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Preface

�Where are We Coming From?

When we joined Washington State University (WSU) around 10 years ago, we were 
faced with the new form of agriculture that we were not used to. Both of us were 
trained on mechanization and automation technologies for row crops (such as rice, 
wheat, corn, and soybean) and most of our career experience was also around the 
same domain. Dr. Manoj Karkee completed his PhD in agricultural engineering and 
human computer interaction at Iowa State University working on dynamic systems 
modeling, control, and navigation/guidance of tractor and towed implement sys-
tems. He graduated in 2009 and continued researching more in this area before 
making the move to Washington. Dr. Qin Zhang graduated with PhD in agricultural 
Engineering from University of Illinois Urbana-Champaign (UIUC) in agricultural 
automation and worked at Caterpillar Inc. and UIUC for more than 15  years 
researching and developing various automation technologies for agriculture, includ-
ing auto-guidance and intelligent field machinery technologies that have now been 
widely adopted around the world.

In Washington and the Pacific Northwest (PNW) region of the USA, our work 
revolves around a completely different farming environment. Contrary to a reason-
able level of homogeneity we find in the Midwest in terms of major commercial 
crops, the PNW region presented one of the most diverse forms of agriculture focus-
ing heavily on high-value fruit and vegetable crops, which are major parts of a 
cluster of crops called specialty crops. Washington produces more than 300 differ-
ent commercial crops, presenting unique challenges and opportunities for making 
farming more efficient and sustainable. Each type of crop is grown in comparatively 
small acreage. In addition, there are many different crop cultivars and cropping 
systems planted within a given crop type. Using apples as an example, there are a 
few dozen different cultivars planted in Washington State alone, and these cultivars 
are planted in many different crop architectures. In addition to variability in the crop 
architecture, color, geometric (shape, size), and physiological (e.g., surface tough-
ness) parameters of produce also vary widely. These unique combinations of crop 
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types, cropping systems, and cultivars present unique situations requiring special-
ized mechanization, automation, and robotic solutions.

Nevertheless, our experience from both row crop and specialty crop agriculture 
tells us that robotic solutions for all types of agricultural and field applications share 
a wide range of fundamental theories and principles as well as a fair share of chal-
lenges such as difficult field conditions, variable and unstable environment, and 
biological variability of plant and produce. To address these challenges, as discussed 
more widely in various chapters of this book, automation and robotics for agricul-
tural and field applications have been in the fore front of research and development 
in recent years. With the advent of novel, affordable, and more powerful sensing 
technologies, sensors (e.g., red–green–blue depth) and sensing platforms (e.g., 
UAVs and ground robots), novel and advanced robotic technologies (e.g., soft robot-
ics), robust machine learning techniques (e.g., deep learning), and increasingly 
powerful and affordable computational tools (e.g., graphical processing units), we 
can now envision a world where automating even the most specific/unique field 
operations (e.g., red raspberry pruning and bundling) is imaginable.

In this context, both public and private (big and small) enterprises around the 
world are actively involved in research and development of wide variations of 
robotic technologies for farming and other field applications. As new researchers 
are attracted to the field every day and as there is an increasing need for training the 
next generation of workforce for development, operation, and maintenance of smart, 
robotic technologies for farming and other field applications, a book covering the 
fundamental principles that can be applicable to a wide swath of applications in 
various types of agricultural industries was deemed crucial. With this context in the 
background, this book was conceptualized around 3 years ago, and have been in 
writing for about 2 years. In this process, we got the full, unconditional support 
from experts all around the word contributing to the book with their long experi-
ence, unparalleled insights, and thoughtful ideas. It was a privilege to read the con-
tributions of 33 professors, researchers, scholars, engineers, scientist, and students 
from across the globe who are world leaders in their respective fields.

We believe this book fills the gap of a good, comprehensive reference for proces-
sors, scientists, engineers, and scholars working actively in robotics, in general, and 
agricultural and field robotics, in particular. We also believe that this book can pro-
vide a great text or primary reference for students who are developing their knowl-
edge and experience in robotics and for early career researchers who are trying to 
build their research and scholarship programs around agricultural and field robotics. 
Theories, assumptions, and hypothesis are good starting points and can provide 
strong motivations. What we just discussed in this paragraph are our assumptions 
and hypothesis. As we are the scientists who always have doubts on our hypothesis 
and conduct rigorous research to validate or dis-validate our assumptions and 
hypothesis, we are now out of control in terms of what we could do differently in 
the book, and it is up to fellow researchers, engineers, students, and scholars like 
you to prove us right or wrong in terms of what, if any, values this book brings to 
you and to the profession.

Preface
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�Organization of the Book

