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Preface

The prerequisite for reading this text is a calculus-based course in Probability
and Mathematical Statistics, along with the usual curricular mathematical require-
ments for every science major. For graduate students from disciplines other than
mathematical sciences much advantage, viz., both insight and mathematical ma-
turity, is gained by having had experience quantifying the assurance for safety of
structures, operability of systems or health of persons. It is presumed that each
student will have some familiarity with Mathematica or Maple or better yet also
have available some survival-analysis software such as S-Plus or R, to handle the
computations with the data sets.

This material has been selected under the conviction that the most practical
aid any investigator can have is a good theory. The course is intended for per-
sons who will, during their professional life, be concerned with the 'theoretical'
aspects of applied science. This implies consulting with industrial mathemati-
cians/statisticians' lead engineers in various fields, physcists, chemists, material
scientists and other technical specialists who are collaborating to solve some dif-
ficult technological/scientific problem. Accordingly, there are sections devoted to
the deportment of applied mathematicians during consulting. This corresponds to
the 'bedside manner' of physicians and is a important aspect of professionalism.

While Henri Poincare lectured successively in: capillarity, elasticity, thermo-
dynamics, optics, electricity, telegraphy, cosmogeny, not to name all; very few of
us can be such universalists. But he was an expert in each of these fields because
he could understand the mathematical problems at the foundations of each. That
is what we hope, in small measure, to foster here: To present the basic methods
for application of probability and statistics to the ubiquitious task of calculating
the reliability, or its equivalent, for some of the engineered systems in modem
civilization.

Remembering the sense of satisfaction I obtained as a student when I discovered
an oversight in a textbook, I have not sought, exhaustively, to deprive the readers
of this text from experiencing that same private exhilaration.

The beginner ... should not be discouraged if ... he finds he does not have the pre-
requisites for reading the prerequisites.

Paul Halmos

Science is not a collection of facts anymore than a heap of stones is a house,
Henri Poincare

v
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Glossary

• as means "almost surely or with probability one"
• arv means" associated random variable or vector"
• asas means "after some algebraic simplification"
• cdf means "cumulative distribution function"
• pdf means "probability density function"
• sdf means "survival distribution function"
• edf means the same as ecdf or "empirical (cumulative) distribution function"
• esf means the same as "empirical survival distribution function"
• iff means "if and only if'
• iid means "independent and identically distributed"
• K-M means "Kaplan - Meier" e.g. as an affix to edf
• mle means "maximum likelihood estimator"
• nasc means" necessary and sufficient condition"
• NB means Nota Bene, Latin for "It should be well noted that"
• rhs (or lhs) means "right-hand side" (left-hand side)
• rwt means "random waiting time"
• rv or rv' s means "random variable or random vector and its plural"
• sp means "stochastic process"
• tidpat means "Thus it doth plainly appear that" (Lagrange's phrase)

but it is often paraphrased as "This is difficult, paradoxical and tedious."
• wrt means" with respect to"
• wlog means" without loss of generality"
• wp means" with probability"
• := means "is defined to be equal to"
• ~ means "is closely approximated by"
• ~ means "is asymptotically equal to"
• «means "is much less than "
• :S, means "is stochastic ally less than"
• ,J, (t) means " non-increasing" (non-decreasing); so F E t means F is non-

decreasing.
• ..1 means "mutually, stochastically independent"
• ~ means" has the distribution or is distributed by"
• D means the same as quod erat demonstrandum and marks the end of a proof.
• 1 = R is the unit of imaginary numbers
• ffi denotes the real line, viz., {x : -00 < x < co]
• I(x1l'Y) is the indicator of the relation xity taking the value 1 if true, 0 otherwise
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Admonitions

... Mathematical ideas originate in empirics, although the genealogy is sometimes
long and obscure. But, once they are so conceived, the subject begins to live a pe-
culiar life of its own and is better compared to a creative one, governed by almost
entirely aesthetical motivations, than to anything else, in particular, to an empirical
science. There is, however, a further point which, I believe, needs stressing. As a
mathematical discipline travels far from its empirical source, or still more, if it is a
second and third generation only indirectly inspired by ideas coming from 'reality',
it is beset with very grave dangers.It becomes more and more purely aestheticising,
more and more purely l' art pour l'art. This need not be bad, if the field is sur-
rounded by correlated subjects, which still have closer empirical connections, or if
the discipline is under the influence of men with an exceptionally well-developed
taste. But there is a grave danger that the subject will develop along the line of
least resistance, that the stream, so far from its source, will separate into a multitude
of insignificant branches and that the discipline will become a disorganized mass
of details and complexities. In other words, at a great distance from its empirical
source, or after much 'abstract' inbreeding a mathematical subject is in danger of
degeneration.

