Dierk Schröder Joachim Böcker Hrsg.

Elektrische Antriebe – Regelung von Antriebssystemen

Elektrische Antriebe – Regelung von Antriebssystemen Dierk Schröder · Joachim Böcker (Hrsg.)

Elektrische Antriebe – Regelung von Antriebssystemen

5. Auflage

Hrsg. Prof. Dr.-Ing. Dr.-Ing. h. c. Dierk Schröder Technische Universität München München, Deutschland

Prof. Dr.-Ing. Joachim Böcker Universität Paderborn Paderborn, Deutschland

ISBN 978-3-662-62699-3 ISBN 978-3-662-62700-6 (eBook) https://doi.org/10.1007/978-3-662-62700-6

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 1995, 2001, 2009, 2015, 2020

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Vorwort zur 1. Auflage

Das vorliegende Lehrbuch ist das zweite Buch in der vierbändigen Reihe "Elektrische Antriebe".

Die Schwerpunktthemen dieses Bandes sind die Regelungsvarianten sowohl der drehzahlvariablen Gleichstrom- als auch der Drehstrom-Antriebe.

Der vorliegende Band baut auf dem ersten Band "Elektrische Antriebe 1, Grundlagen" auf. Dies bedeutet, dass Fragen zur Auslegung von Antriebssystemen, die Signalflusspläne für Gleichstrom- und Drehstrom-Maschinen, die Steuereingriffe und deren Wirkung sowie die Funktion der Stellgliedvarianten im Ansatz als bekannt vorausgesetzt werden. Dies gilt ebenso für die grundlegendsten Kenntnisse der Regelungstechnik.

Großer Wert wird auf die durchgängige Darstellung der mathematischen Behandlung von Regelkreisen, der Stabilität sowie der Optimierungskriterien und deren praktische Anwendung gelegt. Es wird deshalb nicht nur das Betragsoptimum und das symmetrische Optimum, sondern auch das allgemein anwendbare Dämpfungsoptimum ausführlich behandelt.

Ein weiterer Schwerpunkt ist die Darstellung der Regelungen von Drehfeldmaschinen. Aufgrund der Bedeutung dieses Gebiets werden die grundlegenden Signalflusspläne der Asynchron- und Synchron-Maschine und deren Abwandlungen in den verschiedenen Koordinatensystemen und Orientierungen noch einmal kurz wiederholt. Erweitert werden die Darstellungen um die permanent erregten Drehfeldmaschinen. Es folgt eine ausführliche Darstellung von Entkopplungsverfahren zur Regelung von Drehfeldmaschinen. Diese Vorgehensweise hat zwei Vorteile: Erstens wird damit das komplexe Thema der Feldorientierung leichter verständlich und zweitens resultieren die Entkopplungsverfahren in relativ einfach zu realisierenden Regelverfahren. Es folgen die Erläuterungen zur feldorientierten Regelung einschließlich der Diskussion verschiedener Modelle und der Parameteradaption.

In einem weiteren Kapitel werden die Rückwirkungen mechanischer Systeme auf den elektrischen Antrieb beispielhaft erläutert.

Um die angestrebte Durchgängigkeit des Lehrbuchs zu erreichen, wurden auch Sonderfragen wie Fehlereinflüsse, Genauigkeit sowie Schirmung oder Approximationen des dynamischen Stellglied-Verhaltens dargestellt.

Das Ziel dieses Lehrbuches ist, sowohl eine Einführung zu geben für Studierende der elektrischen Antriebstechnik an den Fachhochschulen und den Technischen Hochschulen als auch den in der Industrie Tätigen eine Auffrischung des Wissens zu ermöglichen.

Wiederum möchte ich meiner Familie und meinen wissenschaftlichen Mitarbeitern danken für das Verständnis, die Unterstützung und die hilfreichen Diskussionen bei der Abfassung. Gedankt sei auch den Mitautoren von Lehrgängen des VDI-Bildungswerkes, mit denen ich vor vielen Jahren einen intensiven Gedankenaustausch über die industriell angewandten Regelungsverfahren hatte.

München, im Frühjahr 1995

Dierk Schröder

Vorwort zur 5. Auflage

Die 5. Ausgabe des Buchs *Elektrische Antriebe* — *Regelung von Antriebssystemen* stellt sowohl die Grundlagen der geregelten Maschinen als auch weitergehende Spezialthemen ausführlich dar. Dies ist nicht nur für die klassischen elektrischen Antriebssysteme aus Industrie und Bahntechnik, sondern nunmehr auch für Wind-kraftanlagen und elektrisch angetriebene Straßenfahrzeuge von hoher Relevanz.

In der neuen Auflage wurden verschiedene Anpassungen vorgenommen. Die regelungstechnischen Grundlagen wurden weitgehend im ersten Kapitel zusammengefasst, die Kapitel über Gleichstrommaschinen und netzgeführte Stellglieder gestrafft. Einige Kapitel sind auch entfallen, wie die über Simulation und Identifikation, da es inzwischen andere umfangreiche Materialien gibt.

Andere Teile wurden ausgebaut oder ergänzt wie die neuen Abschnitte über Reluktanz-Synchronmaschinen und permanent erregte Synchronmaschinen von C. M. Hackl. Hier wird u. a. die Trichter-Stromregelung (Funnel Control) vorgestellt, welche ohne ein Streckenmodell auskommt und dennoch quantitative Vorgaben einhalten kann. Bekanntermaßen resultiert das stark nichtlineare Verhalten der permanent erregten Synchronmaschine und der Reluktanz-Synchronmaschine in nichttrivialen Betriebskennlinien (wie z. B. Maximum-Torque-per-Losses, MTPL), die in diesen neuen Abschnitten durch methodisch gut durchdachte Optimierungsansätze systematisch entwickelt und analytisch berechnet werden.

Auch an vielen anderen Abschnitten wurden kleinere und größere Überarbeitungen vorgenommen, Druckfehler beseitigt und wenn möglich Bezeichnungen und Symbole vereinheitlicht.

Die Herausgeber danken Herrn Dr.-Ing. Karl Stephan Stille für seine tatkräftige Unterstützung bei der Überarbeitung des umfangreichen Latex-Quellcodes.

München und Paderborn, im Herbst 2020

Inhaltsverzeichnis

1	Regelungstechnische Grundlagen					
	1.1	Regelungstechnische Grundbegriffe und Grundregeln				
		1.1.1	Gegenüberstellung von Steuerung und Regelung	1		
		1.1.2	Beschreibung des dynamischen Verhaltens durch			
			Signalflusspläne	5		
		1.1.3	Frequenzgang 1	0		
		1.1.4	Rechenregeln, Umwandlungsregeln, Signalflussplan 1	6		
		1.1.5	Führungs- und Störungsübertragungsfunktion 2	3		
	1.2	Stabilisierung und Optimierung von Regelkreisen				
		1.2.1	Stabilität	8		
		1.2.2	Stabilitätsprüfung anhand der Übertragungsfunktion 3	6		
		1.2.3	Optimierung bei offenem Kreis (Bode-Diagramm) 4	1		
	1.3	Stand	ard-Optimierungsverfahren 4	5		
		1.3.1	Betragsoptimum (BO) 4	6		
		1.3.2	Symmetrisches Optimum (SO)	0		
		1.3.3	Auswahl des Reglers und Bestimmung der Optimierung 7	5		
		1.3.4	Führungsverhalten bei rampenförmiger Anregung 7	9		
		1.3.5	Resonanter P-Regler	5		
	1.4	Verallgemeinerte Optimierungsverfahren 8				
		1.4.1	Dämpfungsoptimum (DO) 8	8		
		1.4.2	Beispiele zum Dämpfungsoptimum	7		
		1.4.3	Zählerpolynom und äquivalente Sollwertglättung 10	2		
		1.4.4	Erweitertes Dämpfungsoptimum	4		
		1.4.5	Reglerentwurf durch Gütefunktionale 10	9		
		1.4.6	Reglerauslegung mit MATLAB 11	3		
	1.5	Regell	kreisstrukturen 11	7		
		1.5.1	Allgemein vermaschter Regelkreis 11	8		
		1.5.2	Kaskadenregelung 12	0		
		1.5.3	Modellbasierte Regelungen 12	4		
		1.5.4	Vorsteuerung 12	9		
		1.5.5	Zustandsregelung 13	5		
		1.5.6	Stellbegrenzungen in Regelkreisen (P. Hippe, C. Wurmthaler) 15	9		
		1.5.7	Sensor-Begrenzung in Regelkreisen (P. Hippe) 18	6		

