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Preface

The book presents statistical methods and models that can usefully support the eval-
uation of educational services and quality of products. The contributions collected
in this book summarize the work of several researchers from the universities of
Bologna, Firenze, Napoli and Padova. The contributions are written with a consis-
tent notation and a unified view, and concern methodological advances developed
mostly with reference to specific problems of evaluation using real data sets.

The evaluation of educational services, as well as the analysis of judgements and
preferences, poses severe methodological challenges because of the presence of one
or more of the following aspects: the observational (non experimental) nature of the
context, which is associated with the well-known problems of selection bias and
presence of nuisance factors; the hierarchical structure of the data, that entails cor-
related observations and consideration of effects at different levels of the hierarchy
and their interactions (multilevel analysis); the multivariate and qualitative nature
of the dependent variable, that requires the use of ad hoc statistical methodologies;
the presence of non observable factors, e.g. the satisfaction, calling for the use of
latent variables models; the simultaneous presence of components of pleasure and
components of uncertainty in the explication of the judgments, that asks for the
specification and estimation of mixture models.

The first part of the book deals with latent variable models. In many fields of
application most of the variables under investigation are not directly observable,
and hence not measurable. In this context latent variable models assume a promi-
nent role. Traditionally, latent variable models were used in psychometrics and have
been concerned with measurement error, and latent variable constructs measured
with multiple indicators (factor analysis). Nowadays, latent variables are used to
represent different phenomena, such as true variables measured with error, hierar-
chical and longitudinal data, unobserved heterogeneity and missing data. Chapters
2, 3 and 4 illustrate latent variable models with educational behaviour applications.
Since the variables under investigation are abilities, initial status, or rate of change
in temporal achievement, the models rely on continuous latent variables, but dif-
ferent types of observations can be considered. Latent variable models for hierar-
chical data, i.e. multilevel models, are considered in Chaps. 5 and 6. In particular,
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Chapter 5 reviews the use of multilevel models for value-added analysis in educa-
tion. Chapter 6 describes the specification and estimation of a multilevel mixture
factor model with continuous and categorical latent variables.

From a different point of view, Chap. 7 proposes an approach mainly based
on individual perceptions about the discrete choices. In this framework, the latent
process guiding the preferences and the judgements is represented by a mixture
model. Extensions dealing with multi-attribute methods, such as conjoint analysis
and choice modelling, are provided in Chap. 8, carrying out a brief and critical re-
view in order to clarify the distinctions between the models as well as to point out
their common issues.

A frequently encountered problem in fitting statistical models is the presence
of outliers. Chapter 9 deals with a robust diagnostic approach known as Forward
Search that detects the presence of outliers and assesses their influence on the esti-
mates of the model parameters. In particular, the use of this approach is investigated
in generalized liner models applied in studies on university performance evaluation.

The last chapters are devoted to nonparametric hypotheses testing via permu-
tation methods for complex observational studies and to nonparametric construc-
tion of composite indicators. Chapter 10 presents a novel global performance score
for the construction of a global performance index when the focus is at evaluat-
ing the product performances in connection with more than one aspect (dimension)
and/or under several conditions (strata). Chapter 11 considers permutation meth-
ods for multivariate testing on ordered categorical variables within the framework
of multivariate randomised complete block designs with application to a case study
related to food sensorial evaluation. Chapter 12 is devoted to permutation tests for
stochastic ordering problems where the main goal is to find out where the treatment
peak is located (so called “umbrella alternative”). Chapter 13 deals with a novel
method for constructing preference rankings based on the nonparametric combina-
tion procedure with application to the evaluation of professional profiles of munici-
pal directors.

The Editors would like to thank all the people who, by their intensive research
and aptitude of integration, have contributed to the realization of this book.

We thank Carla Rampichini of University of Florence for her precious collabo-
ration to the editing work.

Matilde Bini - University of Firenze
Paola Monari - University of Bologna
Domenico Piccolo - University of Napoli Federico II
Luigi Salmaso - University of Padova

The Research Units were partially supported by a research grant from the Italian
Ministry of University and Research (MIUR): PRIN 2006 “Statistical Methods
and Models for the Evaluation of the Educational Processes”, by the University
of Padova CPDA088513 and by the CFEPSR, Portici.
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Chapter 1
Introduction

