear dynamic equations and computational
algorithms that can be used effectively to develop credible virtual prototyping models that
contribute to developing operational and safety guidelines and to reducing the possibility
of train derailments and accidents.

Theory of Curves While a distinction is made between curve and surface geometry and
dynamic motion descriptions, simple motion examples can be used to explain some con-
cepts that are used in this book. In this section, the motion of a particle is used to explain
basic concepts related to the geometry of curves and surfaces. In general, three coordinates
(parameters) are required in order to define the position of a particle in space. These three
coordinates can be selected to describe the location of the particle with respect to the origin
of a coordinate system formed by three orthogonal axes, as shown in Figure 4. In this case,
the position of the particle is defined by the vector r = [x y z]7, where x, y, and z are
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Pantograph/catenary system

Wheel Rail

(b)

Figure 1.3 Geometry of railroad vehicle systems. Sources: (a) serjiob74/Adobe Stock; (b) Susan
Isakson/Alamy Stock Photo.

three independent parameters that define the position coordinates of the particle along the
three orthogonal axes of the coordinate system XYZ. If the particle is constrained to trace a
space curve like the one shown in Figure 4, the particle has the freedom to move only along
the curve; the particle freedom to move along two directions perpendicular to the curve is
eliminated. That is, the curve equation is completely defined in terms of one parameter, and
the three coordinates of the particle are no longer independent.

To demonstrate this simple concept, consider a particle that traces the circle shown in
Figure 5. The circle represents a curve with constant curvature defined by the radius of cur-
vature a. If the motion of the particle is restricted to trace this circular curve, two constraints

5
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Figure 1.4 Curve geometry.

are imposed on that motion. These constraints, which relate the particle coordinates, can
be described using the algebraic equations

@’ +0’=@%,  z=0 1.1
The first equation relates the coordinates x and y, while the second equation implies that
the motion on the circle is planar. Using the first equation the coordinate y can be written

in terms of the coordinate x as y = +/(a)* — (x)* Therefore the particle position, or the
position of an arbitrary point on the curve r = [x y z] can be written as

r=fy 4 =|x sV -@ of 12)

This equation shows that points on the curve can be traced if the parameter (coordinate)
x is given, and the curve equation can be written in terms of one parameter, which is x in
this example. Given the parameter X, the location of an arbitrary point on the curve can be
completely determined.

Figure 1.5 Circle geometry.

Curve Parameterization The curve parameter is not unique: that is, other parameters
can be used to develop the curve equation. For example, the angle § shown in Figure 5 can
be used as the curve parameter. In this case, one must be able to write the curve Cartesian
coordinates x, y, and z in terms of the parameter 6. It is clear from Figure 5 that the
coordinates x and y can be written, respectively, in terms of the parameter 6 as x = a cos 0
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and y = a sin 0. Therefore, the curve equation can be written in terms of the parameter 6 as
T . T
r=[x y z| =[acos® asing 0] (1.3)

Equations 2 and 3 clearly show that the same curve can have different parameterizations.
The different parameters, however, are related by algebraic equations, as previously
explained using the simple example considered in this section. Equation 2 or 3 is called the
curve equation in its parametric form. The equation (x)? +(y)? = (a)?, which defines the
circle equation, is called the curve equation in its implicit form.

Arc Length 1t is clear from the simple analysis presented in this section that different
parameters can be used to define the parametric form of the curve equation. As discussed
earlier, these parameters are related, as evidenced by the fact that one can write the param-
eter x in terms of the parameter 6 as x = a cos 0, and the parameter 6 can be written in terms
of the parameter x as @ = cos~!(x/a). Similarly, a curve can be parameterized by its arc length
s. This can be easily demonstrated by writing 8 = s/a. This equation can be substituted into
Eq. 3 to obtain

r=[x y z]T= l[acos(s/a) asin(s/a) O]T (1.4)

Therefore, given any space curve, the curve parametric equation can be written in terms of
one parameter as (Do Carmo, 1976; Goetz, 1970; Kreyszig, 1991)

r(=[x® yo z0)] (1.5)

where ¢ is the curve parameter. While a curve can be parameterized using any scalar vari-
able, the curve arc length that measures the distance from the curve starting point to an
arbitrary point on the curve is often used as the curve parameter. Using the parametric form
of the curve expressed in terms of its arc length, a spatial curve can be uniquely defined in
terms of geometric invariants called the curvature and torsion, which appear in the curve
Serret—Frenet equations presented in Chapter 2. A curve can also be defined in its implicit
form by eliminating the parameter to obtain a single equation expressed in terms of the
curve coordinates, as previously demonstrated by the circular curve example.

