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Preface

It gives us great pleasure to introduce this collection of papers that were presented
at the following international conferences: Artificial Intelligence (ICAI 2020)
and Applied Cognitive Computing (ACC 2020). These two conferences were
held simultaneously (same location and dates) at Luxor Hotel (MGM Resorts
International), Las Vegas, USA, July 27–30, 2020. This international event was held
using a hybrid approach, that is, “in-person” and “virtual/online” presentations and
discussions.

This book is composed of nine parts. Parts 1 through 8 (composed of 78 chapters)
include articles that address various challenges in the area of artificial intelligence
(ICAI). Part 9 (composed of 12 chapters) includes a collection of research papers in
the area of applied cognitive computing (ACC).

An important mission of the World Congress in Computer Science, Computer
Engineering, and Applied Computing, CSCE (a federated congress to which this
event is affiliated with), includes “Providing a unique platform for a diverse com-
munity of constituents composed of scholars, researchers, developers, educators,
and practitioners. The Congress makes concerted effort to reach out to participants
affiliated with diverse entities (such as: universities, institutions, corporations,
government agencies, and research centers/labs) from all over the world. The
congress also attempts to connect participants from institutions that have teaching
as their main mission with those who are affiliated with institutions that have
research as their main mission. The congress uses a quota system to achieve its
institution and geography diversity objectives.” By any definition of diversity, this
congress is among the most diverse scientific meeting in the USA. We are proud
to report that this federated congress had authors and participants from 54 different
nations representing variety of personal and scientific experiences that arise from
differences in culture and values.

The program committees (refer to subsequent pages for the list of the members of
committees) would like to thank all those who submitted papers for consideration.
About 50% of the submissions were from outside the USA. Each submitted paper
was peer-reviewed by two experts in the field for originality, significance, clarity,
impact, and soundness. In cases of contradictory recommendations, a member of the
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vi Preface

conference program committee was charged to make the final decision; often, this
involved seeking help from additional referees. In addition, papers whose authors
included a member of the conference program committee were evaluated using
the double-blind review process. One exception to the above evaluation process
was for papers that were submitted directly to chairs/organizers of pre-approved
sessions/workshops; in these cases, the chairs/organizers were responsible for the
evaluation of such submissions. The overall paper acceptance rate for regular papers
was 20%; 18% of the remaining papers were accepted as short and/or poster papers.

We are grateful to the many colleagues who offered their services in preparing
this book. In particular, we would like to thank the members of the Program
Committees of individual research tracks as well as the members of the Steering
Committees of ICAI 2020 and ACC 2020; their names appear in the subsequent
pages. We would also like to extend our appreciation to over 500 referees.

As sponsors-at-large, partners, and/or organizers, each of the followings (sepa-
rated by semicolons) provided help for at least one research track: Computer Science
Research, Education, and Applications (CSREA); US Chapter of World Academy
of Science; American Council on Science and Education & Federated Research
council; and Colorado Engineering Inc. In addition, a number of university faculty
members and their staff, several publishers of computer science and computer
engineering books and journals, chapters and/or task forces of computer science
associations/organizations from 3 regions, and developers of high-performance
machines and systems provided significant help in organizing the event as well as
providing some resources. We are grateful to them all.

We express our gratitude to all authors of the articles published in this book and
the speakers who delivered their research results at the congress. We would also
like to thank the following: UCMSS (Universal Conference Management Systems
& Support, California, USA) for managing all aspects of the conference; Dr. Tim
Field at APC for coordinating and managing the printing of the programs; the staff
at Luxor Hotel (MGM Convention) for the professional service they provided; and
Ashu M. G. Solo for his help in publicizing the congress. Last but not least, we
would like to thank Ms. Mary James (Springer Senior Editor in New York) and
Arun Pandian KJ (Springer Production Editor) for the excellent professional service
they provided for this book project.