Matilde Bini, Paola Monari, Domenico Piccolo and Luigi Salmaso

1.1 Generalized linear latent variable models

In many fields of application most of the variables under investigation are not di-
rectly observable and hence not measurable. In these contexts latent variable mod-
els assume a prominent role. Their origins can be traced back to the early twentieth
century, notably in the study of human abilities. The main ideas lie behind factor
analysis and the newer applications of linear structural models. An account of their
innovative role in many fields to which statistical methods are applied can be found
in Bartholomew (1995) and Bartholomew and Knott (1999). In the recent literature
there have been several proposals for generalized latent variable modelling frame-
works, integrating specific methodologies in a global theoretical context. One exam-
ple is the Generalized Linear Latent And Mixed Models (GLLAMM) framework of
Skrondal and Rabe-Hesketh (2004). This approach unifies and extends latent vari-
able modelling as multilevel, longitudinal, and structural equation models as well as
generalized linear mixed models, random coefficient models, item response mod-
els, factor models, and so on. Other two examples are Muthén (2008) and Vermunt
(2007), both proposing general frameworks that allow to define models with any
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combination of categorical and continuous latent variables at each level of the hier-
archy.

Latent variable models specify the joint distribution of a set of observed and la-
tent variables. Variables that are directly observed, also known as manifest variables,
will be denoted by Y . A collection of K manifest variables will be distinguished by
subscripts and written as column vector yyy = (Y1, ...,YK)′. Latent variables will be
denoted by X , and Q latent variables will form the column vector ηηη . In practice,
Q will be much smaller than K. Both latent and manifest variables can be metrical
and/or categorical and vary from one individual to another. The relationships be-
tween them must be expressed in terms of probability distributions, so that, after the
Y ’s have been observed, the information we have about ηηη is given by its conditional
distribution given yyy

h(ηηη |yyy) =
h(ηηη)g(yyy|ηηη)

f (yyy)
(1.1)

where h(ηηη) is the prior distribution of ηηη , and g(yyy|ηηη) is the conditional distribution
of yyy given ηηη . As only yyy can be observed, any inference must be based on the joint
distribution whose density may be expressed as

f (yyy) =
∫

Rηηη
h(ηηη)g(yyy|ηηη)dηηη , (1.2)

where Rηηη is the range space of ηηη .
The main assumption in this framework is the conditional (or local) indepen-

dence of the observations yyy given the latent variables ηηη . Hence, Q must be chosen
so that

g(yyy|ηηη) =
K

∏
i=1

gi(yi|ηηη) (1.3)

A latent variable model consists of two parts. The first part is given by the prior
distribution of the latent variables h(ηηη). This accounts for the nature of ηηη , but it
was seen to be essentially arbitrary and its choice is largely a matter of conven-
tion. The second element in the model is the set of conditional distributions of the
manifest variables given the latent variables gi(yi|ηηη). A convenient family of distri-
butions which allows to account for both discrete and continuous observations is the
exponential family

gi(yi|ηηη) = exp

{
yyyθ −b(θi)

φi
+d(y,φi)

}
(1.4)

where θi is some function of ηηη . The simplest assumption about the form of this
function is to suppose that it is a linear function, in which case we have

θi = αi0 +αi1ηi1 + ...+αiQηiQ i = 1,2, ...,K (1.5)

This is the General Linear Latent Variable Model (GLLVM). The term “linear”
refers to its linearity in the αs.
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Several statistical methodologies based on observed and latent variables of differ-
ent nature are encompassed in the GLLVM described above and they are formalized
by Bartholomew and Knott (1999). It provides a generalization of both the classical
Generalized Linear Models (GLMs) by including latent dependent variables, and
the classical factor model by allowing observations of different nature as well as
linear relationships among the factors. From this point of view, GLLVM also gen-
eralizes the LISREL model by describing the relationship between dependent and
independent latent variables in terms of probability distributions.

Chapters 2, 3 and 4 illustrate GLLVM with application in the educational evalu-
ation. Since the variables under investigation are abilities, initial status and rate of
change in temporal achievement, we deal with continuous latent variables, but dif-
ferent types of observations are considered. From a different point of view, Chapter
7 proposes an approach mainly based on individual perceptions about the discrete
choice; thus, latent variables are a fundamental issues but they are quantified by
explicit parameters in the model and by subjects covariates when it is convenient.

Chapter 2 deals with the problem of ordinal observations. In the literature
(Jöreskog and Moustaki, 2001) there are two main approaches for conducting latent
variable analysis with categorical observed data. The most popular is the Underlying
Variable Approach (UVA) which assumes that each manifest variable is an indirect
observation of a standardized normal variable. This approach is used in the general
framework of structural equation modelling (LISREL). The other main approach
is the Item Response Function (IRF) approach by which the manifest variables are
treated as they are. The unit of analysis is the entire response pattern of a subject, so
no loss of information occurs. The models for ordinal data within the IRF has been
recently developed by Moustaki (2000). After a review of basic concepts of the
two approaches, some methodological developments are introduced. This method-
ological extension requires an improvement of the computational algorithms for
parameter estimation. Furthermore some theoretical results on the goodness of fit
problems due to the severe sparseness, typical of variables with many categories,
are presented.