John von Neumann

An explanation is satisfactory only if we are able to reconstruct it logically from our
previous knowledge and apply that understanding to circumstances different from
those in which it was originally offered. That is why science teachers, to the cha-
grin of many students in the humanities, put heavy emphasis on problem solving.
In order to demonstrate that (s)he has understood a scientific principle, a student
is expected to be able to apply this understanding to situations different from the
ones in which it was first learned. Similarly, a mathematics student is deficient who
knows a theorem, in general, but cannot apply it in an unfamiliar context. Nei-
ther memorizing nor reproducing what one has seen or heard in a lecture ensures
understanding.

Roger O. Newton

Let no one who is ignorant of Geometry (mathematics) enter here (proceed farther).
Written at the entrance to Plato's Academy

ix



x Admonitions

Mathematicians are like Frenchmen: whatever you say to them they translate into
their own jargon and thenceforth it becomes something entirely different.

Johann W. von Goethe

We have therefore the equation of condition

F(x) = fdq Q(q)cos(qx).

If we substitute for Q any function of q and conduct the integration from q = 0 to
q = 00, we should find a function of .r ; it is required to solve the inverse problem,
that is to say, to ascertain what function of q, after being substituted for Q, gives as
a result the specified function F(x), a remarkable problem whose solution demands
attentive examination.

Joseph Fourier
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CHAPTER 1

Requisites

1.1. Why Reliability Is Important

All artifacts of mankind will eventually fail in service or be discarded because
of wear or obsolescence. This was as true for the roads and aquaducts of Rome as
it is today for the infrastructure of America. All constructs bearing the hallmark of
civilization, from the tomahawk to the cruise missle of the same name, suffer from
material weakness or imperfection. This applies afortiori to our electronic systems,
computers, and video communication as well as the military's smart-bombs and
the Concorde's avionics. Palliative efforts include preventative maintenance for
machines and medicines for humankind. But always "an ounce of prevention is
better than a pound of cure" and not only because it is earlier and cheaper. The
origins of ubiquitious failure are manifold; the designer has neglected or been
unaware of the severity of some of the factors of the invironment in which the
system/structure must operate; the owner-operator of the system has needfully
operated it outside its design envelope; the manufacturer failed to eliminate minor
defects from the system either during construction or inspection; the supplier has
substituted inferior material, causing inherent weaknesses in a component. Such
imperfections can cause the early and unexpected failure of the system, or just the
incapability of the system to perform its function during its warranteed life. Such
practice may lead to hazards both to the operators and to the public weal.

The primary source of failure is the gradual impairment of structural compo-
nents caused through repetition of their designed duty cycle. These include friction
or abrasive wear, metallic fatigue, stress corrosion or chemical degradation. Failure
is caused by mistakes (accidents) aggravated by operation or insufficient mainte-
nance, more often than the confluence of unhappy circumstance, labeled "acts of
God."

Most often, system or structural failure is the result of many coincident factors.
The failure of a dynamically loaded structure may, for example, be the result of a
small defect in a critical component undetected because of the insufficient quality
control during production. This leads to crack initiation, and a growing fatigue
crack accelerated by a corrosive environment; thus, ultimately an extreme random
load exceeds the residual strength of the component. Who was at fault? Were the
designers, the users, or the nature or all three?

Unfortunately, all failures in service have undesirable economic consequences
and not always to those responsible. For example, the destruction by bomb of a
Boeing 747 over Lockerbie, Scotland, resulted in the bankruptcy of Pan-American
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Airlines; the fading of a new environmentally safe paint from UV-radiation caused
the bankruptcy of the Studebaker Avanti automobile corporation. Fortunately, most
system failures necessitate only repair or component replacement with its entailed
disruption of service. Sometimes such failures may cause an interruption in man-
ufacturing among secondary users. Sometimes dramatic failures force a system
redesign or even concept abandonment.

As a rule of thumb, the expenditure of funds for the maintenance of systems,
structures, machinery, or equipment amounts to about half the initial investment
cost before obsolescence forces replacement. For well-designed, long-life items
maintenance expenses may be much more than the initial cost. It is estimated that
about 6-8% of the gross national product (GNP) is spent annually for mainte-
nace. This may be small in comparison with the loss of production attributable to
unwarranted in-service failures.

Today many purchasers of equipment are aware of the cost of subsequent main-
tenance. Consequently, they consider not only purchase price but the total life-cycle
costs, including maintenance and repair. This is now routinely done for the eval-
uation of system proposals by industry for the military and certain governmental
divisions, such as the federal highways. For political reasons these costs are often
underestimated. In the 18th century the costs for the construction and operation of
the frigate Constitution, "Old Ironsides," were underestimated by about the same
percentage as they were in the 20th century for the Stealth Bomber; and with the
same perceived political reasons for such mendacity.

For many large complex systems/structures, such as high-rise buildings, nuclear
power plants, off-shore oil structures, aircraft, and life-support medical equipment,
the consequences of unreliability involve public welfare and safety. Of course, the
failure of comparatively minor products can, besides just being an annoyance, have
serious consequences for the public, for example, the failure of an electric razor
or a battery in a fire-alarm system.