	1.6 Abtastsysteme		stsysteme	198
		1.6.1	Grundlagen der z-Transformation	198
		1.6.2	Übertragungsfunktionen von Abtastsystemen	207
		1.6.3	Einschleifige Abtastregelkreise	227
		1.6.4	Optimierung des Reglers bei Abtastregelkreisen	235
		1.6.5	Entwurf zeitdiskreter Regelkreise auf endliche Einstellzeit	239
		1.6.6	Diskretisierungs-Nullstelle — Digitale Signalverarbeitung.	252
	1.7	Fehler	reinflüsse und Genauigkeit bei geregelten Systemen	264
		1.7.1	Ausregelbare Fehler	264
		1.7.2	Nicht ausregelbare Fehler	267
		1.7.3	Abschätzung der Auswirkung der Fehler	272
		1.7.4	Erreichbare Genauigkeit analog drehzahlgeregelter	
			Antriebe	278
		1.7.5	Fehler in Systemen mit digitaler Erfassung von Position	
			und Drehzahl	280
		1.7.6	Geber	284
		1.7.7	EMV, störsichere Signalübertragung und	
			Störschutzmaßnahmen	302
	Lite	ratur.		308
2	Reg	gelung	der Gleichstrommaschine	317
	2.1	Gereg	gelte Gleichstrommaschine im Ankerstellbereich	318
		2.1.1	Stromregelkreis	319
		2.1.2	Drehzahlregelkreis	330
		2.1.3	Lageregelung	341
	2.2	Gereg	gelte Gleichstrommaschine im Feldschwächbereich	345
		2.2.1	Erregerstromregelung	348
		2.2.2	Schaltungsvarianten	351
		2.2.3	Sammelschienenantrieb	352
		2.2.4	Contiflux-Regelung	355
		2.2.5	Spannungsabhängige Feldschwächung	356
	Lite	ratur.	•••••••••••••••••••••••••••••••••••••••	368
3	Dy	namiso	che Modellbildung netzgeführter Stellglieder	371
	3.1	Stron	nregelungen	371
		3.1.1	Großsignal-Verhalten	371
		3.1.2	Adaptiver Stromregler	381
		3.1.3	Prädiktive Stromregelung	386
	3.2	Abtas	stmodelle	389
		3.2.1	Untersuchung des Steuergerätes ohne dynamische Symmetrierung	389
		3.2.2	Untersuchung des Stromrichters	392
		3.2.3	Stromrichterstellglied bei lückendem Strom	396
	Lite	ratur.	~	401

Asy	nchro Cmund	nmaschine			
4.1		Funktiongnyingin der Drohfold Agmahronmogahine			
	4.1.1	Pumzoigor			
	4.1.2	Zugenmenhang der Deumgeigen mit der Feldwerteilung			
	4.1.3	Dushende Veendingtengustene			
	4.1.4	Chapping garleichungen			
	4.1.0	Leistungshilang und Drahmamant			
	4.1.0	Destingung der Deurgeigen aus Metendeten			
19	4.1.7	Bestimmung der Raumzeiger aus Motordaten			
4.2		Boschreibendes Cleichungssystem			
	4.2.1	Signalfluggelan der grannungsgogtauerten			
	4.2.2	Agunghronmagching mit Stranggrößen			
	193	Signalflussplan der stromgesteuerten Asynchronmaschine			
	4.2.5	Stationärer Betrieb der Asynchronmaschine			
	4.2.4	Umrochnungen für Storn, und Dreieckschaltung			
13	4.2.0 Stone	rverfahren der Asynchronmaschine			
1.0	431	Signalflussplan bei Statorflussorientierung			
	432	Signalflussplan bei Botorflussorientierung			
	433	Signalflussplan bei Luftspaltflussorientierung			
44	Regel	ungsverfahren der Asvnchronmaschine			
	4.4.1	Entkopplungsregelung der Asynchronmaschine			
	4.4.2	Entkopplung bei Umrichtern mit eingeprägter Spannung			
	4.4.3	Entkopplung bei Umrichtern mit eingeprägtem Strom			
	4.4.4	Feldorientierte Regelung der Asvnchronmaschine			
4.5	Modellbildung der Asvnchronmaschine				
	4.5.1	<i>I</i> ₁ -Modell (Strommodell)			
	4.5.2	$I_1 - \beta_L$ -Modelle und $I_1 - \Omega_L$ -Modelle			
	4.5.3	U_1 - I_1 -Modell			
	4.5.4	$U_1 - I_1 - \Omega_L$ -Modell			
	4.5.5	U_1 - Ω_L -Modell			
	4.5.6	Zusammenfassung der Modelle			
4.6	Paran	neterbestimmung an Drehstrom-Asynchronmaschinen (W.			
	Michal	lik)			
	4.6.1	Übersicht zu Methoden der Parameterbestimmungen an			
		Drehstrom-Asynchronmaschinen			
	4.6.2	Parameterbestimmungen mit herkömmlichen Verfahren			
		der Maschinenprüfung			
	4.6.3	Parameterbestimmungen mit Parameterschätzverfahren			
4.7	Async	chronmaschine in normierter Darstellung			
4.8	Feldso	chwächbetrieb der Asynchronmaschine			
4.9	Einscl	hränkungen bei der Realisierung der Regelung von			
	Drehf	eldantrieben			
	4.9.1	Abtastender Regler			
	4.9.2	Sättigungseffekte			