The book has been organized into 3 distinctive parts and 16 chapters. After present-
ing an introductory discussion on the importance and fundamentals of agricultural 
and field robotics in Chap. 1, 5 chapters have been presented to describe various 
sensing and machine vision systems (Part I of the book) as it applies to agricultural 
and field robotics. Chapter 2 presents color sensing and image processing systems 
whereas Chap. 3 presents the fundamentals of 3D sensing approaches and systems. 
Basics on spectral sensing is presented in Chap. 4. Chapters 5 and 6 present various 
ways crop sensing and scouting can be performed in the field and control environ-
ment farming including new research and development efforts in crop phenotyping. 
Part II of the book, starting with Chap. 7, focuses on mechanisms, dynamics, and 
control of agricultural and field robotic systems. First, robotic manipulation systems 
(robotic arms) and their optimization for agricultural applications will be presented 
in Chap. 7, and end-effector (robotic hand) systems are discussed in Chap. 8. 
Chapter 9 presents the fundamentals of control techniques with specific focus on 
robotic harvesting. Chapter 10 presents various aspects of guidance and auto-
steering systems whereas Chap. 11 describes technologies for in-field sorting of 
fruit crops and Chap. 12 presents the basics of modeling and simulation techniques 
for robotic systems. Third and final part of this book focuses on emerging topics in 
agricultural and field robotics. In this part, advanced learning and classification 
techniques (Chap. 13) and digital farming techniques such as the Internet of Things 
(IoT) and big data (Chap. 14) are discussed. Similarly, two additional emerging top-
ics are covered in Chap. 15 (Human-machine interactions) and Chap. 16 (Plant-
machine interactions). All these chapters, generally, begin with fundamental 
concepts and algorithms followed by specific case studies demonstrating the ways 
the concepts and algorithms are applied to solve specific agricultural and field 
robotic challenges. Finally, all chapters present a brief summary and concluding 
thoughts with authors’ insights into the topic area covered.

It is to be noted that this book primarily addresses the fundamentals of agricul-
tural robotics, thus most of the examples, case studies, and cited literature are bor-
rowed from agricultural industries, specifically crop production agriculture. 
Agriculture, being one of the most diverse, variable, uncertain, and biologically 
driven field production environments, focus on agriculture provided, in our opinion, 
the best example to discuss the fundamentals of robotics for field applications. The 
concepts, algorithms, and tools discussed in this book, though the examples come 
from efforts in crop production systems, are equally applicable to robotics beyond 
production agriculture, particularly for outdoor and field applications such as those 
common in animal farming, military, mining, and construction industries.

Preface
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�Summary and Concluding Thoughts

To summarize, automation and robotics is an increasingly important area of research, 
innovation, development, and commercial adoption in agricultural and field applica-
tions. The overall success in developing novel robotic solutions for complex agri-
cultural and field problems requires advancement and innovative integration of 
various tools, techniques, and concepts including machine vision systems, other 
sensors and sensing systems, navigation and guidance techniques, modeling, simu-
lation and control methods, manipulation and end-effector technologies, and robust 
machine learning techniques. This book has been developed to cover some of these 
important areas of robotics as it applies to field environments. The following are 
three most important features of the book:

	 (i)	 The first book discussing the fundamentals of this emerging technology in 
agriculture, which is suitable for senior-level undergraduate students and grad-
uate students (as a textbook or reference book) and for researchers, engineers, 
policy makers, farmers, and other stakeholders as a reference book.

	(ii)	 Use of a systematic approach to discuss the fundamentals of automation and 
robotics as it relates to agricultural and field applications supported by unique 
and emerging examples from cutting-edge research and development programs 
around the world.

	(iii)	 The book has presented basic principles of generic concepts and technologies 
in agricultural robotics that is applicable to all areas of agricultural and field 
operations, including field crops, special crops, and green house and vertical 
farming, among others.

Last but not least, as we are drafting this preface, we are in the most unprece-
dented time of our generation, the COVID-19 pandemic. We are under complete 
lockdown (about two-thirds of the world population is in the same condition), and 
most of the latest editing and final polishing of this book occurred at small corners 
of our homes. This pandemic has reminded us how helpless we are, as individuals, 
under the vast, mighty force of nature. We hope, by the time this book comes out, 
we will be in a much better situation in relation to COVID-19. We also hope, how-
ever, that this pandemic is a timely reminder for us to play our roles on living a life 
that maintains a harmony with nature and a life that strives to optimize resource 
utilization for sustainable civilization. We would feel proud if this book, directly or 
indirectly, helps make the tiniest of impacts on advancing agricultural and field 
operations to be more efficient in conserving crucial natural resources.

Prosser, WA, USA� Manoj Karkee 
 � Qin Zhang 

Preface



ix

Contents

	  1	�� Agricultural and Field Robotics: An Introduction �������������������������������       1
Qin Zhang and Manoj Karkee

Part I � Sensing and Machine Vision

	  2	�� Sensors I: Color Imaging and Basics of Image Processing�������������������     13
Won Suk Lee and Jose Blasco

	  3	�� Sensors II: 3D Sensing Techniques and Systems�����������������������������������     39
Manoj Karkee, Santosh Bhusal, and Qin Zhang

	  4	�� Sensors III: Spectral Sensing and Data Analysis�����������������������������������     79
Rajeev Sinha, Lav R. Khot, Zongmei Gao, and Abhilash K. Chandel

	  5	�� Crop Scouting and Surrounding Awareness for Specialty Crops���������   111
Francisco Rovira-Más and Verónica Saiz-Rubio

	  6	�� Crop Sensing and Its Application in Precision Agriculture  
and Crop Phenotyping�����������������������������������������������������������������������������   137
Geng Bai and Yufeng Ge

Part II � Mechanisms, Dynamics and Control

	  7	�� Robotic Manipulation and Optimization for Agricultural  
and Field Applications �����������������������������������������������������������������������������   159
Changki Mo, Joseph Davidson, and Cameron Hohimer

	  8	�� End-Effector Technologies�����������������������������������������������������������������������   191
Qingchun Feng

	  9	�� Control Techniques in Robotic Harvesting���������������������������������������������   213
Siddhartha Mehta and Maciej Rysz



x

	10	�� Guidance, Auto-Steering Systems and Control �������������������������������������   239
Riikka Soitinaho and Timo Oksanen

