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Preface

This collection contains invited papers by distinguished statisticians to
honour and acknowledge the contributions of Professor Dr. Dr. Helge
Toutenburg to Statistics on the occasion of his sixty-fifth birthday.
These papers present the most recent developments in the area of the
linear model and its related topics.

Helge Toutenburg is an established statistician and currently
a Professor in the Department of Statistics at the University of
Munich (Germany) and Guest Professor at the University of Basel
(Switzerland). He studied Mathematics in his early years at Berlin and
specialized in Statistics. Later he completed his dissertation (Dr. rer.
nat.) in 1969 on optimal prediction procedures at the University of
Berlin and completed the post-doctoral thesis in 1989 at the University
of Dortmund on the topic of mean squared error superiority. He taught
at the Universities of Berlin, Dortmund and Regensburg before joining
the University of Munich in 1991.

He has various areas of interest in which he has authored and
co-authored over 130 research articles and 17 books. He has made
pioneering contributions in several areas of statistics, including linear
inference, linear models, regression analysis, quality engineering,
Taguchi methods, analysis of variance, design of experiments, and
statistics in medicine and dentistry. His most influential contributions
are in the area of optimal prediction in linear models, mean squared
error superiority of biased estimators, weighted mixed estimation in
missing data analysis, repeated measures designs and the unification
of various parameterizations of the carry-over effect in cross-over
designs. His books Prediction and Improved Estimation in Linear
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Models (Wiley) and Prior Information in Linear Models (Wiley) laid
the foundations for further work in the field of utilization of prior
information as well as in the field of prediction. Other pioneering
works include Linear Models and Generalizations: Least Squares and
Alternatives (Springer) and Statistical Analysis of Designed Experi-
ments (Springer). His books in German on descriptive and inductive
statistics, quality engineering, design of experiments and linear models
are among the popular textbooks in several universities in Germany.
He has also translated the celebrated books of Professor C.R. Rao
into German. His book on statistics in dentistry is the first book in
German in this area.

Helge Toutenburg maintains fruitful research collaboration with
researchers in different countries like the USA, India, Korea, etc. He
has hosted DAAD and Humboldt fellows. He is not only a well known
researcher but also an excellent teacher. He has advised Ph.D. students
from germany and abroad. His efficient working style has always been
appreciated by those who had a chance to collaborate with him. He has
been actively associated with the International Statistical Institute,
Deutscher Hochschulverband, Deutsche Statistische Gesellschaft,
Biometrical Society and Bernoulli Society for Mathematical Statistics
and Probability.

Besides having a great interest in statistics, Helge Toutenburg has
a great sense of humor, too. He has written several books on humor in
German to the pleasure of his friends and colleagues.

This collection of invited papers brings together the recent deve-
lopments in the field of linear models and its related sub-fields as well
as papers from Helge Toutenburg‘s other areas of interest.

As the editors of this book, we would like to express our heart-
ful thanks to the authors whose contributions and commitment made
this book possible. We would like to thank Michael Schomaker for his
immense help in the editorial process and Valentin Wimmer for his
help in typing. We are also thankful to Dr. Müller of Springer for his
cooperation in the publication of this book.

Munich, Shalabh
June, 2008 Christian Heumann
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On the Identification of Trend and Correlation

in Temporal and Spatial Regression

Ludwig Fahrmeir1 and Thomas Kneib2

1 Department of Statistics, University of Munich, Ludwigstrasse 33, 80539
Munich, Germany ludwig.fahrmeir@stat.uni-muenchen.de

2 Department of Statistics, University of Munich, Ludwigstrasse 33, 80539
Munich, Germany thomas.kneib@stat.uni-muenchen.de

1 Introduction

In longitudinal or spatial regression problems, estimation of temporal
or spatial trends is often of primary interest, while correlation itself is
of secondary interest or is regarded as a nuisance component. In other
situations, the stochastic process inducing the correlation may be of
interest in itself. In this paper, we investigate for some simple time
series and spatial regression models, how well trend and correlation
can be separated if both are modeled in a flexible manner.