Book Co-editors and Chapter Co-editors: ICAI 2020 and ACC 2020

Athens, GA, USA Hamid R. Arabnia
Winnipeg, MB, Canada Ken Ferens
Oviedo, Asturias, Spain David de la Fuente
Moscow, Russia Elena B. Kozerenko
Ciudad Real, Ciudad Real, Spain José Angel Olivas Varela
La Plata, Argentina Fernando G. Tinetti
Seoul, South Korea Charlie (Seungmin) Rho
Houston, TX, USA Xiaokun Yang
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Fine Tuning a Generative Adversarial
Network’s Discriminator for Student
Attrition Prediction

Eric Stenton and Pablo Rivas

1 Introduction

Most colleges want to retain the number of freshman students enrolled and do what
they can to prevent them from leaving within the first year. We will use the word
“attrition” to describe students who have either dropped out or transferred to another
college. A strong tool in lowering the amount of student attrition is the ability to
predict who will leave as well as determine a trend or commonality between those
who do leave. An inevitable problem with developing a good manner of prediction
is the small amount of data that is available as a result of a typically small incoming
class and the even smaller amount of those who leave. In other words, predicting
student attrition in the first year can be proposed as an anomaly detection problem
with a very limited amount of data to use in creating prediction models. In this paper,
the freshman population of Marist College of years 2016 and 2017 will be examined
using a GAN architecture in order to predict attrition in 2018. First, the neural
network model learns the characteristics of a first-year student through adversarial
learning. Second, the model is fine-tuned to classify students as either those who will
stay or those who will leave. Third, the latent space of the layer directly before the
final one that gives the final prediction is inspected for comparing three versions of
the model. The versions are the following: The model traditionally trained without
a GAN (the control), one adversarially trained without tuning, and one adversarially
trained with tuning. The hypothesis is that the model that is adversarially trained
with tuning will have a latent space more representative of the freshman population
producing a higher accuracy when predicting student attrition.
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The following section will provide a brief background of the concepts in this
paper. Following this section will be a description of the methodology used to test
the models and how the models were built. The next section will be an overview
of the three experiments performed, their accompanying diagrams, and a short
explanation of the results. Finally, the last section will be a concluding paragraph on
the findings of the experiments.

2 Background and Other Work

It is important to note this paper serves as an extension of research carried out by Dr.
Eitel Lauria and colleagues in which the same population of students was used to
predict attrition using multiple machine learning algorithms, the primary one being
XGBoost [3]. Dr. Lauria’s research produced models with accurate predictions
of student attrition despite minimal amounts of data. This research extends the
knowledge of neural models for student attrition introduced by E. Lauria et al. [8].

Current insights in GAN architectures originated in a paper by Dr. Ian Goodfel-
low et al. where the concept of a discriminator model and generator model playing
a minimax game first arose [5]. Their paper shows the following value function for
how the GAN operates:

min
G

max
D
V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the value function V (D,G), G is a differential function representing the
generator model that takes noise input pz(z) and maps it to a data space. This data
space is meant to represent possible values that can mimic variables pdata(x), real
data, when inputted into another function represented by the discriminator model
and denoted as D that outputs a prediction of whether the input was generated or
not.D is trained to maximize the probability of correctly labeling generated and real
samples while G is trained to minimize log(1−D(G(z))), or lower the probability
of D predicting correctly.

Shortly after Dr. Goodfellow’s paper, the structure of the GAN training python
code and the calculation of both the Wasserstein loss and gradient penalty for the
training of the discriminator originated in an experiment from a paper by Martin
Arjovsky, Soumith Chintala, and Léon Bottou [1]. The formula for the Wasserstein
distance which is described in further detail in the referenced paper is the following:

W
(
Pr ,Pg

) = inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ [‖x − y‖]. (2)

In the Wasserstein distance equation, Π(Pr ,Pg) represents the set of all joint
distributions γ (x, y) with marginals Pr and Pg , respectively. In order to transform
distributions Pr into distribution Pg , γ (x, y) denotes the amount of “mass” to be
transported from x to y while the Wasserstein distance describes the “cost” of the
optimal method of transport.
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Fig. 1 Discriminator architecture diagram

The next section will describe the methodology for building the discriminator and
generator models as well as how the Wasserstein distance equation will be utilized.

3 Methodology

The main pieces of GAN architectures are the discriminator and generator models
as shown in Eq. 2. These models will be explained in this section in detail.

3.1 Discriminator

The discriminator is a neural model composed of 12 layers as shown in Fig. 1. These
layers are: dropout, ReLU, batch normalization, tanh, and sigmoid. First, in order to
prevent any one feature of the input data becoming heavily weighted, the dropout
layer disconnects about 20% of the features randomly on each training step [9].
Second, batch normalization layers are placed intermittently to prevent the outputs
of the ReLU layers from becoming too large and slowing or preventing convergence
[4]. Third, the Python implementation of our model is based on Keras’ functional
model due to its ability to work with the tanh layer separately as this will serve as a
view into the latent space of the model directly before an output is computed. Fourth,
the discriminator’s loss is based on weighing two Wasserstein loss calculations with
a weight of one and a gradient penalty with a weight of ten.