	11	�� Automated Infield Sorting and Handling of Apples �����������������������������   267
Zhao Zhang and Renfu Lu

	12	�� Modeling, Simulation, and Visualization of Agricultural  
and Field Robotic Systems�����������������������������������������������������������������������   297
Brian L. Steward, Mehari Z. Tekeste, Jingyao Gai, and Lie Tang

Part III � Emerging Topics in Agricultural and Field Robotics

	13	�� Advanced Learning and Classification Techniques  
for Agricultural and Field Robotics �������������������������������������������������������   337
Abhisesh Silwal, Tanvir Prahar, and Harjatin Baweja

	14	�� Digital Farming and Field Robotics: Internet of Things,  
Cloud Computing, and Big Data�������������������������������������������������������������   365
Dimitrios S. Paraforos and Hans W. Griepentrog

	15	�� Human-Machine Interactions�����������������������������������������������������������������   387
Danny Mann

	16	�� Machinery-Canopy Interactions in Tree Fruit Crops���������������������������   415
Xin Zhang, Qin Zhang, Manoj Karkee, and Matthew D. Whiting

Index�������������������������������������������������������������������������������������������������������������������   443

Contents



xi

Contributors

Geng Bai  University of Nebraska Lincoln, Lincoln, NE, USA

Harjatin Baweja  Carnegie Mellon University, Pittsburgh, PA, USA

Santosh Bhusal  Harvest Croo Robotics, Tampa, FL, USA

Jose Blasco  The Valencian Institute of Agricultural Research, Valencia, Spain

Abhilash K. Chandel  Washington State University, Prosser, WA, USA

Joseph Davidson  Oregon State University, Corvallis, OR, USA

Qingchun Feng  Beijing Research Center of Intelligent Equipment for Agriculture, 
National Research Center of Intelligent Equipment for Agriculture, Beijing, China

Jingyao Gai  Iowa State University, Ames, IA, USA

Zongmei Gao  Washington State University, Prosser, WA, USA

Yufeng Ge  University of Nebraska Lincoln, Lincoln, NE, USA

Hans W. Griepentrog  University of Hohenheim, Stuttgart, Germany

Cameron Hohimer  Harvard University, Cambridge, MA, USA

Manoj Karkee  Washington State University, Prosser, WA, USA

Lav R. Khot  Washington State University, Prosser, WA, USA

Won Suk Lee  University of Florida, Gainesville, FL, USA

Renfu  Lu  U.S.  Department of Agriculture, Agricultural Research Service, East 
Lansing, MI, USA

Danny Mann  University of Manitoba, Winnipeg, MB, Canada

Siddhartha Mehta  University of Florida, Gainesville, FL, USA

Changki Mo  Washington State University Tri-Cities, Richland, WA, USA

Timo Oksanen  Technical University of Munich, München, Germany



xii

Dimitrios S. Paraforos  University of Hohenheim, Stuttgart, Germany

Tanvir Prahar  Carnegie Mellon University, Pittsburgh, PA, USA

Francisco Rovira-Más  Universitat Politècnica de València, Valencia, Spain

Maciej Rysz  University of Florida, Gainesville, FL, USA

Verónica Saiz-Rubio  Universitat Politècnica de València, Valencia, Spain

Abhisesh Silwal  Carnegie Mellon University, Pittsburgh, PA, USA

Rajeev Sinha  Washington State University, Prosser, WA, USA

Riikka Soitinaho  Technical University of Munich, München, Germany

Brian L. Steward  Iowa State University, Ames, IA, USA

Lie Tang  Iowa State University, Ames, IA, USA

Mehari Z. Tekeste  Iowa State University, Ames, IA, USA

Matthew D. Whiting  Washington State University, Prosser, WA, USA

Qin Zhang  Washington State University, Prosser, WA, USA

Xin Zhang  Washington State University, Prosser, WA, USA

Zhao Zhang  North Dakota State University, Fargo, ND, USA

Contributors



xiii

Manoj  Karkee  Dr. Manoj Karkee is an Associate Professor in the Biological 
Systems Engineering Department at Washington State University (WSU) and is the 
co-director of WSU-University of Technology Sydney joint center on #AgRobotics. 
He was born and raised in eastern hills of Nepal. He received his diploma in Civil 
Engineering and undergraduate in Computer Engineering from Tribhuvan 
University, Nepal. His MS was in remote sensing and GIS from Asian Institute of 
Technology, Thailand and his PhD was in Agricultural Engineering and Human 
Computer Interaction from Iowa State University. Dr. Karkee leads a strong research 
program in the area of sensing, machine vision and #AgRobotics at the WSU Center 
for Precision and Automated Agricultural Systems (CPAAS). He has published 
more than 65 peer-reviewed journal articles, and more than 25 referred conference 
papers. He has also been awarded two US patents, and has published one book 
(edited) and eight book chapters. Dr. Karkee is currently serving as an elected chair 
for International Federation of Automatic Control (IFAC) Technical Committee on 
‘Control in Agriculture’, as an associate editor for ‘Computers and Electronics in 
Agriculture’ and ‘Transactions of the ASABE’, and as a guest editor for ‘Sensors’ 
Dr. Karkee was recognized as ‘2019 Pioneer in Artificial Intelligence and IoT’ by 
Connected World magazine and was featured as the ‘Western Innovator’ by Capital 
Press. More about his research and scholarship can be found at https://labs.wsu.edu/
karkee-ag-robotics/.