Figure 1.6 Surface geometry.

7
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Theory of Surfaces Unlike curves, surface equations are defined in terms of two param-
eters, because on a surface, one has the freedom to move in two independent directions, as
shown in Figure 6. For example, in the case of a rail surface, a wheel can roll and/or slide on
the surface longitudinally or laterally. If the particle considered previously in this section
is not constrained to move in the plane on the circular curve, the coordinate z is no longer
constant, and such a coordinate can vary. In this case, there is only one constraint equation
on the motion of the particle. This constraint equation is defined as (x)> +(¥)?> = (a)?,
and therefore the vector r can be written in terms of two independent coordinates x and
Zas

T
red=fy o =[x V@ - 1 (1.6)

It is clear that this equation, which defines the cylindrical surface shown in Figure 7,
depends on the two independent surface parameters (coordinates) x and z. Once these
two parameters are known, the coordinates of an arbitrary point on the surface can be
determined. As in the case of curves, the surface parameterization is not unique. That is,
other parameters such as 6 and z can be used. In this case, the surface parametric equation
can be written as

r0,2)=[x y 2| =|acosd asing 2] (1.7)

Figure 1.7 Cylindrical geometry.

In general, the surface equation can be written in its parametric form in terms of two
independent parameters s, and s, as (Do Carmo, 1976; Goetz, 1970; Kreyszig, 1991)

r(s.sy) = [x(s1.8,) ¥ (s1.5;) z(sl,sz)]T (1.8)

Therefore, for a surface, one can define two independent tangent vectors dr/ds, and or/os,
which define what is called a tangent plane. The geometric properties of a surface are
defined using the first and second fundamental forms of surfaces, which are presented in
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Chapter 2. The coefficients of these fundamental forms are used to define the principal
curvatures and principal directions that enter into formulating the wheel/rail contact force
equations.

Computational Approach for Geometric Representations To use the theory
of differential geometry in practical applications, polynomial approximations are used to
describe curves and surfaces. In railroad vehicle dynamics, using polynomials allows for
defining arbitrary rail and wheel profile geometries. In Chapter 2, a finite element (FE)
approach called the absolute nodal coordinate formulation (ANCF) is used to define the rail
surface geometry. Starting with the polynomial interpolation, the ANCEF finite elements
are developed by replacing the polynomial coefficients with position and position gradient
coordinates. This allows for describing the position of arbitrary points on a continuum
using the equation r(x, y, z, t) = S(x, y, 2)e(t), where S is a shape function matrix, ¢ is time,
and e is the vector of position and position gradient coordinates. If ANCF finite elements
are used to describe the geometry of fixed rigid rail, one has r(x, y, z) = S(x, y, z)e. Using this
approach, which enables integrating geometry and analysis, allows for defining a surface
systematically by writing an algebraic equation in which one coordinate (parameter) can
be expressed in terms of the other two coordinates. For example, one can write z = f(x, )
and use this functional relationship to define the rail surface equation as

rey)=x y fey) (1.9)

In this surface equation, which can be conveniently defined using ANCF finite elements,
only two parameters can be varied. Therefore, ANCF elements can be used to describe
the geometries of curves and surfaces in their most general forms based on polynomial
interpolations. The use of the ANCF position-gradient coordinates allows for conveniently
describing complex shapes as well as the deformations in the case of flexible rails. The
approach described in Chapter 2 also allows for using numerical or tabulated data to
describe the surface geometry. The fact that one method can be used to define the geometry
correctly and to accurately predict the deformation of the rail in the case of flexible rails
allows for the systematic integration of geometry and the analysis of complex railroad
vehicle systems, as discussed in more detail in the following section.