3.2 Generator

The generator is a sequential model made up of 9 layers with a similar layout to
the discriminator in which it has ReLU layers with intermittent batch normalization
layers and an output consisting of a sigmoid layer as shown in Fig. 2. The most
notable difference the generator has from the discriminator is the nature of its input
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Fig. 2 Generator architecture diagram

which is 12 normally distributed random values between 0 and 1. These values
are “noise” or values within a latent dimension defining different vectors that will
eventually become generated data mimicking the input to the discriminator. This
latent dimension should not be confused with the latent space referenced in this
paper describing the output of the tanh layer in the discriminator. Furthermore, the
generator’s loss function is simpler than the discriminator’s as it only consists of a
single Wasserstein calculation.

The following section will present the three experiments conducted using the
aforementioned models in detail as well as expound on the results of each.

4 Experiments and Results

Before getting into the details of the experiment, let us take a look at the input data.
Table 1 describes the features and corresponding data types.

Some of the most noteworthy predictors in Table 1 are the following: “HSGPA,”
“DistanceInMiles,” “MeritScholAmt,” and “APCourses.” “HSGPA” is a student’s
GPA from high school measured with a 4.0 scale. “DistanceInMiles” is the distance
from a student’s hometown to the college measured in miles. “MeritScholAmt” is
the amount of money awarded to the student through a merit scholarship. Finally,
the “APCourses” feature is a binary value where 1 means the student has taken AP
courses and 0 means they have not. It is important to note that the majority of the
aforementioned predictors relate to how well the student has done academically in
high school. Furthermore, the “DistanceInMiles” predictor may indirectly relate to
the student’s emotional well-being as a larger distance away from their hometown
may limit visits home. However, due to the difficulty in measuring the importance
of predictors in a neural network, the speculation on the impact each feature has on
predicting student attrition is rooted in the work by E. Lauria et al. where many of
the same predictors are used and measured based on their importance in multiple
machine learning models [8].

Besides the most important predictors, it is also imperative to point out the most
“noisy” predictors, or those that have a large number of null values, which are
the following: “DistanceInMiles,” “OccupantsBuilding,” “OccupantsRoom,” and
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Table 1 Description of predictors

Feature Description Data type

EarlyAction Applied for early action Binary (1/0)

EarlyDecision Applied for early decision Binary (1/0)

MeritScholAmt Merit scholarship amount awarded Binary (1/0)

FinAidRating Financial aid rating Categorical encoded

as binary (1,0)

HSTier High school tier Categorical encoded

as binary (1,0)

Foreign Foreign student Binary (1/0)

FAFSA Applied for federal student aid Binary (1/0)

APCourses Took AP courses Binary (1/0)

Sex The sex of the student Binary (1/0)

Athlete Is a student athlete Binary (1/0)

EarlyDeferral Applied for early deferral Binary (1/0)

WaitlistYN Was waitlisted Binary (1/0)

Commute Is a commuter student Binary (1/0)

HSGPA High School GPA Integer

DistanceInMiles Distance from home (miles) Integer

School Member of a certain school, Categorical encoded

e.g., CC (ComSci & Math) as binary (1,0)

IsPellRecipient Is recipient of Pell Grant Binary (1/0)

IsDeansList Joined Dean’s List Binary (1/0)

IsProbation Is on probation Binary (1/0)

OccupantsBuilding Number of occupants in dorm Integer

OccupantsRoom Number of occupants in dorm room Integer

IsSingleRoom Uses a single room Binary (1/0)

IsUnlimitedMealPlan Has unlimited meal plan Binary (1/0)

PercentHigherEd Percent of those with higher Float

education in home area

GiniIndex Gini Index value of home area Float

MedianIncome Median income of home area Float

PercentWithInternet Percent with internet in home area Float

Attrited (Target) Left the college Binary (1/0)

“GiniIndex.” As mentioned previously, “DistanceInMiles” is the amount of miles
between the college and the student’s hometown. “OccupantsBuilding” is the num-
ber of students that live in a student’s dorm building. Similarly, “OccupantsRoom”
is the number of students that live within the student’s dorm room including
themselves. Last, “GiniIndex” is the Gini coefficient of the student’s hometown
which is a measurement of income distribution in the area where a high value
indicates greater inequality. In order to handle these features, the data is cleaned.
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Our method of preprocessing the data includes removing any feature that is
comprised of more than 30% of nulls and imputing the remaining features with
missing values using K nearest neighbors (KNN). Additionally, the preprocessing
step also included normalizing values between 0 and 1 for all integer and float type
features. All categorical features mentioned in Table 1 are dummified.