Qin Zhang  Dr. Qin Zhang is the Director of the Center for Precision and Automated 
Agricultural Systems (CPAAS) of Washington State University (WSU), and a 
Professor of Agricultural Automation in the Department of Biological Systems 
Engineering, WSU.  His research interests are in the areas of agricultural automa-
tion, agricultural robotics, and off-road equipment mechatronics.  Prior to his cur-
rent position, he was a faculty member at the University of Illinois at 
Urbana-Champaign, worked at Caterpillar Inc., and taught at Zhejiang Agricultural 
University in China. Based on his research outcomes, he has authored/edited seven 
books, written more than a dozen separate book chapters, edited three conference 

About the Editors

https://labs.wsu.edu/karkee-ag-robotics/
https://labs.wsu.edu/karkee-ag-robotics/


xiv

proceedings, published over 180 peer reviewed journal articles, and been awarded 
11 U.S. patents.  He is currently serving as the Editor-in-Chief for Computers and 
Electronics in Agriculture.  Dr. Qin Zhang received his B.S. degree in engineering 
from Zhejiang Agricultural University, China; M.S. degree from the University of 
Idaho and Ph.D. degree from the University of Illinois at Urbana-Champaign.  Dr. 
Qin Zhang is a member of Washington State Academy of Science and an ASABE 
Fellow and is serving or served as a guest or an adjunct professor for 9 other 
universities.

About the Editors



1© Springer Nature Switzerland AG 2021
M. Karkee, Q. Zhang (eds.), Fundamentals of Agricultural and Field Robotics, 
Agriculture Automation and Control, https://doi.org/10.1007/978-3-030-70400-1_1

Chapter 1
Agricultural and Field Robotics: 
An Introduction

Qin Zhang and Manoj Karkee

1.1  �Background

The primary purpose of agriculture is to produce sufficient high-quality food for 
human being to sustain and enhance life. Commonly accepted population growth 
models predict that there will be more than nine billion people by 2050 in the world, 
and the increasing population will significantly increase the demand for food, fiber, 
and fuel. People have historically improved and kept evolving farming technologies 
to meet the needs for feeding continuously growing human population by increas-
ing productivity and production efficiency and enhancing food safety and nutrition 
while protecting the environment and conserving natural resources. One big chal-
lenge the agricultural industry of the United States (and so do many other countries) 
facing today is the shortage of human labors to conduct field operations, and the 
trend is expected to continue and become even worse.

One solution to address the field labor shortage challenge is the adoption of 
mechanized and automated farming technologies. Over the past century, mechani-
zation technologies have made revolutionary changes in field crop production, mak-
ing it possible to achieve high yields using minimal farm labor. Attributed to its 
great impact to societal advancement, agricultural mechanization was recognized as 
the seventh greatest engineering achievements of the twentieth century by the 
National Academy of Engineering of the United States. Continuing up on this suc-
cess, mechanized farming has been advancing through adoption of increased level 
of automation and intelligence to further improve the precision management of 
crops (including input resources), increase productivity, and reduce farm labor 
dependency in field operations beyond what has been possible with conventional 
mechanization technologies. For example, farmers have widely adopted 
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auto-steering technology commercialized early this century for many different field 
operations including tilling, planting, chemical application, and harvesting (Erickson 
2019). Automated thinning and precise weeding in vegetable and other crops are 
other technologies that have recently been commercialized. Mechanization and 
automation/robotics have played similar roles in other field applications such as 
those common in construction, mining, and military industries. For agricultural and 
other field machinery to be capable of performing those automated field operations, 
machinery needs hold the abilities of (i) being aware of actual operation condition, 
(ii) determining corrections suitable for changed conditions, and (iii) implementing 
the corrections during field operation.

These three basic abilities required for automated or intelligent agricultural/field 
machinery actually are the same as those needed for robots which include the capa-
bilities of (i) perceiving the situation of an operation with surrounding conditions, 
(ii) making appropriate decisions for smartly performing the operation under the 
condition, and (iii) automatically implementing the desired operation. Such similar-
ity between desired abilities of intelligent agricultural and field machinery and 
robots makes a logical sense to call such machinery robotic machines. It implies 
that agricultural and field robots do not have to be in a form of human-like machines 
in appearance, but keep their conventional configuration for most effective, effi-
cient, and robust field operations. Such a definition allows us to inherit the accom-
plishments of century-long development of agricultural and field machinery 
technology in creating robots for various agricultural and other field applications.

1.2  �Fundamental Technologies for Agricultural 
and Field Robotics

1.2.1  �Sensing and Situation Awareness

As mentioned earlier, the first capability of a robotic machine has to possess is its 
ability to perceive an awareness of the operational situation, which is acquired using 
sensors and/or sensing systems integrated with those machines. As a machine 
designed to mimic humans performing various tasks, ideally a robot should possess 
all the “senses” of human being, namely, vision, hearing, feel/touch, smell, and 
taste. However, robotic agricultural/field machines are designed to perform some 
specific tasks in some specific operational sites/conditions, and therefore, they often 
are not needed to have the full ability to sense to gain the needed awareness of the 
situation to conduct appropriate operations. In a wide range of agricultural and field 
applications, the ability to see is often sufficient, and therefore, visual sensing plays 
a critical role in many robotic machines designed and developed for agricultural and 
other fields.