Issues concerning safety have, during the last few decades, come increas-
ingly to public attention and hence they become more important to the design
engineer. One of the most controversial is nuclear power (since Chernobyl and
Three-Mile Island), one of the most dramatic is in-flight safety, while the much
higher frequency of death from automobile accidents is, relatively, of small con-
cern. Governmental requirements for safety analysis of systems is increasing, as it
should. Legislation aportioning responsibility for product liability is proceeding,
as it should, to help avoid the excessively large compensation claims awarded by
the American tort system, whenever insurance for the manufacturer is available or
the industry is large enough to have "deep pockets."

All of this will increase the need for industry to perform systematic studies for
the identification and reduction of causes of failures (with hope for their virtual
elimination). These studies must be performed by persons who (i) can identify and
quantify the modes of failure, (ii) know how to obtain and analyze the statistics
of failure occurrences, and (iii) can construct mathematical models of failure that
depend upon, for example, the parameters of material strength or design quality,
fatigue or wear resistance, and the stochastic nature of the anticipated duty cycle.
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Only then can procedures for optimal design be implemented in parallel with a
study of the economic consequences for each failure mode so as to reduce, in an
optimal way, the probability of their occurrence.

The purpose of this book is to help supply information about the mathematical
and statistical aspects of calculating the reliability in order to make a valid service-
life prediction for the use of cognizant persons and to help provide them with the
capability to utilize or develop analytical techniques specific to their usage and the
needs of their employers.

The beginner ... should not be discouraged if ... he finds that he does not have the
prerequisites for reading the prerequisites.

Paul Halmos

1.2. Valuable Concepts

1.2.1. Concepts from Probability

Consider the outcome of a well-defined experiment, the result of which can
not be exactly anticipated, except it will terminate in some measured quantity,
denoted by X, within a known set of possible outcomes, labeled X and called
the sample space. This measured quantity X is called a random or stochastic
variable (which we abbreviate by rv). We will use X, Y, Z, with or without affixes,
to denote rv's. We presume the sample space of each rv is a subset of the real
line ffi, or of the product of real lines, ffin for some n. Associated with each
experiment is the relative frequency of the different outcomes, which would occur
if the experiment could be replicated indefinitely. This probabilistic behavior of
the repeated determinations of X is summarized in a mathematical function, called
the cumulative distribution function, abbreviated cdf and usually denoted by Fx

(without affix when no ambiguity results), which maps ffi, or ffin, respectively,
onto the unit interval. This function may often be classified into one of the two
cases, viz., discrete or continuous, according to whether as Fx is a step function
or is absolutely continuous with density F~ :== [x In the latter case, that "X is
continuous," by which we mean the the cdf is absolutely continuous, it is given by

Pr[X :s x] := Fx(x) = 1:00 !x(t)dt for all x E ffi. (1.1)

The support of a continuous rv X is the set X == {xEffi I fx(x) > OJ. When X
is discrete, the support is some countable set, say X == {Xl, X2, }, where

Pr[X == x] == {Pi> 0 if x = ~i for some i = 1,2, , (1.2)
o otherwise,

Here Pi is the height of the i th saltus of the cdf Fx and

Pr[X :::; x] :== Fx(x) == L Pi for all x E ffi. (1.3)
Xi':::: X
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If Y be a constant rv, i.e., the event [Y == c] occurs with probability one for
some c E fi, then we write the cdf Fy in terms of the indicator function of an
event, viz., I(x E A) == °iff x E A and I(x E A) ==) iff x fj A. When the interval
is [c, (0), we write

F (y) == I(y > c) == { 1 for y ~ c, for all y E fi. (1.4)
y - °for y < c.

In physics, s(y) :== I(y 2: 0) is called the Heaviside function. The "derivative"
of s(y) is the Dirac delta-function, which is often used in heuristic arguments,
especially when the correctness of the result can be verified empirically.

Thus, the distribution of any discrete rv, as defined in eqn (1.3), can be
written

00

Fx(x) == L PiI(X ~ Xi)
i=l

for all x E fi.

We say that X is a mixed rv iff for some y E (0, 1) we have, for every x E fi, and
some denumerable subset {Xl, X2, •.• },

00 jX
Fx(x) = Y 6PiI(X :::: Xi) + (l - y) -(Xl fx(t) dt.

Familiar Discrete Densities and Distributions

(1.5)

A Bernoulli rv, X, is a binary rv that takes the values 0 or 1. Thus, its pdf, i.e.,
probability distribution function, is defined by

for X == 0, 1; 0 < P < 1, q == 1 - p.

A De Moivre rv, say X, usually called "Binomial," has pdf defined by

A Poisson rv, X, has pdf defined by

e-AAx

P[X == x] == f(X;A) == --
x!

for x == 0, 1, ... .n; 0 < p < 1,
q == 1 - p.

for x == 0,1, ···;0 < A.

when n is large and p is small.

This distribution had its origin as the "law of small numbers" since it can be derived
from the De Moivre distribution as the limit when n --+ 00, P --+ °with np == A,
a constant. Consequently, we have

(
n) x n-x . e-np(np)X

pq ==---
x x!