1.2 INTEGRATION OF GEOMETRY AND MECHANICS

The integration of geometry and mechanics represents the foundation for formulating the
railroad vehicle system nonlinear dynamic equations of motion. The dynamic behavior
and stability of the rail vehicle depend on the wheel/rail contact forces. These forces are
functions of the geometry of the wheel and rail surfaces, which can be described using
the techniques of differential geometry as well as computational geometric methods based
on polynomial interpolations, as discussed in the preceding section. The track geometry
also has a significant impact on rail-vehicle motion and stability. Track irregularities can
influence vehicle dynamics and be a source of derailments and serious accidents when the
vehicle negotiates curved and straight tracks. Therefore, the geometries of these irregulari-
ties need to be accurately represented in the simulation models in order to be able to predict
their effect on overall vehicle behavior and nonlinear dynamics.

9
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When the vehicle negotiates a curved track, the effect of centrifugal forces must be taken
into account. To avoid derailments as the result of high centrifugal forces, the geometry
of the track is altered by providing a track elevation that results in a lateral gravity-force
component that opposes and balances the centrifugal forces, as discussed in this chapter.
Accurate prediction of the effect of the centrifugal forces requires an accurate represen-
tation of the track geometry. Curved track sections can consist of curves with constant
curvatures, and spirals that have curvatures that vary along the track. In the case of spirals,
the radius of curvature is not constant, and consequently, the centrifugal force does not
remain constant. Therefore, in railroad vehicle dynamics, geometry, motion descriptions,
and force formulations are interrelated and cannot be separated.

General Displacement In the general case of unconstrained motion, the displacement
of a rigid body in space can be described using six independent coordinates. Three coordi-
nates define the global position of a point on the body, called the body reference point, and
three coordinates define the orientation of the body with respect to the global coordinate
system. The global position of the body reference point can be defined using three Cartesian
coordinates. The orientation coordinates, on the other hand, can be introduced using three
independent parameters that can represent angles or can be parameters that do not have an
obvious physical meaning. Therefore, in spatial analysis, the orientation parameters are not
unique, and different sets of parameters have been used in the literature and in developing
computational multibody system (MBS) algorithms.

To define the configuration of a component (body) i in a vehicle system, two coordinate
systems are first introduced, as shown in Figure 8. The first coordinate system is the global
XYZ coordinate system, which is assumed fixed in time, while the second coordinate system
X'Y'Z! is the body coordinate system, which is assumed to be rigidly attached to the body
reference point O'. Using these two coordinate systems, the global position vector ¥’ of an
arbitrary point on the rigid body i in the vehicle system can be written as

r=R +u (1.10)
where R' = [R. Rl Ri] " is the global position vector of the body reference point O, and

u = [ul ul uQ]T defines the location of the arbitrary point with respect to the origin of
the body coordinate system X'Y'Z' in the global system: that is,

wo=[uhowow] =i+ il +uik (1.11)
In this equation, i, j, and k are, respectively, unit vectors along the global axes X, Y, and
Z. As discussed in Chapter 3, the vector u' can be written in terms of constant compo-
nents defined in the body coordinate system X'Y?Z:. This can be achieved by developing a
transformation matrix that defines the body orientation. The columns of the transforma-
tion matrix define orthogonal unit vectors along the axes of the body coordinate system.
While the body transformation matrix can be expressed in terms of three independent ori-
entation parameters such as Euler angles or any other sets of parameters, the elements
of the transformation matrix must assume the same numerical values regardless of the
orientation parameters used. These elements of the transformation matrix, as discussed
in Chapter 3, are the direction cosines of unit vectors along the axes of the body coordinate
system X'Y'Z!,
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Figure 1.8 Coordinate systems.

Angular Velocity and Orientation Parameters By differentiating Eq. 10 once and
twice with respect to time, the absolute velocity and acceleration vectors of the arbitrary
point on the body can be defined. The derivative of the transformation matrix with respect
to time can be used to define the angular velocity vector, as discussed in Chapter 3. In spa-
tial analysis, the angular velocities are not exact differentials, and therefore they are not the
time derivatives of orientation parameters. That is, the angular velocities cannot be directly
integrated to determine the orientation parameters. Nonetheless, the angular velocities can
always be written as linear functions of the time derivatives of the orientation parameters
using a velocity transformation matrix. This velocity transformation matrix plays a funda-
mental role in determining the generalized forces associated with the orientation parameters
since these orientation parameters serve as generalized coordinates and are not directly asso-
ciated with the Cartesian moments applied to the bodies, as will be discussed in Chapter 6.