		4.9.3	Realisierbare Entkopplungsstruktur	55		
	4.10	Direk	te Regelungen (A. Steimel)	56		
		4.10.1	Direkte Selbstregelung	56		
		4.10.2	2 Indirekte Statorgrößen-Regelung	57		
		4.10.3	B Direct Torque Control	57		
	Lite	ratur.		58		
5	\mathbf{Str}	omreg	elung von Drehstrommaschinen mit			
	puls	sweite	nmodulierten Stromrichtern	58		
	5.1	Regel	strecke und Stellglied der Statorstromregelung	58		
	5.2	Indire	ekte Verfahren der Statorstromregelung	59		
	5.3 Modulationsverfahren (A. Steimel)					
		5.3.1	Grundfrequenztaktung	59		
		5.3.2	Nichtsynchronisierte Pulsweitenmodulation	60		
		5.3.3	Diskontinuierliche Taktungen	60		
		5.3.4	Synchrone Taktungen	6		
		5.3.5	Wechselrichter-Spannungsfehler	65		
	5.4	Weite	re Verfahren zur Pulserzeugung	6		
		5.4.1	Spannungsraumzeigermodulation	6		
		5.4.2	On-line optimierte Pulsmustererzeugung	6		
		5.4.3	Raumzeiger-Hystereseverfahren	6		
		5.4.4	Prädiktive Stromregelung mit Schalttabelle	6		
		5.4.5	Dead-Beat-Pulsmustererzeugung	6		
	5.5	Entw	urf der Stromregelung (N. Hoffmann, F. W. Fuchs)	6		
		5.5.1	Motivation zur digitalen Stromregelung	6		
		5.5.2	Modellbildung	6		
		5.5.3	Klassifizierung der indirekten Regelverfahren	6		
		5.5.4	Stromregelung im rotierenden Koordinatensystem	6		
		5.5.5	Praktische Aspekte bei der Regelungsimplementierung	7		
	5.6	Stron	T_{u} standsregelung (I_{u} N_{u} R)	7		
	0.0	5.6.1	Motivation für den Einsatz eines Zustandsreglers	7		
		5.6.2	Zustandsraumbeschreibung der Statorstromregelstrecke	•		
		0.0.2	bei Drehstromantrieben	7		
		5.6.3	Entwurf des Statorstromzustandsreglers	7		
		5.6.4	Vergleich der Statorstromzustandsregelung mit anderen	•		
		0.0.1	Stromregelverfahren	$\overline{7}$		
	5.7	Drehz	zahlzustandsregelung (U. Nuß)	.7		
	0.1	571	Vorbemerkungen	7		
		572	Erreichbare Dynamik mit klassischen Drehzahlreglern	7		
		5.7.2 5.7.3	Erreichhare Dynamik mit einem Drehzahlzustandsregler	7		
	58	0.1.0 Zucor	nmenfassung Statorstrom-Regelungen	7		
	$5.0 \\ 5.0$	Berel	ung zeitvarianter Systeme mittels Polfesselung (C. Heising	1		
	0.9	$\Lambda C + 2$	imel)	7		
		л. эtе 501	Stabilitätsanalysa laistungsalaktronischer Systema	7		
		5.9.1	Der neue Delfeggelunge Angetz	10		
		0.9.2	Der neue ronesserungs-Ansatz	10		

	5.9.3	Anwendung in der Praxis					
	5.9.4	Pulsstromrichter am Dreileiternetz (Active Front End)					
	5.9.5	Ausblick					
Lit	eratur.						
Sv	nchron	maschine					
61	1 Synchron-Schenkelpolmeschine ohne Dämpferwicklung						
0.1	611	Beschreibendes Gleichungssystem					
	612	Synchron-Schenkelpolmaschine in normierter Darstellung					
	6.1.3	Signalflussplan bei Spannungseinprägung					
	6.1.4	Signalflussplan bei Stromeinprägung					
	6.1.5	Ersatzschaltbild der Synchron-Schenkelpolmaschine					
6.2	Synch	ron-Schenkelpolmaschine mit Dämpferwicklung					
0	6.2.1	Beschreibendes Gleichungssystem und Signalflussplan					
	6.2.2	Ersatzschaltbild der Schenkelpolmaschine mit					
		Dämpferwicklung					
6.3	Synch	Iron-Vollpolmaschine					
	6.3.1	Beschreibendes Gleichungssystem und Signalflusspläne					
	6.3.2	Ersatzschaltbild der Synchron-Vollpolmaschine					
	6.3.3	Feldorientierte Darstellung der Synchron-Vollpolmaschine					
		mit Dämpferwicklung					
	6.3.4	Steuerbedingungen der Vollpolmaschine ohne					
		Dämpferwicklung					
6.4	Regel	ung der Synchronmaschine durch Entkopplung					
6.5	Regel	ung der SM durch Feldorientierung (F. Bauer)					
	6.5.1	Modelle zur Flussermittlung					
	6.5.2	Spannungsmodell $(U_1 - I_1 - Modell)$					
	6.5.3	Regelung der Synchronmaschine					
	6.5.4	Ablösung verschiedener Modelle					
	6.5.5	Flussregelung					
	6.5.6	Flussführung im Feldschwächbereich					
	6.5.7	Steuerung des phi der fremderregten Synchronmaschine					
6.6	Nicht	lineare Stromregelverfahren für RSM (C. M. Hackl et al.)					
	6.6.1	Motivation					
	6.6.2	Problemstellung					
	6.6.3	Modellierung					
	6.6.4	Windup-Problematik und Anti-Windup					
	6.6.5	Adaptive Trichter-Stromregelung					
	6.6.6	Nichtlineare Stromregelung nach Betragsoptimum					
	6.6.7	Nichtlineare Stromregelung mit E/A-Linearisierung					
c =	6.6.8 D	Simulative und experimentelle Validierung					
0.7	Perma	anentmagneterregte Synchronmaschine (PM-Maschine)					
	0.7.1	Signainusspian der PM-Maschine					
	0.7.2	Regelung der PM-Maschine ohne Keluktanzeinflusse					
	0.7.3	Recutectormige Stromeinpragung ohne Reluktanzeinflüsse					

		6.7.4	Vergleich der sinus- und rechteckförmig gespeisten	0.00				
		0 7 5	PM-Maschine	96.				
	<i>c</i> 0	6.7.5 DM M	Feldschwachbereich der PM-Maschine	964				
	6.8	PM-M	aschine mit Reluktanzeinflussen	972				
		0.8.1	Maximales Drenmoment pro Strom	970				
		6.8.2	Verlustminimierung	98.				
		0.8.3	Faldachwächung unter Streen und Spannung	98				
		0.8.4 6 9 E	Feidschwachung unter Strom- und Spannungsbegrenzung .	988				
		0.8.0	Einhindung in ein Antrichaguster	990				
		0.8.0	Einoindung in ein Antriebssystem	100				
		0.8.1	Heldschwachregelung mit Ruckkopplung	100				
	6.0	0.8.8	Hybride Feldschwachregelungsstruktur	1004				
	0.9	Optim	ale Betriebsruhrung von mentimearen SM (C. M. Hackl et al.)	1000				
		0.9.1 6 0 0	Modulianung	100				
		0.9.2	Drohlamatallung, Optimala Sallatnamhanahnung (OSSD)	1010				
		0.9.5	Mathematische Verüherlegungen	1010				
		0.9.4	Optimala Betriebsstrategian	102.				
		0.9.5	Analytische Berechnung der entimelen Sellströme	1034				
		0.9.0	Anarytische Derechnung der optimalen Sonströme	1040				
		0.9.7	Simulative und experimentalle Validierung	1054				
		0.9.8	Zusammonfassung und Ausblick	1050				
	Lito	0.9.9		1000				
	LITE	atur		1000				
7	Dre	hgebei	rlose Regelung von Drehfeldmaschinen	108				
	7.1	Einfüh	Irung	108				
		7.1.1	Prinzipielle Grundgleichungen	1087				
	7.2	Grund	undlegendes nichtadaptives Verfahren 10					
	7.3	Nichta	chtadaptive Verfahren: Statorspannungsgleichungen 10					
	7.4	Nichta	daptive Verfahren: Flussgleichungen	1099				
	7.5	Nichta	adaptive Verfahren: Sollgrößenansatz	1100				
	7.6	Direkt	e Schätzung der Rotordrehzahl	1103				
	7.7	Adapt	ive Verfahren	1108				
		7.7.1	MRAS-Verfahren	1113				
		7.7.2	Problematik bei tiefen Frequenzen	111				
		7.7.3	MRAS-Verfahren: EMK-Berechnung	1119				
		7.7.4	MRAS-Verfahren: Flussberechnung	1120				
		7.7.5	MRAS-Verfahren, basierend auf Blindleistungsberechnung	1122				
		7.7.6	Verfahren mittels Zustandsschätzung	112^{4}				
	7.8	Schätz	zverfahren mit neuronalen Netzen	1138				
	7.9	Auswe	ertung von Harmonischen	114				
	7.10	Anisot	cropie-basierte Schätzung der Rotorlage (P. Landsmann)	114				
		7.10.1	Analytische Betrachtung der Anisotropie einer Induktivität	114_{-}				
		7.10.2	Verfahren zur Identifikation der Anisotropie	1148				
		7.10.3	Zusammenhang zwischen Anisotropie und Rotorlage	1164				