After preprocessing the data, it is used to perform three experiments as described
in the next few sections.

4.1 Experiment 1

In the first experiment, the GAN model was trained for 10,000 epochs. The weights
were then transferred to two models, one that is tuned for 500 epochs to classify
student attrition and the other that is left alone. This transference of weights is
an example of transfer learning where the knowledge gained through adversarial
training is applied to predicting student attrition (further details can be found in
the referenced work) [6]. A control model was made from the same architecture as
the GAN one, but trained separately on only the data previously used to tune for
classification for 500 epochs. From the Receiver Operating Characteristic (ROC)
diagrams, the control model performed marginally better with an accuracy of 0.68
than the tuned GAN model with only 0.64 accuracy. A ROC curve is a plot of
the true positive rate against the false positive rate across various thresholds that
determine the dividing line between classifications for a given model (more info
in the provided reference) [2]. The accuracy of the GAN model, before tuning, is
extremely low at 0.42. It is important to also note the discriminator and generator
loss converging at about 10,000 epochs, or around the amount of epochs this
experiment ran.

Directing our attention to the Cohen’s kappa statistic, we observed that the
relationship between the control and tuned model shows a kappa value of 0.5301
when a threshold resulting in about a 5% error rate is used. This value could be
in the range of −1 to 1 and shows how close the model’s outputs are where 1 is
identical and anything 0 or below is akin to equivalent by chance [7]. The formula
for the Cohen’s kappa coefficient is the following:

κ = (po − pe) / (1− pe) . (3)

The po variable in the equation is the observed agreement of the labels applied
to a sample by the models while pe is the probability of chance agreement. The
aforementioned value 0.5301 demonstrates that the control and tuned models for
this experiment are outputting predictions that are similar but also having a good
number of discrepancies. The fact that they are different suggests that the models are
fundamentally different in their output distributions which is desired. In the second
experiment, we will see how the Cohen’s kappa coefficients change.
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4.2 Experiment 2

In the second experiment, the GAN model trained for 15,000 epochs. We observed
that the discriminator and generator losses converged and begun separating again
though on inverse sides. The GAN model, before tuning, still demonstrates a low
accuracy and a latent space with a similar linear relationship as in experiment 1.
The control model’s accuracy remains at about 0.68 with 500 epochs of training. It
is here that we see an improvement in the accuracy of the tuned model boasting a
0.69 which is 0.05 higher than its previous. Last, the kappa value for the control and
tuned model is 0.4426 which is lower than in the first experiment when ran with a
threshold resulting in about a 5% false positive rate despite the overall accuracy of
the two models being different by a 0.01 margin. This means that despite their close
accuracies, the two models are providing differing outputs which suggests the two
models are correctly classifying students the other is misidentifying. The third and
final experiment will demonstrate what happens to the Cohen’s kappa coefficient
when the accuracy of the tuned model is higher than the control model.

4.3 Experiment 3

In the third experiment, the GAN model trained for 20,000 epochs. We chose 20,000
as the largest amount of epochs for an experiment due to the losses converging at
about 10,000 epochs and to see how well the model performed with a large number
of epochs at about double the point of loss convergence. The loss and kappa statistic
results are shown in Fig. 3. As shown in (a), the discriminator and generator losses
converged, separated, and continued to grow apart though on inverse sides to where
they began. When we take a look at the kappa score in (b), where the control and
tuned models are predicting at a threshold resulting in about a 5% false positive
rate, it is higher than the previous two experiments. Here, we see that their output
similarity is measured to be a 0.6358 kappa score. This increase in the kappa score
is expected since both models have an increased accuracy from the previous two
experiments which naturally leads to their outputs being similar as they both are
making more correct predictions. While this value is higher than in experiment 1
and 2, it still demonstrates the predictions of the two models show a noteworthy
degree of discrepancy and produce different output distributions.

Figure 4 shows the GAN model before tuning. In (a) observe a low accuracy
though now with a noticeably different latent space, (b), that seems to still have
some semblance of a linear relationship with a high amount of data clumping at the
bottom left corner and some at the top right corner. This can be explained by the
nature of hyperbolic tangent activation function which aims to pull separate classes
into opposite sides of the quadrants.

Figure 5 shows the control model, which was able to reach an accuracy of 0.69
with 500 epochs of training (a). However, it is still 0.01 below the tuned model in