The kinematic description that will be used in this book to develop the equations of
motion of the components of railroad vehicle systems is introduced in Chapter 3. It is shown
in Chapter 3 that the use of three parameters, such as Euler angles (Greenwood, 1988; Hus-
ton, 1990; Roberson and Schwertassek, 1988; Rosenberg, 1977), to define the body orienta-
tion in space leads to kinematic singularities. Such singularities, however, can be avoided
by using the four Euler parameters at the expense of adding an algebraic constraint equation
that relates the four Euler parameters. Euler parameters, which are becoming more popular
in developing general MBS algorithms, have many identities that can be used to simplify
the kinematic and dynamic equations of the railroad vehicle system.

Euler Angles and Track Geometry In addition to using Euler angles to describe time-
dependent motion by defining the orientation of bodies in space, these angles have also been
used in railroad vehicle dynamics to define the geometry of the track based on given simple
industry inputs. For the most part, track is constructed using three main segments: tangent
(straight), curve, and spiral, as shown in Figure 9. The tangent segment has zero curvature,

11
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the curve segment has constant curvature, and the spiral segment, used to connect two seg-
ments with different curvature values, has a curvature that varies linearly along the track
to ensure a smooth transition between the two segments connected by the spiral. The track
geometry is often described using three inputs at points along the track at which the geome-
try changes. These three inputs are the horizontal curvature, superelevation, and grade, and
they can be expressed in terms of three Euler angles that are used to construct the track and
rail space curves. To this end, Euler angles are converted to field variables and used system-
atically to construct a curve with well-defined geometry based on the given simple track
inputs. Unlike the three Euler angles used to describe the time-dependent motion of an

(b)

Figure 1.9 Track segments. Sources: (a) Dinodia Photos/Alamy Stock Photo. (b) Jens
Teichmann/Adobe Stock.
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unconstrained body in space, the three Euler angles used to describe the geometry of a curve
are written in terms of one parameter that can be the arc length. Therefore, when Euler
angles are used to describe curve geometry, these angles are converted to field variables
expressed in terms of the curve arc length to ensure a unique definition of the geometry.

Therefore, it is important to recognize that Euler angles are used in this book for two
fundamentally different purposes: (i) as motion-generalized coordinates to describe rigid
body kinematics in space; and (ii) as geometric field variables to uniquely define the geom-
etry of the track and rail space curves. The analysis presented in Chapter 3 is used as the
basis for a computer procedure for developing the track geometry data required for non-
linear dynamic simulations of railroad vehicle systems. The data can be generated before
the dynamic simulation at a preprocessing stage in a track preprocessor computer program,
as will be explained in Chapter 4. The track preprocessor output file normally has data for
three different space curves: the track centerline space curve, the right rail space curve, and
the left rail space curve, as shown in Figure 10, in which Ry, is the radius of curvature of the
track centerline curve. These three curves can have different geometries. The right and left
rail space curves are used in formulating the wheel/rail contact conditions, while the track
space curve is used in the definition of the distance traveled and in the motion description
of the coordinate systems of the vehicle components.

Track centerline

Left rail space curve

- Right rail space curve

Figure 1.10 Track space curves.
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1.3 HUNTING OSCILLATIONS

A simple analysis based on pure kinematics and geometric considerations can be used to
shed light on the dynamics of railroad vehicle systems without consideration of the forces.
In most railroad vehicle systems, a wheelset consists of two wheels connected by a stiff
axle, as shown in Figure 11. The wheels are assumed to have conical profiles with the
larger diameter close to the flange in order to achieve self-centering and minimize flange
contact (Karnopp, 2004). Lateral wheelset oscillations with respect to the track centerline
are referred to as hunting. During hunting oscillations, there is a relationship between
the wheelset lateral displacement and the yaw angle, which represents the rotation of the
wheelset about an axis normal to the track structure. In this section, a simple analysis based
on pure geometry is used to demonstrate the relationship between the lateral displacement
and yaw angle of the wheelset when it exhibits hunting oscillations. Such oscillations play a
fundamental role in the stability of railroad vehicle systems. As will be demonstrated in this
section, the hunting frequency is a function of the forward velocity of the wheelset as well
as some other geometric parameters, including the wheel conicity, nominal rolling radius,
and distance between the two rails.

