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Chapter 1
Introduction: Machine Learning for Intelligent
Optimization

Errando discitur.
Chi fa falla; e fallando s’impara.
We learn from our mistakes.
(Popular wisdom)

You win only if you aren’t afraid to lose.
(Rocky Aoki)

Mistakes are the portals of discovery.
(James Joyce)

This book is about learning for problem solving. If you are not already an expert
in the area, let us start with some motivation, just to make sure that we talk about
issues that are not far from everybody’s human experience.

Human problem solving is strongly connected to learning. Learning takes place
when the problem at hand is not well known at the beginning, and its structure
becomes clearer and clearer when more experience with the problem is available.
For concreteness, let us consider skiing. What distinguishes an expert skier from a
novice is that the novice knows some instructions but needs a lot of experience to
fine tune the techniques (with some falling down into local minima and restarts),
while the real expert jumps seamlessly from sensorial input to action, without effort
and reasoning. The knowledge accumulated from the previous experience has been
compiled into parameters of a neural system working at very high speed. Think
about yourself driving a car, and try to explain in detail how you move your feet
when driving: After so many years the knowledge is so hardwired into your neural
system that you hardly need any high-level thinking. Of course, this kind of fine
tuning of strategies and knowledge compilation into parameters of a dynamical sys-
tem (our nervous system) is quite natural for us, while more primitive creatures are
more rigid in their behavior. Consider a fly getting burnt by an incandescent light
bulb. It is deceived by the novel situation because no light bulb was present during
the genetic evolution of its species, apart from a very distant one called “sun.” You
know the rest of the story: The fly will get burnt again and again and again (Fig. 1.1).
Lack of lifelong learning and rapid self-tuning can have disastrous consequences.
In fact, the human ability of learning and quick reaction to life-threatening dangers
and novel contexts has been precious for the survival of our species when our an-
cestors were living in unfriendly environments such as forests, hunted by animals
with higher physical strength. In addition to learning, search by trial-and-error, gen-
eration, and test, repeated modifications of solutions by small local changes are also
part of human life.

R. Battiti et al., Reactive Search and Intelligent Optimization, Operations 1
Research/Computer Science Interfaces Series 45, DOI 10.1007/978-0-387-09624-7 1,
c© Springer Science+Business Media LLC 2008



2 1 Introduction: Machine Learning for Intelligent Optimization

Fig. 1.1 Attracted by the lightbulb and repeatedly burnt: The fly is not intelligent enough to learn
from experience and develop an escape strategy. (Image courtesy of Marco Dianti)

What is critical for humans is also critical for many human-developed problem-
solving strategies. It is not surprising that many methods for solving problems in ar-
tificial intelligence, operations research, and related areas follow the search scheme,
for example, searching for an optimal configuration on a tree of possibilities by
adding one solution component at a time, and backtracking if a dead-end is encoun-
tered, or searching by generating a trajectory of candidate solutions on a landscape
defined by the corresponding solution value.

For most of the relevant and difficult problems (look for “computational com-
plexity” and “NP-hardness” in your favorite search engine), researchers now believe
that the optimal solution cannot be found exactly in acceptable computing times,
which grow as a low-order polynomial of the input size. In some cases, similar
negative results exist about the possibility of approximating a solution with per-
formance guarantees (hardness of approximation). These are well-known negative
results established in the last decades of theoretical computer science. Hardness
of approximation, in addition to NP-hardness, is a kind of “affirmative action” for
heuristics.

Heuristics used to suffer from a bad reputation, citing from Papadimitriou and
Steiglitz [205]:

6. Heuristics Any of the <five> approaches above without a formal guarantee of perfor-
mance can be considered a “heuristic.” However unsatisfactory mathematically, such ap-
proaches are certainly valid in practical situations.

Unfortunately, because of the above-mentioned theoretical results, we are con-
demned to live with heuristics for very long times, maybe forever, and some ef-
fort is required to make them more satisfactory, both from a theoretical and from a
practical point of view. This implies that an important part of computer science is
becoming experimental: some of its theories cannot be demonstrated by deduction
as in mathematics, but have to be subjected to careful experimentation. Terms such
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as experimental algorithmics and experimental computer science have been used to
underline this transformation. To make an analogy: There is no mathematical proof
of Newton’s law of gravitation, it simply describes in a unified manner many related
physical phenomena, apples falling from a tree and planets orbiting around other
planets, and it has been refined and subjected to careful experimentation.