		7.10.4	Initiale Bestimmung der Polarität	1174
	7.11	Zusan	nmenfassung sensorlose Drehfeldantriebe	1176
		7.11.1	Modellbasierte Verfahren – Einführung	1176
		7.11.2	Modellbasierte Verfahren	1177
		7.11.3	Hochfrequende Zusatzsignale	1181
		7.11.4	Symmetrische Maschinen	1182
	Lite	ratur.		1185
8	\mathbf{Ges}	chalte	ete Reluktanzmaschine (R. De Doncker, A. Wörndle)	1201
	8.1	Funkt	cionsweise und Aufbau	1201
	8.2	Grune	dgleichungen	1205
		8.2.1	Spannungsgleichung	1205
		8.2.2	Drehmomentgleichung und Energiebilanz bei linearer	
			Betrachtung	1206
		8.2.3	Energiebilanz bei nichtlinearen Verhältnissen	1208
		8.2.4	Einfluss der Sättigung	1212
	8.3	Umrie	chterschaltungen	1213
	8.4	Steue	rung und Regelung	1215
		8.4.1	Stromregelung	1215
		8.4.2	Drehmomentregelung	1218
		8.4.3	Drehzahlregelung	1220
		8.4.4	Drehgeberlose Regelung	1222
	8.5	Weite	re Aspekte zur Auslegung	1222
		8.5.1	Rückwirkung auf den Zwischenkreis	1222
		8.5.2	Akustische Analyse	1224
		8.5.3	Verlustmodellierung	1225
		8.5.4	Modellierung mit Hilfe von Reluktanz-Netzwerken	1226
		8.5.5	Betrachtung von Fehlerfällen	1227
	Lite	ratur.		1228
9	\mathbf{Reg}	elung	elastischer und reibungsbehafteter Systeme	1231
	9.1	Drehz	ahlregelung bei elastischer Verbindung zur Arbeitsmaschine	1231
		9.1.1	Regelung der Arbeitsmaschinendrehzahl	1233
		9.1.2	Regelung der Antriebsmaschinendrehzahl	1239
		9.1.3	Zustandsregelung des Zweimassensystems	1249
		9.1.4	Verallgemeinerung: Mehrmassensysteme	1264
		9.1.5	Nichtlineare Systeme — Intelligente Strategien	1271
	9.2	Schwi	ngungsdämpfung	1279
	9.3	Lokal	geregelte Absorption von Vibrationen (D. Filipović)	1286
		9.3.1	Einführung	1286
		9.3.2	Resonanzabsorber: Linearer aktiver Resonator (LAR) \ldots	1288
		9.3.3	Absorber mit lokaler Rückführung in Multimassensystemen	1295
		9.3.4	Zusammenfassung	1314
	9.4	Dyna	mische Reibungsmodellierung (C. M. Hackl)	1315
		9.4.1	Motivation	1316
		9.4.2	Reibungsmodellierung	1325

	9.4.3	Konsequenzen der dynamischen Reibungsmodellierung	1347
	9.4.4	Regelung von Antriebssystemen mit dynamischer Reibung	1352
	9.4.5	Fazit	1356
	Literatur		1357
10	Ausgewäh	lte Anwendungen	1367
	10.1 Model	llierung u. Regelung kont. Fertigungsanlagen (W. Wolfermann)	1367
	10.1.1	Einführung	1367
	10.1.2	Modellierung des Systems	1369
	10.1.3	Systemanalyse	1379
	10.1.4	Drehzahlregelung mit PI-Reglern in Kaskadenstruktur	1384
	10.1.5	Bahnkraftregelung mit PI-Reglern	1389
	10.1.6	Registerfehler bei Rotationsdruckmaschinen	1392
	10.1.7	Zustandsregelung des Gesamtsystems	1401
	10.1.8	Dezentrale Regelung	1403
	10.1.9	Beobachter	1414
	10.1.1	0Zusammenfassung	1426
	10.2 Prozes	ssmodelle für Rotationsdruckmaschinen (G. Brandenburg)	1428
	10.2.1	Einfuhrung	1428
	10.2.2	Ideale Walzen mit Dehnschlupf	1430
	10.2.3	Walzen mit Gleitschlupf und Partialschlupf	1454
	10.2.4	Neue Regelungsverfahren	1467
	10.2.5	Ableitung des Teil-Schnittregisterfehlers	1481
	10.2.6	Ableitung des dynamischen q-Modells	1491
	10.2.7	Denla	1493
	10.2.8 10.2 Madal	Dank	1497
	10.5 Model	merung und Regelung von Windkraftamagen (C. M. Hacki et	1 / 0 0
	$\frac{al.}{10.2.1}$	Motivation und Finlaitung	1490
	10.3.1	Nomenklatur und Grundlagen	1490
	10.3.2	Modellierung von Windkraftanlagen	1510
	10.3.3	Steuerung und Begelung von Windkraftanlagen	1532
	10.3.4 10.3.5	Simulation der Gesamtanlage	1572
	Literatur.	·····	1580
Vai	riablenverz	eichnis	1591
Sac	hverzeichn	iis	1611

Regelungstechnische Grundlagen

1.1 Regelungstechnische Grundbegriffe und Grundregeln

1.1.1 Gegenüberstellung von Steuerung und Regelung

Bei technischen — aber auch anderen — Systemen besteht häufig die Aufgabe, bestimmte Größen auf einen gewünschten Wert zu bringen und dort zu halten. Diese Größen bezeichnet man als Ausgangsgrößen x des Systems. Damit aber die Ausgangsgrößen auf den gewünschten Wert gebracht und dort gehalten werden können, müssen die geeigneten Eingangsgrößen u der Strecke bekannt und zugänglich sein.

In Abb. 1.1 ist dies symbolisch und am Beispiel der Strecke *Gleichstrommaschine* (GM) dargestellt. Die Eingangsgröße bzw. die Stellgröße u ist hierbei die Ankerspannung U_A . Der Ausgangsgröße x entspricht in diesem Beispiel die Motor-Drehzahl N. Der Block *Strecke* sei in Abb. 1.1 nur die Gleichstrommaschine. Die mathematischen bzw. funktionellen Zusammenhänge sind im Band "Elektrische Antriebe — Grundlagen" beschrieben [Sch94; Sch00a; Sch07b; Sch09b; Sch13].

Abb. 1.1 Steuerung der Gleichstrommaschine (GM)

Wenn der Zusammenhang zwischen U_A und N genau bekannt ist (beispielsweise bei Leerlauf im stationären Betrieb $N = K U_A$), dann kann durch Verstellen von U_A die gewünschte Drehzahl N eingestellt und dort gehalten werden. Wesentlich ist im vorliegenden Fall die proportionale Abhängigkeit zwischen N und U_A . Diesen Vorgang nennt man *Steuerung*.

1

Im Allgemeinen ist aber der Zusammenhang zwischen der Stellgröße u und der Ausgangsgröße x nicht genau bekannt, da unbekannte Störgrößen z vorhanden sind, deren zeitlicher Verlauf nicht vorhergesagt werden kann.