A Pascal rv, say X, has pdf defined, again letting q == 1 - p, by

(
r +X-I) r xP[X == x] == f(x; r, p) == x p q for x == 0, 1, ... , n; 0 < p < 1,
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which is the probability that the rth success in a sequence of independent Bernoulli
trials occurs at the (r + x)th trial. It is often called a 'Negative Binomial' since
f(x;r, p) = (~r)pr(_q)x.

A multivariateDe Moivre rv, say (X I, ... , Xn ), has pdf

n p;i
P[XI=XI,···,Xn=xn]=n!n- for Xi::::O;O<Pi<l,

i=I Xi!

where '"""'~ Xi = m, '"""'~ Pi = 1.~l=I ~l=I

Another multivariate rv, (X I, ... , Xn ) , which is continuous, has the Dirichlet
distribution on the simplex S = {(Xl, X2, ... ,Xk) : 0 :s Xi :s 1, L~ Xi :s I} when
it has density

where n, :::: Oandn = L~+I nj'

The Mathematical Expectation

Let X rv Fx be a real rv on ffi.By the expectation of the quantity cp(X) we mean
the integral

Eq;(X) = i: q;(x)dFx(x). (1.6)

Here we mean the integral is the Stieltjes integral. If this concept is unfamiliar,
please read the section in Chapter 15.

By the moments of X we mean the quantities

EX k for k = 1, 2, ... (1.7)

for all integral values of k for which the integrals, E{IX Ik } for k = 1, 2, ... , are
finite. Of special interest are the two parameters called the mean, often denoted by
u, and the variance, often denoted by (J2. They are defined, repectively, by

The first moment, say u, corresponds to the center of gravity or centroid, of the
probability "mass" represented by the density. It is a measure of central tendency;
the variance corresponds to its moment of inertia about that centroid and so is a
measure of dispersion.
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Multivariate Random Variables

1. Requisites

Let X, Y be a pair of rv 's withjoint distribution Fx,Y and marginaldistributions
Fx and Fy, respectively defined, for all x, y E ffi, by

r.,«. y) = Pr[X S x, Y S y],

with

Fx(x) = Pr[X S x] = Fx,Y(x, (0), Fy(y) = Pr[Y S y] = Fx,Y(oo, y).

Moreover the conditionaldistributionof X given that [Y = y] is defined by

. Pr[X S x, y - h < Y S y + h]
FXly(xly) = lim ,

h~O Fy(y +h) - Fy(y - h)

when it exists. If the conditional distribution FX1Y exists, then we can obtain the
cdf of the sum S = X + Y and the product V = XY, respectively, as

Fs(s) =i: FX1Y(s - yly)dFy(y) for all s E ffi (1.9)

and for all v E ffi

Fv(v) =100

FX1y(vjyly)dFy(y) +i:[l - FxlY(vjYly)]dFy(y). (1.10)

The Fouriertransform of the pair (X, Y) is defined, letting l = R, by

CX,y(t, s) := EeltX+lsY for all (t, s) E ffi2.

Iff X and Yare independent, i.e., X 1. Y, does it follow that

Fx,y(x, y) = Fx(x) . Fy(y) for all (x, y) E ffi2,

and in this case FX1Y = Fx , FylX = Fv. and we see CX,Y = ex . Cy

1.2.2. Concepts from Statistics

We now recall some results from the theory of statistics that will be useful in
what follows: write en = e(Xl, ...,xn)for any estimator of () E 8, based on a
sample of size n.

Definition 1. The estimator en is unbiased for () iff Een= () for all n E ~,() E 8.

Definition 2. The estimator en is consistent for () iff en ~ () as n --+ 00.

Definition 3. The estimator en is stronglyconsistent for () iff en ~ () as n --+ 00.
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A sufficientstatistic for a parameter is one that carries all the information in the
sample about that parameter.

Definition 4. A statistic T whose value T (x) can be computed from data x without
knowledge of e, such that the observed value of T is sufficient to determine the
likelihood £(eIx), up to a constant of proportionality, is a sufficientstatistic for e.

We have the result

Theorem 1. The statistic T is sufficientfor e iff the density can be factored ap-
propriately

fx(x; e) == g(x) . h(T(x); e),

where g(.) is not a function ofe.

Another formulation serves as an alternate definition.

Theorem 2. TheconditionaldistributionofoutcomesX, givena sufficientstatistic
T, does not depend upon e.

PROOF. Let

fT(t; e) == 1 g(x) dx . hit; e) == 1/!(t) . h(t; e).
{X:T(X)=t}

Thus, we see

fx(x; e) g(x)
!xIT(xlt) = !r(t; B) = o/(t)

is independent of the parameter e.