In addition, there is no mathematical proof that the speed of light is independent
of the observer, in fact a careful experiment was needed to demonstrate that this is
indeed the case. Similarly, serious experimental work can be done in computer sci-
ence, actually it must be done given the mentioned theoretical difficulties in proving
results, without being accused of lack of mathematical proofs.

A particular delicate issue in many heuristics is their detailed tuning. Some
schemes are not rigid and demand the specification of choices in the detailed algo-
rithm design, or values of internal parameters. Think about our novice skier, its de-
tailed implementation ranging from world champion to . . . the writers of this book:
The difference in parameter tuning is evident.

Parameter tuning is a crucial issue both in the scientific development and in the
practical use of heuristics. In some cases the detailed tuning is executed by a re-
searcher or by a final user. As parameter tuning is user dependent, the reproducibility
of the heuristics results is difficult as is comparing different parametric algorithms.
Algorithm A can be better than algorithm B if tuned by Roberto, while it can be
worse if tuned by Mauro.

In this book we consider some machine learning methods that can be profitably
used in order to automate the tuning process and make it an integral and fully docu-
mented part of the algorithm. In particular, the focus is on learning schemes where
the accumulated knowledge is compiled into the parameters of the method, or the
parameters regulating a dynamical system to search for a solution. These schemes
are called subsymbolic to differentiate them from high-level reasoning schemes pop-
ular in artificial intelligence. In many cases subsymbolic learning schemes work
without giving a high-level symbolic explanation. Think about neural networks, and
about the champion skier who cannot explain how he allocates forces to the different
muscles during a slalom competition.

If learning acts online, i.e., while the algorithm is solving an instance of a prob-
lem, task-dependent local properties can be used by the algorithm to determine the
appropriate balance between diversification and intensification. Deciding whether
it is better to look for gold where the other miners are excavating (intensifica-
tion/exploitation) or to go and explore other valleys and uncharted territories (diver-
sification/exploration) is an issue that excruciated forty-niners, which we will meet
over and over again in the following chapters. Citing for example from [217], “di-
versification drives the search to examine new regions, and intensification focuses
more intently on regions previously found to be good. Intensification typically oper-
ates by re-starting from high quality solutions, or by modifying choice rules to favor
the inclusion of attributes of these solutions.”



4 1 Introduction: Machine Learning for Intelligent Optimization

Fig. 1.2 Who invented reactive search? Man is the best example of an effective online learning
machine (Leonardo Da Vinci, Vitruvian Man, Gallerie dell’Accademia, Venice)

1.1 Parameter Tuning and Intelligent Optimization

As we mentioned, many state-of-the-art heuristics are characterized by a certain
number of choices and free parameters, whose appropriate setting is a subject that
raises issues of research methodology [15, 135, 182]. In some cases the parame-
ters are tuned through a feedback loop that includes the user as a crucial learning
component: Different options are developed and tested until acceptable results are
obtained. The quality of results is not automatically transferred to different instances
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Operations
Research

(Optimization)
Computer

Science

Machine
Learning and
Neural Nets

Fig. 1.3 Machine learning and intelligent optimization as the intersection of three disciplines. The
logo derived from cave art is related to the first attempts of men to describe themselves in action

and the feedback loop can require a slow “trial and error” process when the algo-
rithm has to be tuned for a specific application. The machine learning community,
with significant influx from statistics, developed in the last decades a rich variety
of “design principles” that can be used to develop machine learning methods that
can be profitably used in the area of parameter tuning for heuristics. In this way
one eliminates the human intervention. This does not imply higher unemployment
rates for researchers. On the contrary, one is now loaded with a heavier task: The
algorithm developer must transfer his intelligent expertise into the algorithm itself,
a task that requires the exhaustive description of the tuning phase in the algorithm.
The algorithm complication will increase, but the price is worth paying if the two
following objectives are reached:

• Complete and unambiguous documentation. The algorithm becomes self-
contained and its quality can be judged independently from the designer or
specific user. This requirement is particularly important from the scientific point
of view, where objective evaluations are crucial. The recent introduction of soft-
ware archives further simplifies the test and simple reuse of heuristic algorithms.

• Automation. The time-consuming handmade tuning phase is now substituted by
an automated process. Let us note that only the final user will typically benefit
from an automated tuning process. On the contrary, the algorithm designer faces
a longer and harder development phase, with a possible preliminary phase of
exploratory tests, followed by the above described exhaustive documentation of
the tuning process when the algorithm is presented to the scientific community.