Chapter 3 deals with Item Response Theory (IRT), or latent trait models for the
study of individual responses to a set of items designed to measure latent abili-
ties. IRT is a measurement theory that was first formalized in the Sixties with the
fundamental work of Lord and Novick (1968) and it has a predominant role in ed-
ucational testing. An IRT model describes the relationship between the observable
examinee performance in the test, typically in the form of responses to categorical
items, and the unobservable latent ability. Therefore, IRT models can be included
in the GLLVM framework. IRT is used in all phases of test administration, from
the test calibration to the estimation of individual abilities, in which the estimated
item parameters are used to characterize the examinees. After a brief presentation
of the main assumptions of IRT models, several aspects related to specific problems
in the context of test administration are treated. This decision has been motivated
by the many advances introduced over the last few years, that allow both to sup-
port more complex models and to improve the estimation algorithms. In particu-
lar, issues on multidimensionality (Wang et al., 2004), incomplete design (Béguin
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and Glas, 2001) and the inclusion of prior information (van der Linden, 1999) are
discussed, referring both to current literature and to some contributions of the au-
thors. A particular attention is given to the use of the Gibbs sampler, in the Markov
Chain Monte Carlo (MCMC) methods, for the estimation of IRT models (Albert,
1992; Fox and Glas, 2001). Finally, applications related to these topics are presented
in the context of educational assessment.

Chapter 4 describes the application of GLLVM for the analysis of individual
data repeated over a period of time, that allows dynamical studies of social pro-
cesses, rather than static cross-sectional analyses. The analysis of repeated mea-
sures has been considered from different points of view, such as individual growth
techniques (Singer and Willett, 2004), time series and econometric analysis (Diggle
et al., 1994), and multilevel modelling (Skrondal and Rabe-Hesketh, 2004). They
can be encompassed into the general class of random coefficient models, in which
random effects are incorporated into the model in view of reflecting unobserved het-
erogeneity in the individual behavior. More generally, the random coefficients can
be incorporated into GLLVM by considering them as latent variables. Borrowing
from Meredith and Tisak (1990), we refer to these models as Latent Curve Models
(LCMs), since random coefficients permit each case in the sample to have a dif-
ferent trajectory over time. Growth curve models are studied to compare University
student careers over time. We focus on continuous response variables, using conven-
tional normal-theory estimators, such as maximum likelihood, into the framework
of GLLVM.

In Chapter 7 we assume that evaluation is a psychological process where a
rater/judge expresses the agreement within a prefixed scale. This process is gen-
erated by the perception of value/quality/performance and is governed by latent
variables. In order to model the empirical results of a survey and to infer on the
stochastic mechanism that generated ordinal data, we suppose that the final choice
is determined by personal feeling/attractiveness towards the item and intrinsic un-
certainty always present in human decisions. These aspects are combined in an ef-
fective way by introducing a mixture random variable where both components are
expressed and weighted, as in D’Elia and Piccolo (2005). Thus, we will introduce
CUB models by considering the observed ordinal response y as a realization of a dis-
crete random variable Y defined on the support {y = 1,2, . . . ,m}, for a given integer
m > 3, as a mixture of Uniform and Shifted Binomial random variables. Formally,
its probability mass function is defined by:

Pr(Y = y) = π
(

m−1
y−1

)
(1−ξ )y−1ξm−y +(1−π)

1
m

, y = 1,2, . . . ,m ,

where π ∈ (0,1] and ξ ∈ [0,1]. By examining the π parameter we quantify the
propensity of the respondent to adhere to a completely random choice whereas 1−ξ
parameter is related to the strength of feeling. Recently, Iannario (2009c) proved
that these models are fully identifiable. This probability structure adheres to most
of observed shapes for real ordinal data and it has been generalized to take into ac-
count the effect of significant covariates (Piccolo and D’Elia, 2008) or atypical situ-
ations (Iannario, 2009b). Then, asymptotic maximum likelihood inference has been
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developed (Piccolo, 2006) by using EM algorithm and a software in R is currently
available (Iannario and Piccolo 2009) for the estimation of CUB models, without
and with covariates. In this regard, a few application to real data set concerning uni-
versity evaluation of teaching and services will be discussed. A special topic is a
model-based clustering procedure, firstly performed by Corduas (2008a,c), where
a Kullback-Liebler divergence criterion is applied for selecting subgroups of ex-
pressed ratings by university students. The characteristic of the proposal is the pos-
sibility to assess classical classification methods by an inferential approach within
the unique framework of ordinal modelling. Although CUB models are focused on
the marginal distribution of the respondents, their use seems effective for investigat-
ing sound relationships among ordinal responses and covariates and for enhancing
unobserved traits in the data. Thus, differences and integrations with IRT are worth
of interest.