Bei der betrachteten Gleichstrommaschine kann sich beispielsweise im Ankerstellbereich der Erregerstrom I_E ändern; der Erregerstrom ist in diesem Fall eine der möglichen Störgrößen, die Ankerspannung U_A die Eingangsgröße. Wenn sich nun der Erregerstrom I_E ändert und dies nicht bekannt ist, führt dies auch zu einer — unerwünschten — Änderung der Drehzahl. Eine andere Störgröße ist die Belastung der Maschine, das Lastdrehmoment M_W , das bei Änderungen ebenso Änderungen der Drehzahl N verursacht.

Solange diese Störgrößen in ihrer Größe und in ihrem zeitlichen Verlauf nicht genau bekannt sind, werden durch die Störgrößen somit unerwünschte Veränderungen der Ausgangsgröße x = N nicht zu vermeiden sein.

Um eine gezielte Beeinflussung des Systems zu erreichen, ist es deshalb notwendig, die Ausgangsgröße x zu beobachten und die Stellgröße u so zu verändern, dass die Ausgangsgröße in einem vorher vereinbarten Toleranzbereich bleibt. Der klassische Weg ist die Einführung des Regelkreises (Abb. 1.2).

Abb. 1.2 Regelkreis am Beispiel der Gleichstrommaschine

Wie in Abb. 1.1 auf der vorherigen Seite ist die Eingangsgröße der Strecke die Stellgröße u und die Ausgangsgröße die Drehzahl N, die in Regelkreisen wie in Abb. 1.2 Regelgröße x genannt wird. Die Strecke besteht jetzt allerdings aus dem leistungselektronischen Stellglied und der GM. Zusätzlich sind die Störgrößen z eingetragen, die in der Strecke eingreifen und die Regelgröße x beeinflussen.

Um die Regelgröße x auf den gewünschten Wert zu bringen und dort zu halten, wird sie durch eine Messeinrichtung erfasst. Häufig wird die Regelgröße dabei in eine andere physikalische Größe umgeformt. In unserem Fall der Drehzahlregelung wird die Drehzahl häufig mit einem Tachogenerator in eine Spannung umgeformt. Diese so erfasste Regelgröße x_r ist der ursprünglichen Regelgröße x proportional; dies gilt zumindest im stationären Betriebsfall. Die erfasste Regelgröße x_r wird nun mit dem Sollwert w verglichen; der Vergleich erfolgt durch Differenzbildung. Die Ausgangsgröße des Vergleichs ist die Regeldifferenz x_d .

$$x_d = w - x_r = w - K_r x \tag{1.1}$$

Gleichung (1.1) besagt, dass die Regeldifferenz x_d null ist, wenn der Sollwert mit der erfassten Regelgröße x_r übereinstimmt bzw. $x = w/K_r$ ist. Für $K_r = 1$ gilt damit x = w.

Die Funktion des Regelkreises in Abb. 1.2 auf der vorherigen Seite kann wie folgt erläutert werden. Es wird angenommen, dass bei jedem der Blöcke *Regler, Stellglied, GM* und *Messeinrichtung* eine Vergrößerung der jeweiligen Eingangsgröße im stationären Betrieb auch eine entsprechende Vergrößerung der Ausgangsgröße bewirkt. Der Regler sei beispielsweise ein Verstärker mit der Verstärkung K_R , das Stellglied könne mit dem Verstärkungsfaktor K_{STR} , die GM könne mit der Verstärkung K_S im stationären Zustand approximiert werden. Dann gilt:

$$x = K_S K_{STR} u = K_S K_{STR} K_R x_d = K x_d \tag{1.2}$$

Dies bedeutet, je höher die resultierende Verstärkung K ist, desto geringer kann das ansteuernde Signal sein, um den gewünschten Ausgangszustand (Arbeitspunkt) zu erhalten.

Nun gilt aber zusätzlich die Gleichung

$$x_d = w - x_r = w - x$$
 mit $K_r = 1$ (1.3)

Eine erste Erkenntnis aus dieser Gleichung ist, dass die Regelgröße x im stationären Zustand der Sollgröße w mit einem Regelfehler x_d folgt, der umso kleiner ist, je größer die resultierende Verstärkung K ist. Die zweite Erkenntnis ist, dass bei nur proportionalem Verhalten im Vorwärtskanal Regler-Strecke der Istwert xden Sollwert w im stationären Betrieb nicht exakt erreichen kann. Der Vorteil der Regelung ergibt sich bei Einwirkung von Störgrößen z.

Wird eine Störgröße z wie z. B. das Lastdrehmoment M_W an der Welle erhöht, dann werden die Drehzahl N bzw. Regelgröße x und damit die erfasste Regelgröße x_r absinken. Die Regeldifferenz x_d wird aufgrund $x_d = w - x_r$ zunehmen, dies gilt ebenso für u, so dass die Regelgröße an den Sollwert herangeführt wird. Verringert sich eine Störgröße, so wird die Drehzahl N bzw. die Regelgröße x zunehmen, die Regeldifferenz x_d und die Größe u dagegen abnehmen, so dass die Regelgröße xwiederum an den Sollwert w zurückgeführt wird.

Die Aufgabe der Regelung besteht somit darin, die Auswirkung der Störgröße z auf die Regelgröße x zu begrenzen. Die gewählte Struktur in Abb. 1.2 auf der vorherigen Seite bewirkt, dass die Regelgröße x der Führungsgröße w folgt. Die Regelung hat somit die zweifache Aufgabe, die Regelgröße x auf die Führungsgröße w einzuregeln und Störungen auszuregeln. Bei den bisherigen Überlegungen hat sich im stationären Zustand jeweils eine stationäre Regeldifferenz x_d ergeben, die umso geringer ist, je größer die resultierende Verstärkung gewählt wird. Eine andere Lösung ist eine Regelerstruktur, die einen Integralanteil enthält und die somit im stationären Betrieb $x_d = 0$ erzwingt.

Bei einer Änderung der Führungsgröße w bzw. bei Änderungen der Störgrößen z wird die Regelgröße x allerdings nicht sofort den stationären Endzustand erreichen

können, sondern mit einer gewissen Verzögerung reagieren. Beispielsweise wird eine Erhöhung der Drehzahl-Führungsgröße w zu einer Erhöhung des Reglerausgangssignals u und zu einer Erhöhung der Ausgangsgröße des Stellglieds führen. Aufgrund des Trägheitsmoments des Rotors der Gleichstrommaschine wird die Regelgröße x (Drehzahl N) aber nicht sofort folgen können.

Wenn nun die Verstärkung K_R des Reglers erhöht wird, dann wird die Stellgröße *u* wesentlich mehr ausgesteuert als vorher. Dadurch wird sich die Regelgröße *x* schneller ändern als bei einer kleineren Verstärkung des Reglers. Eine Erhöhung der Verstärkung im Regelkreis führt somit zu einer Verringerung der Verzögerung im Führungsverhalten des Regelkreises. Allerdings kann die Verzögerung nicht immer durch eine Erhöhung von K_R beliebig verringert werden. Die gleiche Aussage gilt für das Störverhalten.

Die grundsätzlichen Eigenschaften der Regelung sind (ohne Beweise):

- Der Wirkungsablauf findet in einem geschlossenen Kreis dem Regelkreis — statt.
- Der Einfluss von Nichtlinearitäten und unstetig arbeitenden Systemkomponenten,
- der Einfluss der Störgrößen und
- der Einfluss von Verzögerungen in der Strecke werden in der Auswirkung auf die Regelgröße x verringert.

Die Regelung hat gegenüber der Steuerung somit beachtliche Vorteile. Zusammenfassend ergeben sich folgende charakteristische Eigenschaften von Regelungen und Steuerungen, die in der Tabelle Seite 5 oben zusammengestellt sind.