The first fundamental sensing function requested by any mobile robotic machin-
ery is the capability to gain an awareness of its surrounding and find its ways to 
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move on the desired paths to perform the designated operations. Composed of 
image acquisition hardware and image processing software to automatically inspect 
the environment and objects of interest based on the visual characteristics, computer 
vision could provide the required capability (Reid et al. 2000). One of the widely 
used and simplest computer vision systems could probably be the monocular vision. 
Similar to one eye vision of human being, a monocular vision is capable of provid-
ing a two-dimensional (2D) visual perception on the relative positions of objects of 
interest within a field of view. This technique has found its application in detecting 
a guidance directrix on crop rows or the edges along harvested crops to guide robotic 
machinery performing different operations in row crop fields (Rovira Más et  al. 
2005). Various methodologies of image processing have been developed for extract-
ing the guidance information for providing a steering signal for navigating the 
mobile robotic machinery (Reid et al. 2000). More discussion on various techniques 
used to acquire and process images can be found in Chap. 2. Although the 2D image 
approach is computationally efficient, it lacks reliable means to locate the actual 
position of an object of interest. From this point of view, binocular vision can be 
used to obtain a stereo view (3D image) of the scene and therefore to provide more 
robust perception on perspective pathways because of its capability of providing 
depth information. Furthermore, stereovision has two important advantages for 
navigating robotic machinery: (i) moderate insensitivity to shadows and changes in 
lighting conditions and (ii) its capability to provide useful state information to the 
tracking phase as the localization of potential obstacles in front of unmanned vehi-
cles (Rovira Más et al. 2009).

Because agricultural and field robots are used on outdoor natural environment, it 
requires that surrounding awareness sensing on these machines need to have high 
robustness, high reliability, acceptable accuracy, high mechanical and temperature 
stability, and low cost. There are a few other sensing methods, such as global posi-
tioning systems (GPS), and laser scanning/LIDAR systems, which are widely used 
(stand-alone or in combination with other sensors using sensor fusion techniques) 
on robotic agricultural/field machinery to provide reliable positioning information 
for navigating such machinery operating in the field autonomously. Detailed 
description on stereovision and other 3D sensing techniques and systems can be 
found in Chap. 3.

Other than providing navigation information, vision sensors are also used in 
detecting other characteristics of object of interest either to support robotic opera-
tions or to scout crop growth/health conditions. To provide such functionalities, 
machine vision-based sensing techniques use different types of modalities to acquire 
appropriate information. Standard imaging sensors can be used to detect mono-
chrome or color responses for determining physical properties of object of interest, 
such as relative location, shape, and/or size; and spectral imaging sensors can be 
used to detect responses in various bands of spectrum for measuring biological 
properties of plants, such as nutrient, water, and disease stresses of a plant. A few 
examples of standard image sensing applications (other than navigation) include 
weed detection for robotic weed control (Blasco et al. 2002), branch detection for 
robotic pruning of apple trees (Karkee et al. 2014), and apple detection for robotic 
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picking (Silwal et al. 2016). Some examples of spectral image sensing include crop 
nitrogen stress detection (Kim et al. 2000; Noh et al. 2006), soybean disease detec-
tion (Cui et  al. 2010), and blueberry fruit maturity detection (Yang et  al. 2014). 
More discussion on spectral sensing techniques can be found in Chap. 4 and their 
applications on crop scouting can be found in Chap. 5.

One specific application of various sensing capabilities of a robot would be in 
automated phenotyping, which aims at performing high-throughput screening of 
genotypes for more effective breeding selection of crops and has gain high attention 
in recent years. As plant phenotyping attempts to measure plant growth, architec-
ture, and composition of organs to canopies with a certain degree of accuracy and 
precision at different scales, both standard and spectral imaging methods have found 
their applications in measuring phenotyping parameters (Li et al. 2014). The com-
monly measured plant phenotype parameters include plant architectural data, such 
as plant height, stem diameter, color, leaf area, and leaf angle, and abiotic stress, 
such as drought and salinity adaptation, disease resistance, and yield (Berger et al. 
2010; Arvidsson et al. 2011). One advantage of image-based sensing is its ability to 
acquire high-resolution data, which allows an ability to analyze and visualize plants/
objects often using multidimensional, multiparameter, or sometimes multispectral 
information. Therefore, imaging sensors have been increasingly used to quantify 
plant phenotyping parameters both in controlled environments and in open fields 
(Walter et al. 2012; White et al. 2012; Sankaran et al. 2018). More discussion on 
various sensing systems and their applications in precision agriculture and plant 
phenotyping can be found in Chap. 6.

In addition to visual sensing (and spectral imaging, as an extension of visual 
sensing), some other sensing methods can also be used to mimic human’s capability 
to gain a comprehensive situation awareness to support robotic agricultural/field 
machinery performing some specific tasks. A few examples include the use of elec-
tronic nose or electronic tongue to determine the maturity or quality of some pro-
duces based on their smell or taste (Gómez et al. 2006; Ulloa et al. 2013) and the use 
of acoustic sensor to measure the canopy density in orchards and vineyards in terms 
of reflectance of ultrasonic sound (Palleja and Landers 2015). Many operations in 
agricultural production require some interaction between the machinery and the 
crops or animals which are often very sensitive to magnitude of mechanical impacts, 
and some types of touching force/impact sensing could also be necessary for some 
situations.