1.2 Multilevel models

The class of multilevel models is suitable for the analysis of hierarchical data, where
level 1 units are nested in level 2 units, which are possibly nested in level 3 units
and so on. For example, students nested in classrooms, classrooms nested in schools,
schools nested in districts. Longitudinal and repeated measures data can be seen as
special cases of hierarchical data, with occasions nested in subjects.

The basic two-level model is the linear random intercept model:

yi j = α+βββxi j + γγγw j +u j + ei j (1.6)

where j indexes the level 2 units (clusters) and i indexes the level 1 units (subjects).
For example, in the evaluation of schools the clusters are the schools and the subjects
are the students. The variables in the model are:

• yi j the outcome of subject i of cluster j;
• xi j a vector with the features of subject i of cluster j;
• w j a vector with the features of cluster j.

Then, u j is the random effect of cluster j, i.e. an unobservable quantity char-
acterizing such a cluster and shared by all its subjects. The term u j is a residual
component that captures all the relevant factors at the cluster level not accounted for
by the covariates and thus its meaning depends on which covariates enter the model.
The effect u j is called random because it is a random variable, assuming indepen-
dence among the clusters. For consistency of the estimates, the crucial assumption
on u j is that its expectation conditionally on the covariates is null (exogeneity). Less
crucial, but standard assumptions are the homoscedasticity, i.e. u j has constant vari-
ance, and the normality of the distribution. Finally, the level 1 errors ei j are residual
components taking into account all the unobserved factors at the subject level mak-
ing the outcome different from what predicted by the covariates and the random
effect. The ei j are assumed independent among subjects and independent of u j. The
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other standard assumptions are similar to those on u j, i.e. exogeneity, homoscedas-
ticity and normality. Model (1.6) is named random intercept since each cluster has
its own intercept that has both fixed and random components. However, the slopes
are assumed to be constant across clusters, so the regression lines are parallel.

The simple random intercept model (1.6) can be extended in several ways. For
example, it is often found that the relationship between the outcome yi j and a level
1 covariate xi j varies from cluster to cluster, so the regression lines are no longer
parallel. This leads to the so called random coefficient model that can be written as

yi j = α+u0 j +(β +u1 j)xi j + ei j (1.7)

where it is usually assumed that (u0 j,u1 j) is bivariate normal. The random coeffi-
cient also implies that the between-cluster variance is a quadratic function of the
covariate.

Now there are plenty of textbooks on multilevel modelling. Snijders and Bosker
(1999) is an excellent introduction. Hox (2002) has fewer details, but it covers a
wider range of topics. Raudenbush and Bryk (2002) present the models in a careful
way along with thoroughly discussed applications. Goldstein (2003) is a classical,
though not easy, reference with wide coverage and many educational applications.

Chapter 5 deals with the use of multilevel models for value-added analysis in ed-
ucation. The chapter reviews the concept of effectiveness in the educational setting
and outlines the value-added approach. Multilevel models are presented as a tool for
measuring effectiveness, with a discussion of several issues in model specification,
such as the choice of the set of the covariates and the modelling of the achievement
progress. The chapter ends with some remarks on the use of the model results for
ranking the schools and for predicting the outcome of an hypothetical student.