Exercise Set I.A

1. Show that for any rv X rv F, discrete, continuous, or mixed:

E[X] =100

[1 - F(t)] d t - i: F(t) d t,

o

2. Much is made in applied mathematics about the nature of the Dirac delta function
e.g., even though 8(t) == °for t i= 0, it is argued by physical reasoning, involving
dimensionality, that 8(at + b) :j:; 8(t + ~) with a i= 0, since by a change of variable of
integration we see, when legitimate,

f ¢(t)8(at + b)dt == f ¢(x - b) 8(x) dx == ¢(-b/a).
alai lal

So, it is argued 8(at + b) == 8(t + ~)/ la I. Show that this "anomaly" disappears by using
the Heaviside distribution s(t) == I(t 2: 0) in the Stieltjes integral! ¢(t)d seat + b).
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3. Using the Schwarz inequality, viz., E21X YI ::; EIXI2
• Ely/ 2

, show that InEIXl' is a
convex function of r. Recall that for all x, y in an open interval, we have convexity of
¢, viz., ¢(X;Y) ~ ~¢(x) + ~¢(y), plus continuity, is equivalent with

¢[tx + (1 - t)y] ~ t¢(x) + (1 - t)¢(y) for all t E (0,1).

1

4. Show that Er lXI' is a nondecreasing function of r.

5. The characteristic function of the rv X is given by c(t) = exp(-t2/2). Find the density
function of this random variable.

6. If X is a random variable with characteristic function c, then find, in terms of c,
the characteristic function of the linear transformation aX + b for any constants
a and b.

7. Show that the cumulants of X and Y = X + a, for any constant a, are the same.
Cumulants are sometimes called the semi-invariants.

8. If the bivariate density of (X,Y) is [t», y) = e-Y for 0 < x < y < 00, find the density

of X + Y.

9. If X and Yare dependent, but Fx1y exists, find formulas for the distributions of
U = max(X, Y), W = min(X, Y), and Z = X/Yo

10. Evaluate E[X] and Var[X] when X r-v F in the two cases where:
(a)

F(x) = <I>[~(x / ,B)/a] for x > 0; a, ,B > 0,

with <I> defined in eqn (2.25) and ~ defined in eqn (2.35) in Chapter 2.
(b)

F'(x) = -!--cp(~ -a) for x > 0 : a,,B > O.
x <I>(a) x

Remember that cp(x) is a transcendental function.

11. * Let the pair of rv's (X, Y) have the density f defined on its support by

f(x, y) = [1 + xy(x2 - y2)]/4 for all Ixl ~ 1 and Iyl ~ 1, and zero elsewhere.

Show that

(a) [x : Ir i= I,
(b) fx+y(z) = (2 - Izl)/4 for 0 ::; Izi ::; 2, and zero elsewhere.
(c) Find cx, Cy, Cx+y.
(d) Can it be true that cx(t) . Cy(t) = cx+y(t) for dependent X and Y?

12. The "Law of the Unconscious Statistician" refers to the oversight that occurs when
X r-v F, with F absolutely continuous, its expectation defined by
EX:= f~xF'(x)dx, when, without proof, it is assumed, for any (measurable)

transformation g(X), its expectation is Eg(X) = f~ g(x)F' (x) dx. Using the

definition EX := f~ x dF(x) show that if Y = g(X) for any monotone g, that

EY = f~oo g(x)dF(x).



1.2. Valuable Concepts

Persons who do not understand mathematics are not truly human; they are, at best,
a tolerable subspecies that has learned to wear shoes, bathe and not make messes in
the house.

Lazarus Long: A character of Robert Heinlein

I tell them that if they will occupy themselves with the study of Mathematics they
will find in it the best remedy aginst the lusts of the flesh.

Thomas Mann: in the Magic Mountain

I had a feeling once about Mathematics-that I saw it all. Depth beyond depth was
revealed to me-the Byss and the Abyss. I saw-as one might see the transit of Venus
or even the Lord Mayor's show-a quantity passing through infinity and changing
its sign from plus to minus. I saw exactly how it happened and why the tergiversation
was inevitable-but it was just after dinner and I let it all go.

Winston S. Churchill

The supposed advantage of having all those humanities courses taught on campus is
more than counterbalanced by the general dopiness of the people who study them.

Richard P. Feynman, on why he left Cornell to go to Cal. Tech.

9



CHAPTER 2

Elements of Reliability

2.1. Properties of Life Distributions

Reliability studies are concerned with an assessment of the rate of wear, de-
terioration, or accumulating damage to a structure or system and the entailed
distribution of useful service life, i.e., until it can no longer, safely or profitably,
perform its operational mission. Since damage during service occurs in a known
manner but at unpredictable times, the waiting time until failure occurs is also
a random variable which must be nonnegative. Let T ~ 0 be an rv denoting life
length; then we write T r-v F when F is its cdf. NB that F has support on [0, (0),
i.e., F(t) = 0 for t < O. The corresponding survival distribution, denoted by sdf,

is defined by

F(t) := 1 - F(t) = Pr[T > t] for t ~ O.

It is also called, in many applications, the reliability function.

(2.1)

Remark. We know the following statements:

If T is discrete, then F is a decreasing step function.
1fT is continuous, then F is continuously decreasing and F' := f.
If T is mixed, then F is decreasing with at least one saltus.

NB the convention that an rv being 'continuous' means its cdf is absolutely
continuous.