Reactive search advocates the integration of subsymbolic machine learning tech-
niques into search heuristics for solving complex optimization problems. The word
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Fig. 1.4 If algorithms have self-tuning capabilities, complex problem solving does not require
technical expertise but is available to a much wider community of final users. (Image courtesy of
Marco Dianti)

reactive hints at a ready response to events during the search through an internal
feedback loop for online self-tuning and dynamic adaptation. In reactive search the
past history of the search and the knowledge accumulated while moving in the con-
figuration space is used for self-adaptation in an autonomic manner: The algorithm
maintains the internal flexibility needed to address different situations during the
search, but the adaptation is automated, and executed while the algorithm runs on a
single instance and reflects on its past experience (Fig. 1.2).

Methodologies of interest for reactive search include machine learning and sta-
tistics, in particular reinforcement learning and neuro-dynamic programming, active
or query learning, and neural networks.

Intelligent optimization, a superset of reactive search, refers to a more extended
area of research, including online and offline schemes based on the use of memory,
adaptation, incremental development of models, experimental algorithmics applied
to optimization, intelligent tuning, and design of heuristics. In some cases the work
is at an upper level, where basic methods are properly guided and combined, and the
term metaheuristics has been proposed in the past. A problem with this term is that
the boundary signaled by the “meta” prefix is not always clear: In some cases the
intelligence is embedded and the term intelligent optimization underlines the holistic
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point of view concerned with complete systems rather than with their dissection into
parts (the basic components and the meta-level) (Fig. 1.3).

The metaphors for reactive search derive mostly from the individual human ex-
perience. Its motto can be “learning on the job.” Real-world problems have a rich
structure. While many alternative solutions are tested in the exploration of a search
space, patterns and regularities appear. The human brain quickly learns and drives
future decisions based on previous observations. This is the main inspiration source
for inserting online machine learning techniques into the optimization engine of re-
active search. Memetic algorithms share a similar focus on learning, although their
concentration is on cultural evolution, describing how societies develop over time,
more than on the capabilities of a single individual.

Nature and biology-inspired metaphors for optimization algorithms abound in
this time frame. It is to some degree surprising that most of them derive from genet-
ics and evolution, or from the emergence of collective behaviors from the interaction
of simple living organisms that are mostly hard-wired with little or no learning ca-
pabilities. One almost wonders whether this is related to ideological prejudices in
the spirit of Jean-Jacques Rousseau, who believed that man was good when in the
state of nature but is corrupted by society, or in the spirit of the “evil man against
nature.” But metaphors lead us astray from our main path: we are strong supporters
of a pragmatic approach, an algorithm is effective if it solves a problem in a com-
petitive manner without requiring an expensive tailoring, not because it corresponds
to one’s favorite elaborate, fanciful, or sexy analogies. Furthermore, at least for a
researcher, in most cases an algorithm is of scientific interest if there are ways to
analyze its behavior and explain why and when it is effective.

As a final curiosity, let us note that the term reactive as “readily responsive to a
stimulus” used in our context is not in contrast with proactive as “acting in anticipa-
tion of future problems, needs, or changes.” In fact, to obtain a reactive algorithm,
the designer needs to be proactive by appropriately planning modules into the al-
gorithm so that its capability of autonomous response increases. In other words,
reactive algorithms need proactive designers!

1.2 Book Outline

The book does not aim at a complete coverage of the widely expanding research
area of heuristics, metaheuristics, stochastic local search, etc. The task would be
daunting and bordering on the myth of Sisyphus, condemned by the gods to cease-
lessly rolling a rock to the top of a mountain, whence the stone would fall back of
its own weight. The rolling stones are in this case caused by the rapid development
of new heuristics for many problems, which would render a book obsolete after a
short span.

We aim at giving the main principles and at developing some fresh intuition for
the approaches. We like mathematics but we also think that hiding the underlying
motivations and sources of inspiration takes some color out of the scientific work
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(“Grau, teurer Freund, ist alle Theorie. Und grün des Lebens goldner Baum” – Gray,
my good friend, is all theory, and green is life’s own golden tree – Johann Wolfgang
von Goethe). On the other hand, pictures and hand-waving can be very dangerous
in isolation and we try to avoid these pitfalls by also giving the basic equations
when possible, or by at least directing the reader to the bibliographic references for
deepening a topic.

The point of view of the book is to look at the zoo of different optimization
beasts to underline opportunities for learning and self-tuning strategies. A leitmotiv
is that seemingly diverse approaches and techniques, when observed from a suffi-
ciently abstract point of view, show the deep interrelationships and unity, which is
characteristic of science.