From a classical point of view, trends are considered as determinis-
tic unknown functions to be estimated from the data, whereas correla-
tion is thought to be generated from an unobservable, latent temporal
or spatial process. If the focus of statistical inference is on recovering
trends, then the latent error process is often only used to give some
guidance in choosing reasonable correlation functions to enhance qual-
ity of trend estimation. Even more, the derived correlation structure
may only be considered as working correlation such as in marginal mod-
els for longitudinal data, see e.g. Toutenburg (2003, Ch. 10) and the
references therein. To make the discussion concrete, let us consider a
simple nonparametric regression problem, where observations y(ti) on
a process {y(t), t ≥ 0} are available at time points t1 < . . . < tn, say.
The observable process is related to an unknown trend function f(t)
through the additive relation

y(ti) = f(ti) + ε(ti), i = 1, . . . , n , (1)

where ε(t), t ≥ 0 is an unobservable Gaussian error process with
marginal distributions ε(t) ∼ N(0, σ2). Defining the vectors y =
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(y(t1), . . . , y(tn))′, f = (f(t1), . . . , f(tn))′ and ε = (ε(t1), . . . , ε(tn))′,
we obtain the model in matrix notation as

y = f + ε, ε ∼ N(0, σ2R), (2)

where the correlation matrix R has elements rij = ρ(ε(ti), ε(tj)) with
some suitable correlation function ρ. In a purely parametric approach,
the trend function could be approximated as a linear combination

f(t) =

p∑
j=1

βjBj(t) (3)

of a few basis functions. To achieve optimality, the unknown coefficients
β = (β1, . . . , βp)

′ would then be estimated by minimizing a weighted
least squares criterion based on the ‘true’ correlation matrix R or a
consistent estimate R̂.

Simple parametric forms like (3) are often too restrictive, at least
prior to exploratory data analysis, for modelling trend functions. The
most popular nonparametric alternatives are basis function approaches
in combination with penalization, such as smoothing splines or penal-
ized splines, and kernel-based local regression techniques. In case of
i.i.d errors εt, where R = I, there is a close connection between both
concepts, see e.g. Fahrmeir and Tutz (2001, Ch. 5), and empirical expe-
rience shows that they often lead to rather comparable estimates from
a practical point of view.

It might intuitively be expected that this similarity in practical per-
formance transfers to the case of correlated error processes as long as a
good estimate of R is available. Surprisingly, this is not the case. Kohn,
Schimek and Smith (2000) point out some emerging yet different con-
sequences if correlation is neglected in estimation procedures, and they
suggest some remedies. Lin and Carroll (2000) show that common
kernel-based methods work best when correlation is neglected, i.e if
R = I is used as a working correlation matrix. Welsh, Lin and Car-
roll (2002) provide additional support for this result, but they also
confirm that efficient spline estimates are obtained when using the true
correlation structure. As a reaction to these somewhat surprising re-
sults, Wang (2003) and Linton, Mammen, Lin and Carroll (2004)
constructed modified kernel-based estimates which improve upon the
usual kernel estimates. Krivobokova and Kauermann (2007) investigate
penalized spline estimation for time series data within a mixed model
framework and provide some evidence that relatively robust nonpara-
metric estimates are obtained when smoothing parameters are cho-
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sen as restricted maximum likelihood estimates even if the correlation
structure is misspecified.

In this contribution we shed some further light on this puzzle from a
Bayesian perspective. We focus on approaches with Bayesian smoothing
priors for modeling trend functions, such as random walk models or ex-
tensions to Bayesian penalized (P-)splines. If the correlation-generating
error process has similar stochastic structure as the smoothing prior it
seems quite plausible that identifiability problems can arise. In partic-
ular, it can become difficult to separate trend from correlation. We first
exemplify this using a simple time series setting in Section 2. In Sec-
tion 3 we move on to the corresponding spatial situation, which arises
in geostatistics. Section 4 briefly points out extensions to the general
class of structured additive regression (STAR) models.