Any function, say G, is a reliability function for some life-length variate iff it
has the following three properties:

(i) G(O) = 8 for some 0 < 8 :s 1, (ii) t1 :s t2 implies G(t1) ~ G(t2),

(iii) lim G(t) = O.
t-v cc

Consider the probability of failure for a life-length T r-v F during the time
interval tt , t + x] :

Pr[t < T:s t +x] = F(t +x) - F(t), (2.2)

and the conditional probability of failure, given survival to time t > 0:

F(t + x) - F(t)
F[t + xlt] := Pr[t < T :s t + xlT > t] = . (2.3)

1 - F(t)

10
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Figure 2.1. The bathtub-shaped hazard rate.

The hazard rate, label it h when it exists, is defined as

. F[t +xlt] F'(t)
h(t) := hm = ;

x~O x 1 - F(t)
(2.4)

this function is also called the failure rate, and in actuarial usage it is called the
force ofmortality.

The mortality tables of both humans and animals exhibit a characteristic behav-
ior; the force of mortality initially decreases and then remains virtually constant for
a time and finally increases. See Figure 2.1. Failure data for machines often exhibit
the same behavior. This bathtub shape is explained by the operation of three inde-
pendent failure modes, namely, (i) manufacturing or assembly error causing early
failure, (ii) failure due to accidents while in service, and (iii) cumulative damage
(wearout or fatigue) failures, which are manifested during late service life.

Hazard rates are sometimes easier to determine from physical considerations
than are densities. In fact, the Gompertz-Makeham law of human mortality
[38, 1825; 67, 1860], was among the first statistical models ever applied, predating
statistical inference. For a given cdf F with density f we have the corresponding
hazard rate, say h, given by the relation of eqn (2.4) and its integral, the hazard
function (call it H), given by:

H(x) = l x

h(t)d t = -In[l - F(x)] for x > O. (2.5)

Note that we can define H := -In[1 - F], which always exists.
Thus three properties determine a hazard function for a life variate, viz.,

(i) H(O) = 0, (ii) H is nondecreasing, and (iii) H(oo) = 00.

Moreover, we can write the sdf as

Pet) = e-H(t) = exp [ -it hex) d x ] for all t > O. (2.6)



if F(t) > O.
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Denote the conditional reliability of a unit of age t during a time x by

- F(t +x)
F(xlt) := ---

F(t)

Thus, we make the important

Definition. A cdf F is IHR, which stands for increasing hazard rate, iff F satisfies

F(xlt) is decreasing in 0 < t < 00 for each x ~ O.

NB that a distribution can be IHR without H' existing!

It follows, when a density f(t) exists for an IHR cdf, that

. [1 - F(xlt)]
h(t) = lim is increasing in t ~ O.

x-l,O X

(2.7)

Conversely, when the hazard rate h(t) is increasing, then F(x It) is decreasing in
t ~ 0 for each x ~ O. Thus, we see that when a density exists, the IHR definition
is equivalent with the hazard rate being an increasing function. We also define a
DHR distribution as one for which the words "increasing" and "decreasing" are
interchanged in the preceeding definition.

There is another concept that has intuitive meaning and can be used in modeling
life distributions in reliability. For a given 0 < T r-v F which is right-continuous,
we consider the mean residual-life function, say m, defined by

met) := E[X - tlX > t], when F(t) > 0, and = 0 otherwise.

NB that we can write for any t such that F(t) > 0,

100 - 100
F(x)

met) = F(xlt)dx = ---dx.
o t F(t)

If F' = f exists, then we also have

1 100

met) + t = --- uf(u)du,
F(t) t

from which the following relationship can be deduced:

m' (z) + 1 = met) . h(t).

(2.8)

(2.9)

Let ~ = EX. So if F(O) = 0, then m(O) =~; and if F(O) > 0, then
m(O) = ~/F(O).

Let us presume that F(O) = 0; then we have the representation by setting
F- 1(1) = sup{t > OIF(t) < I},

F(t) =I:~~i exp {- J~ m~u)du} for 0 S t < F-1(l), (2.10)
o for t ~ F- 1(1).

Thus, we have the following classifications:
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Definition. A distribution F has a decreasing mean residual life (DMRL) iff its
mean residual-life function is a decreasing function.

Definition. A life length rv T rv F is newbetterthanused in expectation (NBUE)
iff m(O) ~ met) for all t > O.

Exercise Set 2.A

1. The hazard rate for human mortality suggested by Gompertz was h(t) == a and the
"Gompertz-Makeham law" was h(t) == a + ser' with a, A, y > 0, for t > O. Why do
you think the GM law was more successful in applications?

2. The "logistic distribution," in standard form, is given by

eX
lex) == (1 + eX )2 for - 00 < x < 00,

Add scale and location parameters and discuss its behavior as a model for life length.

3. A component as produced, has a life length, say T, which is an rv with hazard rate
h. Each component is subjected to a burn-in of length r and passed iff it did not
fail during bum-in. Express the hazard rate of the passed component, say Tr , in terms of h.