Figure 1.11 Railroad wheelset.

To provide an example of this simple geometric analysis, the wheelset shown in Figure 11
is considered. As shown in the figure, the wheelset conicity is denoted as y, which defines
the slope of the wheel profile curve. The lateral displacement of the wheelset center of mass
is denoted as y. Before displacement, the wheelset is assumed to be centered and the dis-
placement y is assumed to be zero: that is, y = 0. At this initial configuration, the radii of the
two wheels at the points of contact with the rails are equal and denoted as R,. As a result
of disturbances that can be attributed to initial conditions or rail irregularities, the rolling
radii of the two wheels will deviate from R, as the wheelset starts to move forward. These
rolling radii are denoted as R, and R, for the right and left wheels, respectively. As a result
of a lateral displacement y, the rolling radii of the two wheels change, and such a change
in the rolling radii is defined by AR = yy. It follows from simple geometry that R, = R, —yy
and R, = R, +yy. If the wheelset is assumed to rotate with a constant angular velocity o,
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Figure 1.12 Hunting oscillations.

the forward velocities of the right and left wheels can be written, respectively, as

V,=a)Rr=w(Ro—yy)}

(1.12)
Vi=wR = (R,+yr)

This equation shows that, during hunting oscillations, the two wheels have different for-
ward velocities, and this gives rise to a yaw angle y, as shown in Figure 12. Nonetheless,
the forward velocity of the wheelset center of mass remains constant and is always defined
by the following equation:

V=(V,+V)/2=wR, (1.13)

Using the small oscillation assumption, one can write tan y = dy/dx ~ y. Because one can
write, using Eq. 12, V, -V, = —2ywy, it follows that

w=(V,-V)/G= —2ywy/G,}

1.14
¥ =—2ywy/G 19

where G is the distance between the two rails. Furthermore, one can write, using the
assumption of constant wheelset forward velocity V,
. dy dydx
= = = = — = V = R N
dt " dxar VT TV
y=yV=iRw

(1.15)

Substituting the first equation of Eq. 14 in the second equation of Eq. 15; and substituting the
first equation of Eq. 15 in the second equation of Eq. 14, one obtains, respectively, the follow-
ing second-order homogeneous ordinary differential equations for the lateral displacement
and yaw angle, respectively:

. 2 . 2

y+ (a)h) y=0, W+ (a)h) w=0 (1.16)

where

w, = 0\/2R,y /G (1.17)

15



16

Mathematical Foundation of Railroad Vehicle Systems

is the hunting frequency that can be defined only in the case of positive conicity. In the
case of positive conicity, solutions of the preceding equations can be assumed in the forms
y=A, sin(w,t + d)y) andy = A, sin(w,t + (,bu,), where A, and A, are the amplitudes, and by
and ¢,, are phase angles that can be determined using the initial conditions. These solutions
for the lateral displacement and yaw angle show that the frequencies of oscillation of the
lateral and angular yaw displacements are the same and are defined by w;, = w\/m
Furthermore, by using these solutions, the first equation of Eq. 15, y = y R w, can be used
to prove that the amplitudes of the lateral displacement and yaw angles are related by the
equation A, = R,wA,, /o, = VA, /w,, and there is a phase angle z/2 between the lateral
displacement y and the yaw angle y: that is, ¢, — ¢, = #/2. This difference in the phase
angle and the relationship y = y R w show that the maximum and minimum values of the
yaw angle y occur when the lateral displacement y is zero, and the maximum and minimum
y occur when y = 0. The hunting oscillations in the case of positive conicity are shown in
Figure 13a.

y(x)

-—

y(x)

.

|

'

(a) (b) (©)

Figure 1.13 Conicity effect.

If, on the other hand, the conicity is equal to zero, y = 0, which is the case of a cylindrical
wheel, one has, from Eq. 15, = 0 and y = 0. Integrating these two equations with respect
to time shows that the solution is represented by straight lines and the motion is not oscil-
latory. If the initial conditions are different from zero, the solution will increase with time,
leading to an unstable solution. In this case of a cylindrical wheel, the wheelset does not
tend to self-center, as shown in Figure 13b.