Zur Beurteilung der Güte von Regelkreisen dient häufig die Sprungantwort, d. h. der zeitliche Verlauf der Regelgröße bei Beaufschlagung des Regelkreises mit einer sprunghaften Änderung der Führungsgröße oder einer Störgröße. Die dafür wichtigen Definitionen sind einer typischen Sprungantwort (sprunghafte Änderung der Führungsgröße) zu entnehmen, vgl. Abb. 1.3 auf Seite 6.

Es ergeben sich somit drei Forderungen für die Regelung:

- 1. Der Regelkreis muss stabil sein.
- 2. Die bleibende (stationäre) Regeldifferenz muss innerhalb eines gegebenen Toleranzbandes bleiben bzw. möglichst klein sein.
- 3. Die Regelgröße x soll der Führungsgröße w so schnell wie möglich folgen.

Eigenschaft	in Steuerungen	in Regelungen
Grundstruktur	Kettenstruktur	Kreisstruktur
Wirkungsablauf	stets nur in einer Rich- tung vom Eingang zum Ausgang	im geschlossenen Kreis, d. h. Rückkopplung der Re- gelgröße auf den Eingang zum Sollwert
Einfluss von Nichtlineari- täten in der Regelstrecke	volle Auswirkung	verminderte Auswirkung
Einfluss von Störgrößen auf die Regelstrecke	voller Einfluss	reduzierter Einfluss
Zeitverhalten	wie von der Regelstrecke vorgegeben	z. B. durch Überver- stellung Verringerung der Einstellzeiten möglich
Stabilität	von der Strecke vorgegeben	die Möglichkeit der Insta- bilität ist gegeben. Insta- bile Strecken können sta- bilisiert werden

Jede dieser Forderungen ist eine Bedingung sowohl für das Führungsverhalten als auch für das Störverhalten des Regelkreises. Ziel der weiteren Überlegungen muss daher sein, trotz hoher resultierender Verstärkung des Regelkreises und damit kleiner stationärer Regeldifferenz sowie geringem Einfluss von Störgrößen, die Stabilität und ein gewünschtes dynamisches Verhalten sicherzustellen. Dazu ist notwendig, dass zunächst die Übertragungsfunktionen der Komponenten des Regelkreises bekannt sind. Mit diesen Kenntnissen wird dann die Analyse des Regelkreises und der Entwurf (Synthese) der geeigneten Regeleinrichtung ermöglicht.

1.1.2 Beschreibung des dynamischen Verhaltens eines Systems durch den Signalflussplan

Der Signalflussplan eines Systems wird in zwei Schritten aufgestellt:

- 1. Aufgrund der physikalischen Gesetze werden die Funktionalbeziehungen (Übertragungsfunktionen) ermittelt, die zwischen den verschiedenen zeitveränderlichen Größen der betrachteten Komponente bestehen.
- 2. Durch geeignete (vereinbarte) Symbole werden diese Funktionalbeziehungen im Signalflussplan anschaulich dargestellt.

Dieses Vorgehen soll am Beispiel eines unbelasteten RC-Gliedes gezeigt werden (Abb. 1.4 auf Seite 7).

Bei der Aufstellung der physikalischen Gleichungen empficht es sich meist, mit den Zusammenhängen für die *energietragenden Größen* zu beginnen. Im Falle des RC-Gliedes wird im elektrischen Feld des Kondensators Energie gespeichert, be-

Abb. 1.3 Charakteristische Größen der Sprungantwort eines Regelkreises mit dem Bezugs-Sollwert w_0

schreibbar durch die Ladung oder die Spannung des Kondensators. Im vorliegenden Fall ist die Kondensatorspannung gleichzeitig die Ausgangsgröße des Systems und deswegen zu dessen Beschreibung besonders geeignet. Aus der Kondensatorgleichung folgt:

$$\frac{\mathrm{d}U_a(t)}{\mathrm{d}t} = \frac{1}{C} \cdot \frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{1}{C}I(t) \tag{1.4}$$

Aus der Schaltung folgt für den Strom I(t):

$$I(t) = \frac{1}{R} \left(U_e(t) - U_a(t) \right)$$
(1.5)

Wird Gl. (1.5) in (1.4) eingesetzt, dann ergibt sich nach Umformung die Differentialgleichung für die Ausgangsspannung $U_a(t)$ mit der Zeitkonstante T = RC des RC-Gliedes zu

Abb. 1.4 RC-Glied

$$RC \frac{\mathrm{d}U_a(t)}{\mathrm{d}t} + U_a(t) = U_e(t) \tag{1.6}$$

$$T \frac{\mathrm{d}U_a(t)}{\mathrm{d}t} + U_a(t) = T \dot{U}_a + U_a = U_e(t)$$
(1.7)

Die letzte Gleichung stellt die Differentialgleichung 1. Ordnung des RC-Gliedes dar. Für vorgegebene Verläufe der Eingangsgröße lässt sich durch Lösung der Differentialgleichung der zugehörige Verlauf der Ausgangsgröße berechnen. Für den Fall des Einschaltens einer Gleichspannung U_0 zum Zeitpunkt t = 0 ergibt sich der bekannte Exponentialverlauf der Ausgangsgröße:

$$U_e(t) = \begin{cases} 0 & \text{für } t < 0\\ U_0 & \text{für } t \ge 0 \end{cases}$$
(1.8)

$$U_a(t) = U_0 \left(1 - e^{-t/T} \right)$$
 (1.9)

Wird statt der sprungartigen Eingangsspannung mit der Amplitude U_0 eine Eingangsspannung mit der normierten Amplitude Eins an den Eingang geschaltet, dann ist das Eingangssignal die Testfunktion $\sigma(t)$ (Einheitssprungfunktion) und das Ausgangssignal wird *Sprungantwort* oder auch *Übergangsfunktion* des Übertragungsgliedes genannt. Dies ist im Symbol anschaulich dargestellt (vgl. Abb. 1.5 auf der nächsten Seite rechts).

Die Ermittlung des Signalflussplanes vereinfacht sich wesentlich, wenn statt der Aufstellung und der Lösung der Differentialgleichung im Zeitbereich direkt in einem Bildbereich gearbeitet wird. Vorzugsweise wird die Laplace-Transformierte benutzt. Im Fall des RC-Tiefpasses kann die Differentialgleichung in den Laplace-Bereich transformiert werden, indem im wesentlichen die Differentiation durch den Laplace-Operator s ersetzt wird. Man erhält (alle Anfangsgrößen $U_i(t < 0) = 0$) aus Gl. (1.7):

$$U_a(s)(sT+1) = U_e(s)$$
(1.10)

oder mit G(s) als Übertragungsfunktion des RC-Tiefpasses:

$$G(s) = \frac{U_a(s)}{U_e(s)} = \frac{1}{1+sT}$$
(1.11)

Abb. 1.5 Sprungantwort und Symbol der Übergangsfunktion

Im Spezialfall eines linearen elektrischen Netzwerks kann die Laplace-Übertragungsfunktion mittels komplexer Rechnung allerdings viel schneller bestimmt werden, wenn im komplexen Rechnungsgang $j\omega$ durch s ersetzt wird.

$$U_e(s) = I(s) \left(R + \frac{1}{sC}\right) \tag{1.12}$$

$$U_a(s) = I(s) \frac{1}{sC} \tag{1.13}$$

also mit $s = \sigma + j \omega$

$$G(s) = \frac{U_a(s)}{U_e(s)} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + sRC} = \frac{1}{1 + sT}$$
(1.14)

Wesentlich ist, dass unterschiedliche physikalische Systeme dieselbe Übertragungsfunktion haben können. Wir betrachten z. B. Abb. 1.6 auf der nächsten Seite.