4. Let the cost for each bum-in test be $c, when the component passes, and $C, when
the component fails. The gain is $D per unit of increase of expected service-life, which
is obtained by testing. If the hazard rate h is bathtub-shaped, derive a formula for an
optimum bum-in period and the distribution of life obtained.

5. Show that the expectation of the life-length rv T is its accumulated reliability, i.e.,

J.L = E(T) = {'" F(t)dt, if lim F(t)/ h(t) == o.
t--.+oo

Hint: Evaluate, via L'Hopital's rule, conditions for limy--.+oo y F(y) == O. Is this a mathe-
matical or practical consideration?

6. If vr(T) == [E(Ty]l jr, for some life-length variate T, exists for all r > 0, what would
be the values of limr--.+o vr(T) and limr--.+ oo vr(T) ?

7. Define Wet) == hOO
P(x)dx for t > 0, note that JL == W(O), and show that

provided that lim t 2P(t) == lim t Wet) == O.
t---+oo t---+oo

NB that W(t)/ JL is itself a survival distribution.

8. Check the conditions of Exercise 3 for the case when

1
h(t) == -- for t > 0; for some a > O.

I + at
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2.2. Useful Parametric Life Distributions

2.2.1. The Epstein (Exponential) Distribution

One of the simplest, yet most useful distributions, was studied in detail by
Benjamin Epstein in the 1940s. It is often called the exponential, or negative
exponential, distribution. However, during the 19th century "exponential" was the
name given to what we now call the Gaussian (Normal) distribution. In statistics we
have "the exponential family" and to avoid confusion we utilize his proper name.
We write T r-v Ep(A) whenever the hazard rate of the rv T is constant, namely,

h(t) = A for all t > 0; A > O.

The density and survival distribution are then given, respectively, by

J(t) = xe:", F(t) = e-tA for t > O.

An alternate parameterization is in terms of the mean Jk = 1/A. In this case the
notation often used is T r-v Exptu); so it follows that E(T) = u; Var(T) = Jk2.

The "two-parameter exponential" distribution results when the Epstein origin
is changed. It is denoted here as the shifted-Epstein, T r-v Shep(A, v), with the
density and sdf given by

F(t) = e-A(t-v)+ for t E fi; A > 0, v E fi. (2.11)

There is another distribution related to the exponential, called the two-sided expo-
nential or the Laplace distribution. This is denoted by T r-v Lap(A, Jk) whenever

Exercise Set 2.B

A
J(t) = _e-A1t- 1-t1 for t E ffi; A > 0, Jk E ffi.

2
(2.12)

1. Let T1, ••• , Tn be iid Ep(1]) and set X; == max7=1 Ti, Find the distribution of K; and
show its mean and variance satisfy

1 n 1
EX == - L-

n 1] j=l i'
1 n 1

VarXn == 2" L~·
1] j=l ]

What happens as as n -+ oo.?

2. If f i r-v Ep(i 1]) for i == 1, ... ,n are independent, what are the mean and variance of

L~=l f i ?

3. Suppose a device consists of m components each of which has an Epstein life with
hazard rate proportional to load. If each surviving component shares the total imposed
load equally, what is the distribution of life of this device if it fails whenever the critical
kth element fails for some fixed 1 .::: k .::: m.
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2.2.2. The Gamma Distribution

15

We say T has a Gamma distribution and write T ~ Qam(a, fJ) whenever its cdf
transform and density are given, respectively, by

Ft (t) == (1 - tfJ)-a,
ta-1e- t / fJ

F'(t) - for t > 0,· a, fJ > 0.
fJar(a)

(2.13)

Here r (a) denotes the gamma function, an Eulerian integral of the second kind,
which serves as the normalizing factor in the density. There are two special cases:
Because of its application in early studies in telephone traffic by Erlang, a Bell
Telephone employee, the distribution Qam(k, fJ) when k E ~ == {I, 2, ...}is called
the Erlang-k distribution. Also because of its early utilization in classical statis-
tics the distribution Qam(n /2, 2) is called the Chi-square distribution, and this is
denoted as

x; ~ Qam(n/2, 2).

For n 2: 30 the chi-square distribution may be well approximated by the Normal
distribution, to be identified subsequently.

We have the reliability of X ~ Qam(a, fJ) given by

- 1 /00G(t) == --- ua - 1e-u/ fJ du
fJar(a) t

-t a-I (t/fJ)j
== e /fJ" -- when a E ~ == {I 2 ...}.L...J ., ' ,

j=O J.

The corresponding hazard rate h is best studied in terms of its reciprocal:

(2.14)

(2.15)

_1_ = joo(x/t)a-le-<x-t)/fJd X = (oo(l + '!...f-1e-u/fJdu (2.16)
h(t) t Jo t

= ~ t(aj!.)({3/t)j-l whenever a E ~. (2.17)
a j=1

Note that again we have made use of the factorial power. See Figure 2.2.