2 Trend and Correlation in Time Series Regression

Let us first revisit the classical smoothing problem already treated by
Whittaker (1923), which is closely related to the nonparametric re-
gression problem (2). Time series observations y(t) on an equidistant
grid of time points t = 1, . . . , n are assumed to be the sum

y(t) = f(t) + ε(t), t = 1, . . . , n (4)

of a smooth trend function f and an irregular noise component ε with
i.i.d. errors ε ∼ N(0, σ2). Whittaker suggested to estimate f by mini-
mizing the penalized least squares (PLS) criterion

PLS(f) =

n∑
t=1

(y(t) − f(t))2 + λ
n∑

t=d+1

(∆df(t))2 (5)

where λ is a given smoothing parameter, and the sum of (squared) first
(d = 1) or second (d = 2) order differences

∆1f(t) = f(t) − f(t− 1), ∆2f(t) = f(t) − 2f(t− 1) + 2f(t),

penalizes deviations from a horizontal or a straight line, respectively.
In matrix notation, the observation model becomes y = f + ε as in (2),
and the penalized least squares criterion (5) can be expressed as

PLS(f) = (y − f)′(y − f) + λf ′Kdf, (6)

with penalty matrix Kd, d = 1, 2, given by



4 Ludwig Fahrmeir and Thomas Kneib

Kd = D′
dDd (7)

where D1 and D2 are first and second order difference matrices, respec-
tively. It can be easily shown that

f̂ = (I + λKd)
−1y (8)

minimizes PLS(f). The (frequentist) covariance matrix of the PLS-
estimate is given by

Cov(f̂) = σ2(I + λKd)
−2 . (9)

The Bayesian version of the smoothing problem of Whittaker can be
formulated as a hierarchical model consisting of two stages. Assuming
i.i.d. Gaussian errors ε(t) ∼ N(0, σ2), the first stage is the observation
model

y|f ∼ N(f, σ2I).

The second stage specifies a smoothness prior for the unknown function,
more exactly for the vector f = (f(1), . . . , f(n))′ of function values.
The stochastic analogue of first or second order difference penalties are
random walk priors of first (RW (1)) or second (RW (2)) order

f(t) = f(t− 1) + u(t)

or

f(t) = 2f(t− 1) − f(t− 2) + u(t),

for the unknown function values. The errors u(t) are i.i.d. N(0, τ2)-
variables, where τ2 plays the role of an (inverse) smoothing parameter
allowing for larger or enforcing smaller deviations in the development
of f(t). Assuming diffuse priors for initial values, i.e.,

p(f(1)) ∝ constant

in case of first order random walks and

p(f(1)) ∝ constant, p(f(2)) ∝ constant

in case of second order random walks, the joint prior for the vector
f = (f(1), . . . , f(n))′ is multivariate Gaussian with density

p(f) ∝ exp

(
− 1

2τ2
f ′Kdf

)
(10)
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with precision matrix Kd given as in (7). Note that the random walk
smoothness priors are partially improper since Kd has rank n − d. It
can easily be shown that the posterior

p(f |y) ∝ p(y|f)p(f) (11)

is Gaussian with posterior mean

f̂ = E(f |y) = (I + λKd)
−1y, (12)

where the smoothing parameter λ = σ2/τ2 is defined as the noise-to-
signal ratio, i.e., the ratio of error variance and variance of the random
walk. The posterior covariance matrix is given by

Cov(f |y) = σ2(I + λKd)
−1.

Thus, the Bayesian posterior mean estimate and the frequentist PLS-
estimate coincide but the covariance matrices differ. To be more spe-
cific, the Bayesian posterior covariance matrix is larger (in terms of the
Löwner order) than its frequentist counter part.