It needs to be pointed out that other than situation awareness sensing, robotic 
machinery may require to have other types of sensors for measuring operational 
parameters to achieve accurate controls of automated implementation. For example, 
an effective robotic apple picking may require the robotic machine to be equipped 
with position, speed, and/or force sensors on its manipulators and end-effectors for 
controlling the picking actuator quickly and accurately in reaching the target fruit 
and effectively removing it from the tree.
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1.2.2  �Intelligent Decision-Making

After obtaining the required perception ability, an essential ability to distinguish 
robotic machinery from conventional ones is its ability in making intelligent opera-
tional decisions in response to the perceived operation situations. One of the major 
challenges in making robotic agricultural/field machinery work properly and auton-
omously in different kinds of field is mostly caused by the high level of randomness 
in both the biological and physical properties, wide variations in geometric features 
of task/target targets, as well as the high level of uncertainty in operation conditions. 
To overcome these challenges, it demands the robotic machinery possesses the abil-
ity in making intelligent decision in terms of detected operation situation. One 
approach is to combine human workers and robots synergistically and allow the 
robot to mimic human experts’ making intelligent operational decision by using 
examples from human experts making the decision in similar scenarios. One exam-
ple of this approach is a farmer-assisted fertilizing robot developed by Vakilian and 
Massah (2017) for precise nitrogen management in greenhouse crops. Such an 
approach requires the robot to detect the operation scenario using onboard sensors, 
such as using a visual sensor to acquire textural features indicating crop growth 
condition, and check the detected indicators against a set of reference scenarios. 
After a matching scenario is found, the robot will then apply an adequate rate of 
fertilization similar to how a human worker will do for this reference scenario. This 
approach requires the availability of a set of reference scenarios with human work-
ers’ reaction for the case in similar scenarios. Another approach is to separate the 
sensing system from the robot (Zion et  al. 2014), which is frequently proposed 
especially for harvesting robots. By mapping the harvesting targets in the field using 
an adequate coordinating system prior to harvest, the robot could reach a bank of 
targets according to the recorded coordinates. It could speed up the operation sub-
stantially as the sensing method is no longer a limiting factor to draw the robotic 
harvesting efficiency down, which is one of the major remaining challenges for 
agricultural and field robots.

In many field operations in agricultural production (and other similar applica-
tions), it is often desirable that the robotic machinery possesses substantial level of 
intelligence to work properly and effectively under highly uncertain and changing 
operation conditions. One way to solve such a problem is via learning from sample 
data. As a computational method that involves progressively improving the perfor-
mance on a specific task through data-based learning, machine learning (ML) algo-
rithms have been adopted in supporting decision-making on robotic machinery to 
avoid or minimize using explicitly developed programs or models. A few examples 
include the naïve Bayes (NB), k-mean clustering, support vector machines (SVMs), 
and k-Nearest Neighbor (kNN)-based ML algorithms (Rehman et al. 2019). Deep 
learning (DL), a class of extended classical machine learning methods created by 
adding more “depth” (or the complexity), is one of the newest and most robust ML 
techniques that enhances the capability of automated feature extraction from raw 
data (Kamilaris and Prenafeta-Boldú 2018). Therefore, DL is suitable for solving 
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complicated intelligent control problems in agricultural and field applications. The 
advancement of machine learning (including DL) technologies has been and will 
continue to offer more useful tools in making intelligent operational decisions for 
agricultural and field robots.

1.3  �Challenges and Opportunities

The main function of agricultural and field robots is to perform designated tasks 
automatically or autonomously on designated production/operation sites. As men-
tioned previously, tremendous progress has been made in the past century in devel-
oping and adopting mechanization technologies for agricultural and other field 
operations. Many modern agricultural machines that have been widely used in vari-
ous production operations today were matured from decades of continuing improve-
ment for achieving the best possible performance on doing the specific tasks. Similar 
improvements have been made in other field operations over the last several decades. 
These matured machines and machinery systems provide a rich resource and a 
strong foundation for developing actuation technologies for many agricultural and 
field robots.

There are still challenges for creating capable and effective robotic actuation 
technologies for doing the work today’s agricultural and field machinery are not 
able to perform or could not effectively perform due to their low levels of intelli-
gence. For example, the production of high-value specialty crops, which the US 
Department of Agriculture (USDA) defines as fruits and vegetables, tree nuts, dried 
fruits, horticulture, and nursery crops, is still largely dependent on manual labor. 
This dependence is mainly attributed to the lack of mature mechanization/automa-
tion technologies for various field operations such as fresh fruit and vegetable har-
vesting, tree training and pruning, crop pollination and thinning, and weed control, 
among others (Davidson et al. 2016). As a specific application example of robotic 
fruit harvesting, the key bottlenecks for commercial development of such a machin-
ery are sensitivity of the produce quality to mechanical impact during harvesting 
and the extensive variability that exists in the unstructured orchard environment. 
The actuation technology (including the manipulator and end-effector) optimization 
for specialty crop harvesting applications is still an active area of research (Sivaraman 
and Burks 2007; Van Henten et al. 2009; Lehnert et al. 2015; Chap. 7 of this book). 
Hoeing actuators for intra-row mechanical weeding (Gobor et al. 2013) and string 
tying actuators for hops’ production (He et  al. 2012) are two examples of other 
actuation technologies need to be developed especially for robotic applications in 
the agricultural and field environments as there are either no existing mechanical 
devices available for performing the work or the existing devices are inadequate for 
performing robotic operations.