Es gilt:

$$G(s) = \frac{U_a(s)}{U_e(s)} \tag{1.15}$$

$$U_a(s) = I(s) R \tag{1.16}$$

$$U_e(s) = I(s) \left(R + sL\right) \tag{1.17}$$

und mit T = L/R:

$$G(s) = \frac{R}{R+sL} = \frac{1}{1+s\frac{L}{R}} = \frac{1}{1+sT}$$
(1.18)

Dieses Verfahren ist insbesondere bei linearen Systemen besonders einfach anzuwenden, da bei Kettenstrukturen von Übertragungsgliedern die einzelnen Übertra-

Abb. 1.6 LR-Tiefpass

gungsfunktionen multipliziert werden (vgl. Kap. 1.1.3.2 auf Seite 13). Nichtlinearitäten müssen dabei als getrennte Blöcke dargestellt werden.

Wesentlich bei der Ermittlung der Differentialgleichung bzw. der Übertragungsfunktion ist, dass dabei die Auftrennung des gesamten Systems in Einzelblöcke an rückwirkungsfreien Stellen erfolgt, d. h. dass sich durch die Verkettung der Einzelfunktionen zum Gesamtsystem nicht die einzelnen Übertragungsfunktionen an sich ändern. Diese Voraussetzung ist allgemein zu beachten.

Die Bedeutung der Bedingung der Auftrennung an rückwirkungsfreien Stellen soll am folgenden Beispiel erläutert werden. Es wird der belastete RC-Tiefpass in Abb. 1.7 auf der nächsten Seite betrachtet.

Wenn $R_2 \to \infty$ ist, dann gilt mit $T = R_1 C$

$$G_1(s)\Big|_{R_2 \to \infty} = \frac{1}{1+sT}$$
 (1.19)

Wenn $R_2 \neq \infty$ ist, ergibt sich jedoch

$$G_2(s)\Big|_{R_2 \neq \infty} = \frac{U_a(s)}{U_e(s)} \tag{1.20}$$

$$U_a(s) = I(s) \frac{\frac{R_2}{sC}}{R_2 + \frac{1}{sC}} = I(s) \frac{R_2}{1 + sR_2C}$$
(1.21)

$$U_e(s) = I(s) \left(R_1 + \frac{R_2}{1 + sR_2C} \right)$$
 (1.22)

$$G_2(s)\Big|_{R_2 \neq \infty} = \frac{R_2}{(1 + sR_2C)\left(R_1 + \frac{R_2}{1 + sR_2C}\right)}$$
(1.23)

$$G_2(s)\Big|_{R_2 \neq \infty} = \frac{R_2}{R_1 + R_2} \cdot \frac{1}{1 + s\frac{R_1R_2}{R_1 + R_2}C}$$
(1.24)

Aus dem Vergleich der beiden Übertragungsfunktionen $G_1(s)$ und $G_2(s)$ ergibt

Abb. 1.7 Belasteter RC-Tiefpass

sich, dass sich sowohl die statische Verstärkung als auch die Zeitkonstante des RC-Tiefpasses geändert hat, d. h. eine Auftrennung an dieser Stelle ist unzulässig.

1.1.3 Frequenzgang

Im letzten Abschnitt wurde das Zeitverhalten einer Strecke untersucht, d. h. es interessierte der zeitliche Verlauf der Ausgangsgröße U_a , z. B. nach einer sprunghaften Änderung der Eingangsgröße U_e . Das Verhalten wurde somit im Zeitbereich betrachtet.

Eine andere Betrachtungsweise untersucht die Eigenschaften von Übertragungsgliedern bei sinusförmiger Anregung in Abhängigkeit von der Frequenz. Das Verhalten wird dann im Frequenzbereich betrachtet.

Wir betrachten ein physikalisches System (Abb. 1.8 auf der nächsten Seite), das durch ein sinusförmiges Signal $U_e(t)$ angeregt wird. Die sinusförmige Anregung am Eingang wird beschrieben durch

$$U_e(t) = \hat{U}_e \cos \omega t \tag{1.25}$$

mit der Amplitude \hat{U}_e und der Kreisfrequenz ω , kurz Frequenz genannt. Da wir uns hier auf die Behandlung linearer Glieder beschränken wollen, wird bei sinusförmiger Anregung $U_e(t)$ auch die Ausgangsgröße $U_a(t)$ im eingeschwungenen Zustand ein sinusförmiges Signal mit der gleichen Frequenz sein. Verändert ist jedoch im Allgemeinen die Amplitude und der Phasenwinkel von $U_a(t)$ gegenüber $U_e(t)$. Für die Ausgangsgröße gilt daher allgemein

$$U_a(t) = \hat{U}_a(\omega) \cos(\omega t + \varphi(\omega)) \tag{1.26}$$

mit der Amplitude \hat{U}_a der Ausgangsschwingung und dem Phasenwinkel $\varphi(\omega)$ zwischen Eingangs- und Ausgangsschwingung.

Wird ein lineares System mit einem sinusförmigen Signal konstanter Amplitude angeregt, so antwortet das System somit im eingeschwungenen Zustand mit einem ebenfalls sinusförmigen Signal mit ebenfalls konstanter Amplitude. Das Am-

Abb. 1.8 Strecke

plitudenverhältnis zwischen Eingangs- und Ausgangssignal ist abhängig von der Frequenz. Außerdem wird im Allgemeinen zwischen Ein- und Ausgangsschwingung eine Phasenverschiebung festzustellen sein, die ebenso von der Frequenz abhängig ist.

Wenn nun im Frequenzbereich (Bildbereich) der Quotient von Ausgangs- und Eingangsgröße gebildet wird, dann erhält man den Frequenzgang $F(j\omega)$:

$$F(j\omega) = \frac{U_a(j\omega)}{U_e(j\omega)} = |F(j\omega)| e^{j\varphi(\omega)} = \frac{\hat{U}_a(\omega)}{\hat{U}_e(\omega)} e^{j\varphi(\omega)}$$
(1.27)

(vgl. Abb. 1.9 auf der nächsten Seite)

Der *Frequenzgang* stellt somit das Verhältnis von Ausgangs- zu Eingangsgröße bei sinusförmiger Anregung in Abhängigkeit von der Frequenz dar.

Im Allgemeinen sind sowohl das Amplitudenverhältnis

$$|F(j\omega)| = \frac{\hat{U}_a(\omega)}{\hat{U}_e(\omega)} = \sqrt{\operatorname{Re}^2\{F(j\omega)\} + \operatorname{Im}^2\{F(j\omega)\}}$$
(1.28)

als auch der Phasenwinkel $\varphi(\omega)$ frequenzabhängig:

$$\varphi(\omega) = \arctan \frac{\operatorname{Im} \{F(j\omega)\}}{\operatorname{Re} \{F(j\omega)\}}$$
(1.29)

Der Zusammenhang zwischen Eingangs- und Ausgangsgröße wird in der komplexen Zahlenebene dargestellt (Abb. 1.10 auf Seite 13 rechts).

Experimentell erhält man den Frequenzgang eines Übertragungsglieds durch Oszillographieren und Vergleichen der sinusförmigen Eingangs- und Ausgangsgröße (Verhältnis der Amplituden, Phasenverschiebung) oder mit industriell gefertigten Geräten.

Die rechnerische Ermittlung des Frequenzganges von $F(j\omega)$ erfolgt nach den Regeln der komplexen Rechnung. Als Beispiel soll die Berechnung des Frequenzganges des RC-Tiefpasses gemäß Abb. 1.11 auf Seite 14 gezeigt werden.