1.2.1 Multilevel mixture factor models

Factor analysis is a well-known statistical method used to describe the correlations
among some manifest variables, indicators, in terms of fewer latent variables, fac-
tors. In its standard formulation, factor analysis assumes that the variables are mea-
sured on a set of independent units; this assumption may be inadequate when units
are nested in clusters assuming what is called a hierarchical structure (Goldstein,
2003; Snijders and Bosker, 1999). These differences can be modeled including
group dummies in the model, as in the multigroup approach, or can be modeled with
a multilevel factor model with continuous latent variables at all level of the analysis.
Besides the difference in the nature, fixed or random, of the group effects, these two
models differ in their perspective: the multilevel factor model usually aims at ex-
ploring the latent structure underlying the observed phenomenon at different levels
of the analysis (see, as some examples, Goldstein and McDonald (1988), Longford
and Muthén (1992) and Grilli and Rampichini (2007a)) while the multigroup fac-
tor model has a confirmatory approach and aims at comparing the observed groups
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of units with respect to the different parameters of the factor model (Bollen, 1989;
Meredith, 1993; Muthén, 1989). In a confirmatory perspective, another model use-
ful to compare the observed groups of units is the multilevel mixture factor model
with a categorical latent variable at the higher level of the analysis. This model eval-
uates the existence of unobserved subpopulation (classes) of groups with similar
features with respect to the factor model parameters and overcomes the creation of
over-detailed information of the multigroup factor model, which estimates as many
group coefficients as the groups. Mixture factor analyses have been developed and
largely used in the one-level context (McLachlan and Peel, 2000; Magidson and
Vermunt, 2001; Lubke and Muthén, 2005). More recently, the specification of mix-
ture factor models in the multilevel context has received a growing interest. As en
example, Palardy and Vermunt (2009) and Muthén (2008) use a two-level mixture
model in the context of growth analysis and Vermunt (2007) use a mixture model in
the context of IRT analysis; Muthén and Asparouhov (2008) also describe a more
general two-level mixture model with different types of latent variables.

Chapter 6 deals with the use of multilevel models in the context of factor anal-
ysis and, more precisely, in the context of mixture factor models. This chapter de-
scribes the specification and estimation of a multilevel mixture factor model with
continuous latent variables at the lower level of the analysis and a categorical latent
variable at the higher level focusing, on one hand, on the illustration of some theo-
retical issues of the model and, on the other hand, on the applied results that can be
achieved Varriale (2007). Then, a multilevel mixture factor model is used in order
to evaluate the external effectiveness of the Italian university using, as indicator of
the phenomenon, the information on the job satisfaction expressed by the graduates.
In particular, the model is used to analyse the underlying structure of the job sat-
isfaction at the individual level and, at the same time, to cluster higher level units
represented by the programs that the individuals attended during the university in
classes with some typical characteristics.

1.3 Choices and conjoint analysis: critical aspects and recent
developments

Standard conjoint analysis (CA) is a multi-attribute quantitative method useful to
study the evaluation of a consumer/user about a new product/service. In the lit-
erature many authors (see for example Alvarez-Farizo and Hanley (2002)), have
studied and applied this method; the main theoretical problems are faced by Green
and Srinivasan (1990) about statistical models and by Moore (1980), related to the
insertion of baseline variables related to the respondent.

In Chapter 8 a joint study including a modified conjoint analysis and the Re-
sponse Surface Methodology, in order to improve the analysis of multi-attribute
valuation methods, is presented.

Our proposal is based on the conjoint analysis jointly with the status-quo evalu-
ation, Hartman et al. (1991), which is the alternative related to the current situation.
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The statistical analysis is carried out through the Response Surface Methodology
(RSM) (for more details see Khuri and Cornell (1987) and Myers and Montgomery
(1995)) by considering the quantitative judgement of each respondent for each pro-
file with respect to the assessed score about the status-quo and taking the individ-
ual information into account. The final result is achieved carrying out an optimiza-
tion procedure on the estimated statistical models, by defining an objective function
in order to reach the optimal solution for the revised (or new) service/product. In
this context, it is relevant to point out the modified structured data, through a new
questionnaire, in order to collect information about the baseline variables of the re-
spondent, the quantitative data about the current situation (status-quo) of the prod-
uct/service and the proper CA analysis by means of the planning of an experimental
design.

In general, we may define the set of experimental variables, which influence
the measurement process: x = [x1, ..,xk, ..,xK ]; and the set of noise variables:
z = [z1, ..,zs, ..,zS].

The general RSM model can be written as:

Yi j(x,z) = β0 +x
′
β+x

′
Bx+z

′
δ+z

′
ΔΔΔz+x

′
ΛΛΛz+ei j i = 1, .., I; j = 1, ..,J (1.8)

where x and z are the vectors of variables as described above; β, B, δ, ΔΔΔ, and ΛΛΛ
are vectors and matrices of the model parameters, ei j is the random error which
is assumed Normally distributed with zero mean and variance equal to σ . ΛΛΛ is a
K × S matrix which plays an important role since it contains the parameters of the
interaction effects between the x and z sets.