Since the posterior p(f |y) is Gaussian, the posterior mean equals the
posterior mode, which is the maximizer of the right-hand side in (11).
Taking logarithms, it is straightforward to see that – up to a negative
constant factor – the penalized (log-)likelihood criterion

lpen(f) = log p(y|f) + log p(f)

is equal to the PLS criterion (6). This equivalence remains valid if
we assume that errors are correlated so that the observation model is
altered to

ε ∼ N(0, τ2R(α)), y|f ∼ N(f, σ2R(α))

with (nonsingular) covariance matrix R(α), where α parameterizes the
correlation structure. For example, the stochastic error process generat-
ing the correlation matrix might be a stationary autoregressive process
of first or second order, i.e.,

ε(t) = αε(t− 1) + u(t), |α| < 1,

ε(t) = α1ε(t− 1) + α2ε(t− 2) + u(t), |α2| < 1, |α1| < 1 + α2

with i.i.d. Gaussian variables u(t) ∼ N(0, σ2). The limiting cases α → 1
and α1 → 2, α2 → −1 lead to the (nonstationary) random walk models
RW (1) and RW (2), respectively. Defining suitable distributions for the
starting values, it can be shown that
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ε ∼ N(0, σ2K−1
d,α)

with (nonsingular) precision matrices

K1,α =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −α
−α 1 + α2 −α

. . .
. . .

. . .

−α 1 + α2 −α
−α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

K2,α =

⎛⎜⎜⎜⎜⎝
1 −α1 −α2 . . .

−α1 1 + α2
1 −α1(1 − α2) −α2 . . .

−α2 −α1(1 − α2) 1 + α2
1 + α2

2 −α1(1 − α2) −α2 . . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . . −α2 −α1(1 − α2) 1 + α2
1 + α2

2 −α1(1 − α2) −α2

. . . −α2 −α1(1 − α2) 1 + α2
1 −α1

. . . −α2 −α1 1

⎞⎟⎟⎟⎟⎠ .

In the limiting cases we obtain

lim
α→1

K1,α = K1, lim
α1→2,α2→−1

K2,α = K2,

i.e., the precision matrices of the corresponding random walks. For
simplicity, we only take a closer look at AR(1)-processes ε and RW (1)-
priors for f . Then, the PLS criterion (6) is replaced by the penalized
weighted least squares (PWLS) criterion

PWLS(f) = (y − f)′Kα(y − f) + λf ′K1f. (13)

The PWLS estimate is then given by

f̂α = (Kα + λK1)
−1Kαy. (14)

The corresponding Bayesian hierarchical model is now

y|f ∼ N(f, σ2K−1
α ),
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with the same Gaussian smoothness prior for f as in (10), with precision
matrix K1. The posterior p(f |y) is Gaussian, but now with posterior
mean

E(f |y) = f̂α = (Kα + λK1)
−1Kαy,

so that the equivalence of the frequentist and Bayesian point estimate
still holds. For α = 0, f̂α reduces to the unweighted PLS estimate (8).
For α close to 1, we may expect identification problems, since in the
limiting case α → 1, we get

Pα := Kα + λK1 → (1 + λ)K1,

where K1 is singular. These problems are reflected in the condition
number

κα =
λmax(Pα)

λmin(Pα)
,

where λmax(Pα) and λmin(Pα) denote the largest and the smallest eigen-
value of Pα, respectively. Note that Pα is also the Bayesian posterior
precision matrix of f̂ thereby providing a measure for the variability of
the estimate.

For large κα, inversion of Pα suffers from numerical instability as
exemplified in Figure 1 for n = 100 time points. For increasing values
of the autoregressive parameter α, the condition dramatically increases
regardless of the value of the smoothing parameter. Small values of
λ somewhat lower the effect, since the influence of K1 on Pα is re-
duced, but qualitatively the effect remains the same. Note also, that
the condition has been log-transformed in Figure 1 to enhance visibility.
Hence, the value 10, for example, corresponds to a condition number
of κα ≈ 22000.

The large condition number for values of α close to one reveals that
the nonparametric function f is not well separable from the correlation
and that, in particular, increasing variability of f̂ is observed for α → 1.
However, it seems plausible that we might still obtain a reasonable point
prediction for the response vector y. To investigate this conjecture more
closely, let us take a closer look at the behavior of the hat matrix P−1

α

projecting y on ŷ in the limiting case α → 1.
Therefore we rewrite P−1

α using the matrix inversion lemma Touten-
burg (2003, Theorem A.18) as

(Kα +D′
1λID1)

−1 = K−1
α −K−1

α D′
1

(
1

λ
I +D1K

−1
α D′

1

)−1

D1K
−1
α .
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Fig. 1. Condition number κα for varying values of the autoregressive para-
meter α and the smoothing parameter λ when the nonparametric effect is
modeled as first order random walk.