Powered by the recent technological advancement in machine learning, sensing 
and data processing techniques, as well as parallel computing, agricultural and field 
robots have never been so close to be practically used in field for commercial 
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productions/operations. It creates an urgency for starting a new study on manage-
ment of robotic field operations, consisting of robotic equipment selection, efficient 
utilization in the field, and optimization for economic returns.

Agricultural and field robots are developed, to a large extent, for solving the chal-
lenges of the human field labor shortage and improve worker health and safety, and 
these robotic machines have to be uniquely designed, normally for specific field 
operations. It forms an important feature to distinguish agricultural and field appli-
cations of robots from industrial operation: while industry applications could adopt 
robotic operation to a few selective tasks in a factory, agricultural applications 
would make sense only if the entire operation were robotized to solve the challenge 
of field labor shortage. Another basic consideration in equipment selection is proper 
sizing of robots. Proper sizing of robots for every field operation to optimally match 
their capacities plays an essential role for achieving productive, efficient, and profit-
able operations. Coordination strategies and control of multiple robots also play a 
critical role for productive, efficient, and safe operations.

One critical obstacle, specifically for agricultural applications, for effective utili-
zation of robotic equipment is the insufficient skills of farmers to effectively man-
age, operate, and supervise robots as they could in using conventional machinery. 
Effective robot managing and supervision may include work-plan creation for indi-
vidual robot and the entire robot fleet, system initialization, the operation-specific 
data/information management and utilization, and the override control for abnormal 
conditions, and many of those tasks require human-robot interaction. Such tasks 
normally require special skills to perform and are often beyond ordinary farmer’s 
capability to manage. One possible solution for such a skill challenge might be 
professional services, either through robot management and maintenance services 
or through robotic operation services. The former is to provide technical support to 
help end users (e.g., farmers) managing and operating their robotic equipment, and 
the latter is to provide custom robotic field operation services for the end users.

1.3.1  �Economics: A Critical Dimension

Like in any other commercial operations, economic performance of robotic farming 
(and other field operations) is one of the most important measures in robotic field 
operation management. An ideal robotic farming system, for example, should be 
able to perform a most productive operation at the lowest total cost. As agricultural 
production is often measured by the yield, one way to measure economic perfor-
mance is by the total cost per unit of yield. The total costs for a robotic production 
should include the initial costs, the operational and maintenance costs, and the error 
(e.g., crop damage) costs. The initial costs are one-time expenses for purchasing, 
delivery, and maybe initial integration and calibration when applicable of the robotic 
equipment. As the lifespan of a robot is usually over multiple years (production 
seasons), it could be divided into per season costs in assessing its economic perfor-
mance. The operational costs are more complicated to determine and can be 
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calculated in annual (or per season) basis. This category of costs should include 
service costs (such as maintenance and repair costs), material costs (such as fuels 
and other applicable materials), and labor costs (such as for monitoring and supervi-
sion). The use of robot in agricultural production does not mean to completely elim-
inate human labor in the operation, but to replace human labors from tedious field 
work by using less but skillful operators to manage and supervise the robotic opera-
tion. The error cost is relatively difficult to calculate as there is no sufficient infor-
mation supporting the estimation of what error in robotic operation would cause 
what yield reduction, but impact heavily to the overall economic performance of 
robotic production as any error could result in a substantial yield loss and the entire 
economic performance is based on the yield.

1.4  �Concluding Thoughts

Manual operations in agriculture and other field environments are challenging: they 
are not only labor intensive but are laborious and pose health and safety risks. In the 
twenty-first century of social and technological development, people deserve and 
have the potential to move away from performing back-breaking and risky work, 
such as climbing up and down tall ladders with heavy load of fruit (e.g., 15 Kg) in 
manual tree fruit harvesting, by using robotic machinery. As discussed before, tre-
mendous progress has been made over the last century in agriculture in developing 
and adopting mechanization and automation technologies to minimizing farming 
inputs such as fertilizer, water, and labor while improving crop yield and quality. 
Similar progresses have also been made in other relevant (field) industries such as 
construction and mining. Using the foundation provided by these matured machin-
ery systems and through the integration of advanced tools and technologies, reli-
able, robust, and affordable robotic technologies could be developed for these 
industries. With the recent advancement in AI techniques such as deep learning, 
ever-increasing capability and decreasing cost of computational technology (includ-
ing parallel computing), powerful but affordable sensing systems such as hyper-
spectral imagers and novel robotic solutions such as soft robotics, we can now 
envision a world where all labor-intensive and laborious farming/field operations 
are performed by autonomous machines. In this way of farming, we believe, the role 
of human workers will be to operate, collaborate with, supervise, and/or trouble-
shoot these machines (based on the nature of the autonomous machine) remotely 
from off-site offices. The future of farming, what we also call smart farming or Ag 
4.0, we believe, will also see widespread adoption of qualitative decision-making in 
farming by intelligent machines using AI, IoT, and big data analytics (and in col-
laboration with human experts). What the Prime Minister of Canada, Justine 
Trudeau, recently said about general technological developments holds true in agri-
culture (and related industries) as well: “we have never seen this rapid advancement 
in agricultural technologies in the past and we will never be this slow again.”
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Chapter 2
Sensors I: Color Imaging and Basics 
of Image Processing