Note that, in general, if J are the profiles and I the respondents, the observations
are IxJ. In this context, the set x are the judgements, expressed through votes in a
metric scale [0,100], on the attributes involved in the experimental planning; while
the set z is related to the baseline individual variables, which are relevant for the
service or product studied and that may change according to the specific situation.
The response variable Y is defined as a quantitative variable of the process; in this
case, the judgements expressed, on each full profile of the plan, by the respondents
in the same metric scale.

The final aim is to find the best preference, by evaluating both the quantitative
judgements about the full profiles and the judgements about the current situation,
which is the most insensitive to the heterogeneity of the respondent.

1.4 Robust diagnostic analysis with forward search

A frequently encountered difficulty in statistical inference problems is the pres-
ence of outliers in the data. Outliers can be defined as observations which appear
to be inconsistent or somewhat different from the rest of the data. They can arise
from models different from the one we intend to estimate (contaminants) or can be
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atypical observations generated by the assumed model. Their identification is of ex-
treme importance since they can have strong negative effects on classical estimator
efficiency, and should hence be eliminated or down-weighted in the estimation of the
model. Furthermore, their pattern should be thoroughly examined since they could
provide valuable new information on the problem being analyzed. Unfortunately,
their identification is often very difficult, particularly when multivariate distribu-
tions are being dealt with.

The Forward Search, introduced by Atkinson and Riani (2000), is a general diag-
nostic approach for detecting the presence of outliers and assessing their influence
on the estimates of the model parameters. The method was applied to regression
analysis, but it could as well be applied to almost any model and multivariate method
(Atkinson et al., 2004).

This algorithm is based on the following steps: the start is a robust fit to very few
observations and then a successive fit is done with larger subsets. More specifically,
it starts by finding a presumably outlier-free subset of observations, for example the
set proposed by Rousseeuw (1984) to find the least median of squares estimators
(LMS), i.e., the value of the parameters that yields the smallest median squared
residual. The surface to be minimized has many local minima and the minimum
value can only be obtained by approximation. Rousseeuw proposed restricting the
search to all the estimates obtained by using only subsets of size p. The starting
subset of the Forward Search, is given by the p observations which yield the smallest
median squared residual. This is an approximation of the real LMS estimate and
unfortunately still requires the evaluation of all possible subsets of size p (Bertaccini
and Bini, 2007).

Formally, let Z = (X ,y) a data matrix of dimension nx(p+1). If n is moderate and
p << n, the choice of the initial subset can be performed by exhaustive enumeration

of all

(
n
p

)
distinct ptuple S(p)

i1,...,ip
≡
{

z1, ...,zp
}

, where ZT
i j

is the i jth row of Z, for

and 1 < i j �= i j∗ < n . Specifically, let ιT = [i1, ..., ip] and let e
ι ,S(p)

t
be the least squares

residual for the unit i given the model has been fitted with the observations in S(p)
ι .

The initial subset is which satisfies e2
[med],S(p)

∗
= minι

[
e2
[med],S(p)

ι

]
where e2

[k],S(p)
∗

is

the kth ordered squared residual among e2
[i],S(p)

∗
, with i = 1, ...,n and med = integer

part of (n + p + 1)/2. If

(
n
p

)
is too large, the choice is made using 3,000 ptuples

sampled from Z matrix.
The subset size is increased by one and the model refitted to the observations

with the smallest residuals for the increased subset size.
The initial subset S(m)

∗ of dimension m≥ p is increased by one and the new subset

S(∗)
m+1 consists of m∗1 units with the smallest ordered residuals e2

[k],S(m)
∗

. The model

is refitted to the new subset and the procedure continues with increasing subset

sizes until all the data are fitted, i.e. when S(m)
∗ = S(n). The result is an ordering of

the observations by their closeness to the assumed model. Usually one observation
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enters the subset used for fitting, but sometimes two or more observations enter the
subset as one or more leave.

Chapter 9 proposes to validate this robust diagnostic approach when university
performance analyses are carried out. In particular, the algorithm is investigated
in generalized liner models. The analysis also reviews some robust studies recently
performed about effectiveness and efficiency of Italian universities (Bini et al., 2002;
Biggeri and Bini, 2003); Bini et al., 2003; Bini and Bertaccini, 2004; Bini, 2004a,
2004b; Bertaccini and Polverini, 2006).

1.5 Nonparametric combination of dependent permutation tests
and rankings

Chapters 10, 11, 12 and 13 of the book deal with the Nonparametric Combination
approach of dependent permutation Tests (NPC Test) and Rankings (NPC Ranking)
to face a variety of univariate and multivariate problems for the evaluation of educa-
tional services and quality of products. After a short abstract of each chapter, in this
section we provide an introduction on notation and basic theory of nonparametric
combination methodology of permutation tests or rankings.