For α < 1, the matrix Kα is regular and its inverse is given by

K−1
α =

1

1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 . . . αn−1

α 1 α αn−2

...
. . .

. . .
. . .

...

αn−2 . . .
. . . α

αn−1 αn−2 . . . α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Straightforward calculations lead to the following expression for ŷ in
the limiting case α → 1:

ŷ = (Kα + λK1)
−1Kαy −→

α→1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 − η 0 . . . . . . 0 η

η 1 − 2η 0 . . . 0 η
...

. . .
...

η 0 . . . 1 − 2η η

η 0 . . . 0 1 − η

⎞⎟⎟⎟⎟⎟⎟⎟⎠
y,

i.e.,
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ŷ(t) =

⎧⎪⎨⎪⎩
(1 − η)y(1) + ηy(n) t = 1

ηy(1) + (1 − 2η)y(t) + ηy(n) 2 ≤ t ≤ n− 1

ηy(1) + (1 − η)y(n) t = n,

where η = 0.5λ/(1 + λ). Therefore the prediction for ŷ(t) is always
a weighted average of y(1), y(t) and y(n), with the influence of y(t)
depending on the smoothness parameter. For λ → ∞ (and η → 0.5
correspondingly), the influence of y(t) disappears and the overall pre-
diction is just the constant 0.5(y(1) + y(n)). In the contrary extreme
(λ→ 0 or η → 0) the prediction simply interpolates the observed time
series.

These considerations lead to the following interpretation: If we try
to estimate the trend while simultaneously accounting for correlation,
serious multicollinearity problems arise if α → 1 since both the error
term and the trend function follow the same stochastic structure. The
prediction ŷ is still well-behaved as a point estimate with meaning-
ful limiting cases as the smoothing parameter λ is varied. However,
the variability of both the estimate f̂ and therefore the prediction ŷ
dramatically increases when α → 1.

It seems that the multicollinearity problem arises because the ran-
dom walk smoothness prior for f and the stochastic process (10) for ε
become so similar with α approaching 1. We may expect less problems
with other priors for the trend which imply additional smoothness prop-
erties, e.g. for (Bayesian) penalized spline regression. Then we assume
that f(t) is (approximated as) a linear combination

f(t) =

p∑
j=1

βj B
l
j(t)

of B-splines of degree l, defined for an equidistant grid of knots on
the time axis. The vector f of function values can then be expressed
as f = Xβ, where the design matrix X has elements X[t, j] = Bl

j(t),
t = 1, . . . , n, and j = 1, . . . , p. To enforce smoothness, the B-spline
coefficient vector β obeys the same difference penalties or – in the
Bayesian version – random walk priors as before. A standard choice
are cubic B-splines and a RW (2)-prior. Then the observation model is

y ∼ N(Xβ, σ2K−1
d,α)

and the smoothness prior is Gaussian and of the form (10) again. As
before, the PWLS estimate and the posterior mean estimate coincide
and are given as
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Fig. 2. Condition number κα for varying numbers of knots when the non-
parametric effect is modeled as a cubic P-spline with second order difference
penalty.

β̂α = (X ′Kd,αX + λKd)
−1Kd,αy.

For the popular choice of cubic B-splines and a RW (2)-prior for
β, Figure 2 shows the condition number κα of the matrix Pα =
X ′KαX + K2 as a function of the number of knots and for different
values of α. Although the shape of the condition number is quite differ-
ent depending on the amount of correlation, all curves show the same
qualitative behavior of an increasing condition number for larger num-
bers of knots. Note also the different scaling of the graphics: For high
autoregressive correlation, the increase is much more dramatic than for
moderate and small correlation.