Won Suk Lee and Jose Blasco

2.1  �Introduction

The human eye is geared by nature to sense the difference between colors. In nature, 
the perceived color is mainly determined by the different types of pigments present 
in plants, such as chlorophylls, carotenes, xanthophylls, and anthocyanins, that offer 
information on the type and status of plants and their fruits. This is very important, 
for example, for harvesting robots or those that act according to the state of the 
plants. Likewise, color allows differentiating structural elements of the scene and 
obtaining information from the environment that is essential, for example, in 
autonomous guidance systems. Color cameras are the most widely used devices in 
artificial vision because they produce images similar to those perceived by the 
human eye, and are therefore widely used to automate agricultural operations in a 
framework of precision agriculture (Cubero et al., 2016). The acquisition technology 
of these images is very advanced, and there are also numerous techniques to analyze 
and obtain information from this type of images. To obtain good results, it is very 
important to acquire high-quality images. Therefore, the selection of the cameras 
and the lighting conditions for the images are very important, especially in field 
conditions where the images are poorly structured and the lighting conditions are 
changing. Subsequently, it is necessary to follow a series of basic steps in the image 
analysis. First, a preprocessing is necessary to improve the image and eliminate 
noise pixels to achieve faster and more efficient subsequent processing, followed by 
a segmentation operation to obtain the regions of interest. Finally, a feature 
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extraction is required to obtain the desired information. For any of these tasks, it is 
essential to develop efficient, robust, and accurate processing algorithms.

This chapter is an overview of the main topics related to the basics of color imag-
ing and image processing operations applied to robotics in agriculture. Due the 
limited scope of this chapter, readers are encouraged to read reference books to get 
into details of image processing, such as Gonzalez and Woods (2018) and Russ and 
Neal (2017).

2.2  �Basics of Color Imaging

The spectrum visible to humans goes from violet light to red light (Fig. 2.1). When 
light strikes an object, it absorbs part of the light and reflects the rest, which is per-
ceived by the human eye through the retina. The retina contains two different types 
of light-sensing photoreceptor cells, rods and cones. The rods are activated in low 
light conditions, while the cones usually contain three types of pigments that are 
sensitive to wavelengths of light corresponding to the colors red, green, and blue. 
Therefore, all the colors that humans can recognize are a combination of these pri-
mary colors (Goldstein 2010). In order to determine, measure and compare colors, 
precise methods are needed to represent the colors with unique values.

2.2.1  �Color Representation

The objective of a color model is to facilitate the expression of the colors in a stan-
dardized way. In general, a color model is the mathematical description of a coordi-
nate system and a particular space (color space) in which each color is represented 
only by a single point (Ibraheem et al. 2012). Color models are used to describe the 

Fig. 2.1  Electromagnetic spectrum and the visible light
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colors of digital images. In addition, a color space is a particular implementation of 
a color model that has a specific range of colors (Hastings and Rubin 2012). For 
example, in the RGB color model, there are different color spaces, such as Adobe 
RGB and sRGB. Different devices (for example digital cameras), due to the elec-
tronics and/or the software implemented on them, have their own color spaces and, 
therefore, can capture or represent only the colors within their range (Ford and 
Roberts 1998). There are a number of color spaces in common usage depending on 
the particular industry and/or application involved. For example, as humans we nor-
mally determine color by parameters such as brightness, hue, and colorfulness. On 
computers it is more common to describe color by three components, normally red, 
green, and blue. There are many different color spaces used in practice and each one 
represents a different method to describe the colors. Some of the most known 
models are briefly described below.

RGB Model
Red (R), green (G), and blue (B) or RGB model is the most widely used model in 
digital devices. It is based on an additive mixing model, where each color is formed 
by a combination of the three primary colors: red, green, and blue. The spatial rep-
resentation is through a cube where each side measures 1 and each axis represents 
one of the three primary (RGB) color coordinates. In this model, the black color is 
represented at point (0,0,0) and the white color at (1,1,1). Figure 2.2b shows the 
distribution of the colors of the images in Fig. 2.2a, using the RGB color model.

A normalized variant of this model is defined as rgb, which is derived by dividing 
the RGB values by (R + G + B). As this color space is native for electronic devices, 
the RGB coordinates are commonly used in vegetation indices to assess different 
properties of the crops using remote sensing techniques (Meyer and Neto 2008).

HSV and HLS Models
These models were designed to be more easily understandable and interpretable 
since they use parameters more related with the perception of the color, such as hue, 
saturation, lightness (HSL), or value (HSV). Lightness (or value) of a color is the 
quality of being lighter or darker. Saturation means the difference of color with 
respect to a gray color with the same intensity. As saturation normally ranges 
between 0 and 1, the grey color would be 0 and the most colorful color would be 1. 
Hue can be defined as the dominant frequency of the spectrum. It is typically repre-
sented in a color wheel and expressed in angular degrees (°), with red being 0° (as 
well as 360°), green being 120°, and blue being 240°. Figure 2.2c shows the distri-
bution of the colors of the images in Fig. 2.2a, using the HSV color model.

CIELAB and CIELUV Models
These models were defined by the CIE for industrial color applications where mea-
surement and color comparison are important. The models separate a brightness 
channel (L*) and two chrominance channels (a*b* and u*v*). The latter are defined 
by nonlinear transformations of the RGB model in order to achieve perceptually 
uniform representations of color. In these models, colors are presented such that the 
differences between perceived colors are related to the distance between these 
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Fig. 2.2  Representation of the colors of two images, (a) one of a mango fruit and another of a 
vineyard using (b) RGB, (c) HSV, and (d) CIELAB color models. It can be seen how most colors 
are concentrated in a particular region of different color spaces, which indicates that in both fruit 
and vegetation images, only a relative small amount of colors is really used
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