The focus is definitely more on methods than on problems. We introduce some
problems to make the discussion more concrete or when a specific problem has been
widely studied by reactive search and intelligent optimization heuristics.

Intelligent optimization, the application of machine learning strategies in heuris-
tics is a very wide area, and the space in this book dedicated to reactive search
techniques (online learning techniques applied to search methods) is wider because
of personal interest. This book is mainly dedicated to local search and variations,
although similar reactive principles can be applied also for other search techniques
(for example, tree search).

The structure of most of the following chapters is as follows: (i) the basic issues
and algorithms are introduced, (ii) the parameters critical for the success of the dif-
ferent methods are identified, and (iii) opportunities and schemes for the automated
tuning of these parameters are presented and discussed.

Let us hit the road.



Chapter 2
Reacting on the Neighborhood

How many shoe-shops should one person visit before making
a choice?
There is not a single answer, please specify whether male
or female!
(An author of this book who prefers anonymity)

2.1 Local Search Based on Perturbations

A basic problem-solving strategy consists of starting from an initial tentative solu-
tion and trying to improve it through repeated small changes. At each repetition the
current configuration is slightly modified (perturbed), the function to be optimized
is tested, the change is kept if the new solution is better, otherwise another change is
tried. The function f (X) to be optimized is called with more poetic names in some
communities: fitness function, goodness function, objective function.

Figure 2.1 shows an example in the history of bike design. Do not expect histori-
cal fidelity here; this book is about algorithms! The first model is a starting solution
with a single wheel; it works but it is not optimal yet. The second model is a random-
ized attempt to add some pieces to the original designs, the situation is worse. One
could revert back to the initial model and start other changes. But let us note that,
if one insists and proceeds with a second addition, one may end up with the third
model, clearly superior from a usability and safety point of view! This real-life story
has a lesson: Local search by small perturbations is a tasty ingredient but additional
spices are in certain cases needed to obtain superior results. Let us note in passing
that everybody’s life is an example of an optimization algorithm in action: most of
the changes are localized; dramatic changes do happen, but not so frequently. The
punctilious reader may notice that the goodness function of our life is not so clearly
defined. To this we answer that this book is not about philosophy, let us stop here
with far-fetched analogies and go down to the nitty-gritty of the algorithms.

Local search based on perturbing a candidate solution is a first paradigmatic case
where simple learning strategies can be applied. Let us define the notation. X is
the search space, X (t) is the current solution at iteration (“time”) t. N(X (t)) is the
neighborhood of point X (t), obtained by applying a set of basic moves µ0,µ1, ...,µM
to the current configuration:

N(X (t)) = {X ∈ X such that X = µi(X (t)), i = 0, ...,M}

R. Battiti et al., Reactive Search and Intelligent Optimization, Operations 9
Research/Computer Science Interfaces Series 45, DOI 10.1007/978-0-387-09624-7 2,
c© Springer Science+Business Media LLC 2008
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Fig. 2.1 A local search example: How to build a better bike, from the initial model (left) to a worse
variation (middle), to the final and better configuration (right). (Image courtesy of Marco Dianti)

If the search space is given by binary strings with a given length L: X = {0,1}L,
the moves can be those changing (or complementing or flipping) the individual bits,
and therefore M is equal to the string length L.

Local search starts from an admissible configuration X (0) and builds a search
trajectory X (0), ...,X (t+1). The successor of the current point is a point in the neigh-
borhood with a lower value of the function f to be minimized. If no neighbor has
this property, i.e., if the configuration is a local minimizer, the search stops. Let us
note that maximization of a function f is the same problem as minimization of − f .
Like all symmetric situation, this one can create some confusion with the terminol-
ogy. For example, steepest descent assumes a minimizing point of view, while hill
climbing assumes the opposite point of view. In most of the book we will base the
discussion on minimization, and local minima will be the points that cannot be im-
proved by moving to one of their neighbors. Local optimum is a term that can be
used both for maximization and minimization.

Y ← IMPROVING-NEIGHBOR(N(X (t)) ) (2.1)

X (t+1) =
{

Y if f (Y ) < f (X (t))
X (t) otherwise (search stops)

(2.2)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a
simple case, this is the element with the lowest f value, but other possibilities exist,
as we will see in what follows.

Local search is surprisingly effective because most combinatorial optimization
problems have a very rich internal structure relating the configuration X and the
f value. The analogy when the input domain is given by real numbers in R

n is
that of a continuously differentiable function f (x) – continuous with continuous
derivatives. If one stays in the neighborhood, the change is limited by the maxi-
mum value of the derivative multiplied by the displacement. In more dimensions,