Chapter 10 presents a novel Global Performance Score (GPS) for the construc-
tion of a global performance index when we are facing a complex problem of prod-
uct quality evaluation, that is when the focus is on evaluating the product perfor-
mances in connection with more than one aspect (dimension) and/or under several
conditions (strata). The methodological solution we propose to cope with this prob-
lem is described and applied, considering different possible data transformation and
an application problem related to the performance evaluation of new detergents.

Chapter 11 considers permutation methods for testing on ordered categorical
variables within the framework of randomised complete block designs. The pro-
posed approach is studied and validated via a Monte Carlo simulation study and it
has been applied to a food sensorial evaluation study.

Chapter 12 is devoted to permutation tests for stochastic ordering problems
where the main goal is to find out where the treatment peak is located (so called
“umbrella alternative”). The proposed solution involves testing for stochastic order-
ing of continuous variables and the nonparametric combination methodology. Since
the location of the peak is generally unknown, it can be detected by sequential tests
on possible picks and combining together those tests.

Chapter 13 deals with a novel method for constructing preference rankings based
on the nonparametric combination procedure and the proposed method is compared
with that based on the arithmetic mean. Subsequently, in order to verify to what
extent two rankings concord, a new permutation test for the evaluation of concor-
dance between dependent rankings is developed. Finally, the method is applied to
the evaluation of professional profiles of municipal directors.
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1.5.1 Introduction to permutation tests

The importance of the permutation approach in resolving a large number of infer-
ential problems is well-documented in the literature, where the relevant theoretical
aspects emerge, as well as the extreme effectiveness and flexibility from an appli-
catory point of view (Manly, 1997; Pesarin, 2001; Edgington and Onghena, 2007;
Basso et al., 2009).

The great majority of univariate problems may be usefully and effectively solved
within standard parametric or nonparametric methods as well, although in relatively
mild conditions their permutation counterparts are generally asymptotically as good
as the best parametric ones. Moreover, it should be noted that permutation methods
are essentially of a nonparametrically exact nature in a conditional context. In ad-
dition, there are a number of parametric tests the distributional behavior of which
is only known asymptotically. Thus, for most sample sizes of practical interest, the
relative lack of efficiency of permutation solutions may sometimes be compensated
by the lack of approximation of parametric asymptotic counterparts. In addition,
assumptions regarding the validity of parametric methods (such as normality and
random sampling) are rarely satisfied in practice, so that consequent inferences,
when not improper, are necessarily approximated, and their approximations are of-
ten difficult to assess.

For any general testing problem, in the null hypothesis (H0), which usually as-
sumes that data come from only one (with respect to groups) unknown population
distribution P, the whole set of observed data x is considered to be a random sample,
taking values on sample space X n, where x is one observation of the n-dimensional
sampling variable X(n) and where this random sample does not necessarily have in-
dependent and identically distributed (i.i.d.) components. We note that the observed
data set x is always a set of sufficient statistics in H0 for any underlying distribution.

Given a sample point x, if x∗ ∈X n is such that the likelihood ratio f (n)
P (x)/ f (n)

P (x∗)
= ρ(x,x∗) is not dependent on fP for whatever P ∈P , then x and x∗ are said to con-
tain essentially the same amount of information with respect to P, so that they are
equivalent for inferential purposes. The set of points that are equivalent to x, with
respect to the information contained, is called the orbit associated with x, and is
denoted by X n

/x, so that X n
/x = {x∗ : ρ(x,x∗) is fP-independent}.

The same conclusion is obtained if f (n)
P (x) is assumed to be invariant with respect

to permutations of the arguments of x; i.e., the elements (x1, . . . ,xn). This happens
when the assumption of independence for observable data is replaced by that of

exchangeability, f (n)
P (x1, . . . ,xn) = f (n)

P

(
xu∗1

, . . . ,xu∗n

)
, where (u∗1, . . . ,u

∗
n) is any per-

mutation of (1, . . . ,n). Note that, in the context of permutation tests, this concept
of exchangeability is often referred to as the exchangeability of the observed data
with respect to groups. Orbits X n

/x are also called permutation sample spaces. It is
important to note that orbits X n

/x associated with data sets x ∈ X n always contain
a finite number of points, as n is finite.
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Since, in the null hypothesis and assuming exchangeability, the conditional prob-
ability distribution of a generic point x′ ∈X n

/x, for any underlying population distri-
bution P ∈ P , is P-independent, permutation inferences are invariant with respect
to P in H0. Some authors, emphasizing this invariance property , prefer to give them
the name of invariant tests. However, due to this invariance property, permutation
tests are distribution-free and nonparametric.