2.2.3. The Pareto Distribution

A distribution originally derived by an Italian economist, Vilfredo Pareto (1848-
1923), to describe the distribution of income within a population has proved to
be of considerable interest in other areas of application, including reliability. We
write T ~ Parea, fJ) whenever the survival distribution is given by:

F(t)=e-aln(l+*)=(l+~)-a forallt >O;a,{3 >0, (2.18)
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Figure 2.2. Gamma-Hazard-Rate with f3 = 1, for a = 1/2, a = 1, a = 4.

and the corresponding hazard rate is given by

a
h(t) = -- for t > O.

f3 + t

2.2.4. The Gaussian or Normal Distribution

(2.19)

The rv X has a Gaussian or Normal distribution with location and scale param-
eters JL and a, respectively, when the density is given by

(2.20)

We write X rev N(JL, a 2)foranya > oand JL E ffi.Instandardizedformonewrites

Z rev <I> iff Z rev N(o, 1). Here we define the standard distribution and density,
respectively, by

1 l X

2<I>(x) := -- « ' /2 dt,
J2i -00

<1>'(x) := cp(x) for x E ffi. (2.21)

Thus, corresponding to the density given in eqn (2.20), X rev Fx would imply
that E(X) = JL and E(X - JL)2 = a 2with the cdf and sdf given, respectively, for
any t E ffi by

(
t - JL)Fx(t) = <I> -a- , - (JL-t)with Fx(t) = <I> -a- . (2.22)
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A classical asymptotic expansion called Mill's ratio, see p. 932 of Abramowitz
and Stegun [2] , which we here denote by met) is

t<P(t) 1 1·3 (-1)n (2n!)
met) :== -- ~ 1 - - + - - ... + ---- + Pn(t) for t » 0,

<p(t) t2 t4 t2n 2(n!)
(2.23)

where the error is always less than the absolute remainder; the remainder is

n 100

Pn(t) == (_1)n n(2j - 1) x t <p(x )x-2n-2dx.
j=l t

The reciprocal of the Gaussian hazard rate, say h, is given by

(2.24)

_1_ = <I>(x) = ex2/2100

e-u 2
/ 2 du ::=:: ~ _ ~ +~ _ '" for x » O.

hex) <p(x) x X x 3 x5

(2.25)
Computation of h(x) for x < 0 is aided by using the identity

x
m(x) == - +m(lxl), where x- == min(x, 0).

cp(x)

2.2.5. Transformations to Normality

(2.26)

The Gaussian, or normal, distribution with its unique and useful statistical
properties is the distribution assumed most frequently in virtually every field.
However, the support of any normal density is ffiand so the probability of a negative
value is always positive. Since many physical variables are nonnegative, if one
adopts a Gaussian model of, say, life-length which implies there is a nonnegligible
probability of being negative, a nonsensical result may occur. Moreover, it is not
surprising that there are many practical problems that are "solved" by merely
introducing a simple transformation of the data to normality (the logarithm is a
popular choice). After finding the answer one transforms it back to the original
sample space. Such procedures must be used with caution (avoided?), when they
cannot be shown to give approximately correct answers.

The TruncatedNormal Distribution

If X I"V N(/-L, (12) then the conditional rv T == [XIX> 0] has the TN(/-L, (12)

distribution with cdf given by

for t > O. (2.27)



18 2. Elements of Reliability

(2.28)

Another related distribution, that has proven to be of practical utility in tool-life
studies, see [51], is the Alpha distribution with density given by

f(x) = _f3_cp (~ - a) for 0 < x < 00.
x2<1>(a) x

The Log-Normal Distribution

This distribution is sometimes called the Law ofGalton, because ofits utilization
in the pioneering efforts of Francis Galton (1822-1911) to construct an empiri-

cal and conceptual methodology in statistics that was based on probability. An rv
T > 0 has the log-normal distribution whenever its logarithm has a normal distri-
bution, i.e.,

Thus, one finds the cdf is given by

(
ln t -~)

FT(t) = <I> a for t > 0, (2.29)

and we find the mean and variance, respectively, to be

E(T) = ef.L+~ and Var(T) = e2f.L+a2 (ea2 - 1). (2.30)

The assumption that a variate has the log-normal distribution can be easily
checked visually by merely taking the logarithm of the observations in a sample
and seeing if the cumulative plot of the ordered observations departs significantly
from a straight line when plotted on normal-probability paper.

Every data-set they have is considered Normal unless its scatter covers several orders
of magnitude and then they assume it is Log-normal.

Bob McCarty - on engineering practice

Exercise Set 2.C

1. Show if 0 < a :::: 1 then the gamma distribution is DHR, but for a ~ 1 is IHR.

2. Find the density and first two moments of the Weibull distribution.

3. The rv X has the hazard rate hex) = (a - X)-l for 0 < x < a; what is the distribution
of X?

4. Show that if T rv Par(a, fJ), that

E(T) == _fJ_ if a > 1 :
a-I

afJ2
Var(T) = if a > 2.

(a - 1)2(a - 2)

5. Show that if we have a gamma mixture of Epstein sdfs, namely

F(t) =100

e-AtdG A ( )",) ,