Mit $Z_R = R$ und $Z_C = 1/(j\omega C)$ gilt

$$F(j\omega) = \frac{U_a(j\omega)}{U_e(j\omega)} = \frac{Z_C}{Z_R + Z_C} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$
(1.30)

Abb. 1.9 Frequenzbetrachtung

und für T = RC folgt

$$F(j\omega) = \frac{1}{1+j\omega T} \tag{1.31}$$

Der Frequenzgang des RC-Gliedes (Verzögerungsglied) zeigt die zu erwartende Frequenzabhängigkeit. Für $\omega = 0$ gilt $U_a = U_e$, für $\omega \to \infty$ folgt $U_a = 0$ und für $\omega = 1/T$ wird $U_a = U_e/\sqrt{2}$ und $\varphi = -45^{\circ}$ (siehe Abb. 1.10 auf der nächsten Seite).

Aus dem Berechnungsgang ist zu entnehmen, dass der Frequenzgang der Sonderfall der Übertragungsfunktion mit $\sigma = 0$ ist:

$$s = \sigma + j\omega \to j\omega \tag{1.32}$$

Der Grund für die besondere Bedeutung der Frequenzdarstellung liegt in der einfachen messtechnischen Erfassung. Dies ist insbesondere bei Übertragungsgliedern wichtig, bei denen die Funktionalbeziehung theoretisch nicht oder nur sehr schwierig zu ermitteln ist. Außerdem ist das Verfahren außerordentlich anschaulich.

Der Frequenzgang lässt sich sowohl in rechtwinkliger (Ortskurve) als auch in logarithmischer Darstellung (Frequenzkennlinien, Bode-Diagramm) auftragen.

1.1.3.1 Darstellung in rechtwinkligen Koordinaten (Ortskurvendarstellung)

Für jede Frequenz ω ergibt sich nach Kap. 1.1.3 auf Seite 10 ein Punkt für den Frequenzgang in der komplexen Zahlenebene. Die Verbindung der Punkte mit unterschiedlicher Frequenz ergibt die Ortskurve des Frequenzganges $F(j\omega)$.

Zur Berechnung der Ortskurve wird der komplexe Ausdruck in den Real- und den Imaginärteil zerlegt. Der Betrag des Frequenzganges $F(j\omega)$ ergibt sich dann zu

$$|F(\omega)| = \sqrt{\operatorname{Re}^{2}\{F(j\omega)\} + \operatorname{Im}^{2}\{F(j\omega)\}}$$
(1.33)

Der Phasenwinkel lässt sich berechnen aus

$$\tan \varphi = \frac{\operatorname{Im} \{F(j\omega)\}}{\operatorname{Re} \{F(j\omega)\}}$$
(1.34)

Für das RC-Glied mit

$$F(j\omega) = \frac{1}{(1+j\omega T)}$$
(1.35)

Abb. 1.10 Untersuchung des Frequenzverhaltens

ergibt sich

$$F(j\omega) = \frac{1}{1 + \omega^2 T^2} - \frac{j\omega T}{1 + \omega^2 T^2} = \operatorname{Re} \{F\} + j\operatorname{Im} \{F\}$$
(1.36)

$$\tan\varphi = -\omega T \tag{1.37}$$

$$|F(\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$
(1.38)

Die Ortskurve des RC-Gliedes beschreibt einen Halbkreis im 4. Quadranten der komplexen Zahlenebene, vgl. Abb. 1.12 auf Seite 15. Bei einer Änderung der Zeitkonstanten T ändert sich lediglich die ω -Teilung auf dem Halbkreis.

1.1.3.2 Graphische Darstellung in logarithmischer Form (Frequenzkennlinien, Bode-Diagramm)

Bei dieser Darstellung des Frequenzganges werden der Amplitudengang $|F(j\omega)|$ und der Phasengang $\varphi(\omega)$ getrennt in Abhängigkeit von ω aufgetragen. Für die ω -Achse wird ein logarithmischer Maßstab gewählt. Als Ordinate wird nicht $|F(j\omega)|$, sondern üblicherweise 20 lg $|F(j\omega)|$ mit der Einheit dB (Dezibel) aufgetragen; Beispiele zur Umrechnung sind der folgenden Tabelle zu entnehmen:

Abb. 1.11 Ermittlung des Frequenzganges durch komplexe Rechnung

$$|F(j\omega)|\Big|_{dB} = 20 \lg |F(j\omega)|$$

$$|F(j\omega)| = 0,1 \stackrel{\wedge}{=} -20 dB$$

$$= 1 \stackrel{\wedge}{=} 0 dB$$

$$= 10 \stackrel{\wedge}{=} 20 dB$$

$$= 100 \stackrel{\wedge}{=} 40 dB$$

$$= 1000 \stackrel{\wedge}{=} 60 dB$$
(1.39)

Für ein Verzögerungsglied erster Ordnung mit einer statischen Verstärkung Kergeben sich folgende Asymptoten:

$$F(j\omega) = \frac{K}{1 + j\omega T} = \begin{cases} K & \text{für } \omega T \ll 1\\ K/(j\omega T) & \text{für } \omega T \gg 1 \end{cases}$$
(1.40)

Für den Amplitudengang folgt daraus:

$$|F(j\omega)|\Big|_{\rm dB} = 20 \lg \frac{K}{\sqrt{1+\omega^2 T^2}} = \begin{cases} 20 \lg K & \text{für } \omega T \ll 1, \text{ d.h.} \\ & \text{Gerade parallel} \\ & \text{zur Abszisse im} \\ & \text{Abstand } 20 \lg K \\ 20 \lg K & \text{für } \omega T \gg 1, \text{ d.h.} \\ -20 \lg \omega T & \text{Gerade mit der} \\ & \text{Neigung} - 20 \frac{\text{dB}}{\text{Dekade}} \end{cases}$$
(1.41)

Die Asymptoten schneiden sich bei $\omega = 1/T$ und $|F| = 20 \lg K$.

Der bei dieser asymptotischen Darstellung maximal auftretende Fehler ist 3 dB, denn bei $\omega=1/T$ ist $|F({\rm j}\omega)|=K/\sqrt{2}.$

Für den Phasengang des gewählten Beispiels gilt (Abb. 1.13 auf Seite 16):

Abb. 1.12 Frequenzgang des RC-Glieds

$$\varphi(\omega) = -\arctan(\omega T) \tag{1.42}$$

Näherungsweise kann mit folgendem Phasengang gearbeitet werden:

$$0 < \omega < \frac{1}{10T} \Longrightarrow \varphi(\omega) = 0^{\circ} \tag{1.43}$$

$$\frac{1}{10T} < \omega < \frac{10}{T} \Longrightarrow \varphi(\omega) = -45^{\circ} \cdot (1 + \lg(\omega T))$$
(1.44)

$$\frac{10}{T} < \omega < \infty \Longrightarrow \varphi(\omega) = -90^{\circ} \tag{1.45}$$

Der maximale Fehler dieser Approximation betragt 6°.

In der folgenden Tabelle sind von den wichtigsten linearen Übertragungsgliedern, die in Regelkreisen auftreten können, die Differentialgleichung, die Übertragungsfunktion, der Frequenzgang, die Frequenzkennlinie und die Ortskurve aufgeführt.

Da, wie bereits in Kap. 1.1.2 auf Seite 5 nachgewiesen, unterschiedliche physikalische Systeme gleiche Differentialgleichungen, Übertragungsfunktionen etc. haben können, wird im Folgenden grundsätzlich von den normierten Größen (Kleinschreibung) u_e und u_a ausgegangen.