We now move on a bit further and consider observation models of
the form

y(t) = f(t) + ε(t) + δ(t), t = 1, . . . , n (15)

where, from a frequentist point of view, f(t) is a (deterministic) trend
function, ε(t) is a (stationary) stochastic process inducing temporal
correlation as before, and δ(t) are additional i.i.d. errors representing
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pure measurement noise. Models of this form are the time series version
of geostatistic (“kriging”) models considered in the next section and
allow for the estimation (or prediction) of both the trend function and
the correlated error component. Assuming Gaussian errors, we have

y = f + ε+ δ, δ ∼ N(0, ω2I)

in matrix notation. As before, we adopt a basis function approach and
approximate the trend through f = Xβ, while ε follows an AR(1)
or AR(2)-process with Cov(ε) = σ2K−1

d,α. If the primary interest is in
estimating f , inference will be based on the marginal distribution

y|f ∼ N(Xβ, σ2V −1
α )

where ε and δ are assumed to be independent, and

σ2V −1
α = σ2(K−1

α + ηI), η = ω2/σ2.

is the covariance matrix of ε+ δ.
The resulting PWLS estimate for β is

β̂α = (X ′VαX + λKd)
−1Vαy.

In the special case of B-splines of degree zero, corresponding to random
walk models, we have X = I and f = β, and it may again be interesting
to take a closer look at

f̂α = (Vα + λ1K1)
−1Vαy

in the limiting case α → 1.
Problems of (weak) identifiability become quite obvious from a

Bayesian perspective if we consider the conditional distribution of y,
given the trend f and the stochastic process ε generating correlation,
i.e.,

y|f, ε ∼ N(f + ε, σ2I),

with f = Xβ. This means, we attempt to separate observation y into
three components f, ε and δ differing only through their prior specifi-
cations. If the smoothness prior for f and the stochastic process prior
for ε have similar stochastic structure, then it will obviously be diffi-
cult to distinguish them given a finite sample of data y. Moreover, the
Bayesian interpretation also reveals, that trend and correlation are per
se connected quite closely. If long range correlation is present in the
data (corresponding to α ≈ 1 in the AR(1) example), these correlation
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will almost appear as a smooth trend in the data. Vice versa, wiggly
trends may be equivalently interpreted as some kind of shorter ranged
correlation. Compare also the simulation result at the very end of this
section.

Obviously, random walk models for f in combination with a station-
ary autoregressive process, where the parameters approach the bound-
ary of the stationary region, are a simple prototype for weak identifia-
bility. It is easily derived that the posterior p(f, ε|y) is Gaussian, and

the posterior mean estimates f̂ , ε̂ satisfies(
I + λ1Kd I

I I + λ2Kd,α

)(
f̂

ε̂

)
=

(
y

y

)
,

where λ1 = ω2/τ2, λ2 = ω2/σ2. In the limiting case α → 1 the matrix
becomes singular and an identifiability problem arises if we want to
separate f from ε. In the following we explore these (weak) identifiabil-
ity issues empirically through some simulation experiments, focussing
on the situation where time series data are generated from models of
the form (15), with

y(t) = sin(t) + ε(t) + δ(t), t = 1, . . . , 100,

and grid length ∆t = 0.25. We set σ2 = Var(ε(t)) = ω2 = Var(δ(t)) =
0.5, which is close to the empirical variance of the sine function, so that
all three components have about the same variability. All data sets were
generated for α = 0.3 (low correlation), α = 0.6 (medium correlation),
and α = 0.9 (strong correlation).

For estimation, the true trend was approximated through penalized
P-splines, varying the degree l of the spline functions, the smoothness
penalty (RW (1) or RW (2)) for B-spline coefficients, and the number
of knots. For each selected combination of α-values and B-spline tuning
parameters, 50 data sets were generated according to the specific model.
The models were fitted either with full Bayesian inference using MCMC
or empirical Bayesian inference using mixed model technology. These
inference techniques are described in Fahrmeir, Kneib and Lang (2004)
and Lang and Brezger (2004), and are implemented in the software
BayesX (Brezger, Kneib and Lang (2007)). For each data set, goodness
of fit was assessed through
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SQ(f) =
100∑
t=1

(f(t) − f̂(t))2,

SQ(ε) =
100∑
t=1

(ε(t) − ε̂(t))2,

SQ(y) =
100∑
t=1

(y(t) − ŷ(t))2,

and variability measured through

V S(f) =
100∑
t=1

Var(f̂(t)),

V S(ε) =
100∑
t=1

Var(ε̂(t)),

V S(y) =
100∑
t=1

Var(ŷ(t)).