Formally, let X n/x be the orbit associated with the observed vector of data x.
The points of X n/x can also be defined as x∗ : x∗ = πx where π is a random per-
mutation of indexes 1,2, . . . ,n. Define a suitable test statistic T on X n/x for which
large values are significant for a right-handed one-sided alternative: The support of
X n/x through T is the set T that consists of C elements (if there are no ties in the
given data). Let

T ∗
(1) ≤ T ∗

(2) ≤ . . . ≤ T ∗
(C)

be the ordered values of T . Let T o be the observed value of the test statistic, T o =
T (x). For a chosen attainable significance level α ∈ {1/C,2/C, . . . ,(C−1)/C}, let
k = C(1−α). Define a permutation test, the function φ ∗ = φ(T ∗) for a one-sided
alternative

φ ∗(T ) =

{
1 if T o ≥ T ∗

(k)
0 if T o < T ∗

(k)
.

Permutation tests have general good properties such as exactness, unbiasedness
and consistency (see Pesarin, 2001; Hoeffding, 1952).

1.5.2 Multivariate permutation tests and nonparametric
combination methodology

In this section, we provide details on the construction of multivariate permutation
tests via nonparametric combination approach. Consider, for instance, a multivari-
ate problem where q (possibly dependent) variables are considered. The main dif-
ficulties arise because of the underlying dependence structure among variables (or
aspects), which is generally unknown. Moreover, a global answer involving several
dependent variables (aspects) is often required, so the question is how to combine
the information related to the q variables (aspects) into one global test.

In a multivariate problem, when the aim is to compare two o more groups, the
matrix of data is generally partitioned into n q-dimensional arrays; that is,

Xn×q =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1q

x21 x22 . . . x2q
...

...
. . .

...
xn1 xn2 . . . xnq

⎤
⎥⎥⎥⎦ .
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Each row of X is a determination of the multivariate variable [X1,X2, . . . ,Xq], which
has distribution P with unknown dependence structure.

In this framework the null hypothesis H0, which states the equality in distribu-
tion of the multivariate distribution of the q variables in all groups, is supposed
to be properly decomposed into q sub-hypotheses H0 j each appropriate for partial
(univariate) aspects,

H0 :
q⋂

j=1

H0 j.

Hence, the global null hypothesis H0 can be viewed as an intersection of partial
null hypotheses H0 j. Under the global null hypothesis, the rows of X are exchange-
able. We can thus define q partial test statistics. Let Tj, j = 1, . . . ,q, be a partial test
statistic for the univariate hypothesis H0 j involving each of the q variables.

A desirable property of a multivariate test is that the global null hypothesis should
be rejected whenever one of the partial null hypothesis is rejected. To this end, let us
consider the rule large is significant, which means that the global test statistic should
assume large values whenever at least one of its arguments leads to the rejection of
at least one partial null hypothesis H0 j. Accordingly, the global test ψ∗ should be
based on a suitable combining function ψ that satisfies the following requirements:

1. A combining function ψ must be non-increasing in each argument:

ψ(λ1, . . . ,λ j, . . . ,λq) ≥ ψ
(
λ1, . . . ,λ ′

j, . . . ,λq
)

if λ j < λ ′
j, j ∈ {1, . . . ,q}.

1. Every combining function ψ must attain its supremum value ψ̄ , possibly not
finite, even when only one argument attains zero:

ψ(..,λ j, ..) → ψ̄ if λ j → 0, j ∈ {1, . . . ,q}.

2. ∀α > 0, the critical value of every ψ is assumed to be finite and strictly smaller
than the supremum value: T ′′

α < ψ̄ .

The λ ’s in the definition of the combining function are p-values: αi = Pr{T ∗
i ≥

T o
i |H0i}. It is possible, of course, to express ψ also in terms of partial statistics. For

instance, if the λ ’s are test statistics that are significant for large values (as in the
bivariate example), some suitable combining functions are the following:

• the direct combining function: ψ = ∑q
j=1λ j;

• the maxT combining function: ψ = max j λ j.

Instead, if the combining function is based on the partial p-values (i.e., λ j = p j =

Pr
[
T ∗

j ≥ Tj|Y
]
, which are significant against H0 j for small values), the following

combining functions are of interest:

• Fisher’s: ψ = −2∑q
j=1 log(p j), 0 ≤ ψ ≤ +∞;

• Tippett’s: ψ = 1−min j p j, 0 ≤ ψ ≤ 1;