Figures 3–6 display boxplots of these characteristics, resulting from
estimation with different combinations of α and B-splines for the 50
data sets, respectively.

These figures and additional ones in Eschrich (2007) provide the
following empirical evidence:

• With increasing correlation, quality of estimation of the components
f and ε decreases (Figure 3, c,e). In contrast, the predictions for the

response ŷ = f̂ + ε̂ for the sum remain comparably stable regardless
of the amount of correlation (Figure 3, a). This confirms the results
for increasing α that we discussed from a theoretical perspective
earlier in this section: While separation between f and ε proves to
be difficult, the overall fit remains well identified. Note that even
the variance of ŷ is relatively stable while variability of both f̂ and
ε̂ increases.

• Figure 4 investigates the dependence of the results on the number of
knots for the standard choice of cubic P-splines with RW (2)-priors,
corresponding to a rather smooth prior. In this case, results seem
to be rather insensitive to the number of knots, as opposed to what
might have been guessed from the condition number displayed in
Figure 2. For the goodness of fit measures SQ(f) and SQ(ε), we
even obtain improved results for an increased number of knots and
therefore a better separation of trend and correlation.
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Fig. 3. Goodness of fit and variability measures for varying values of the
autoregressive parameter α. The nonparametric effect is modeled as a cubic
P-spline with second order random walk penalty and 40 knots.

• In contrast, if the prior for the nonparametric trend does not enforce
smoothness but is closer to the AR(1)-process results are qualita-
tively different. Figures 5 and 6 show results for zero degree P-
splines and a high amount of correlation for the autoregressive com-
ponent. When varying the number of knots (Figure 5), both the fit
of the nonparametric effect and the autoregressive component wors-



Trend and Correlation in Temporal and Spatial Regression 15

20
30

40
50

60
 

40 60 80 100

(a) SQ(y)

0
10

20
30

40
 

40 60 80 100

(b) VS(y)
20

40
60

80
 

40 60 80 100

(c) SQ(f)

20
40

60
80

10
0

 

40 60 80 100

(d) VS(f)

40
60

80
10

0
12

0
 

40 60 80 100

(e) SQ(AR)

20
40

60
80

10
0

 

40 60 80 100

(f) VS(AR)

Fig. 4. Goodness of fit and variability measures for varying numbers of knots
for the nonparametric effect. The autoregressive parameter is fixed at α = 0.6
and the nonparametric effect is modeled as a cubic P-spline with second order
random walk penalty.

ens, while the overall fit remains roughly the same. When comparing
RW (1) and RW (2) priors for the nonparametric effect, identifica-
tion somewhat worsens for the first order random walk, which is
closer to the AR(1)-process than the RW (2) prior (Figure 6). Over-
all, as expected, the worst choice in terms of identifiability is a zero
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Fig. 5. Goodness of fit and variability measures for varying numbers of knots
for the nonparametric effect. The autoregressive parameter is fixed at α = 0.9
and the nonparametric effect is modeled as a piecewise constant P-spline with
first order random walk penalty.

degree P-spline with random walk of first order as smoothness prior
for the trend and a large number of knots.

For the results presented so far, both the autoregressive error ε(t)
and the independent error δ(t) have been generated anew in each simu-
lation run. To be able to derive mean estimates averaged over the simu-
lation runs, we repeated parts of the simulations with a fixed sequence
of autoregressive errors (but still with varying independent errors, of
course). Figure 7 shows one exemplary result from these simulations,
where the nonparametric effect is modeled as a cubic P-spline with
20 knots and second order random walk penalty. The autocorrelation
parameter is fixed at the high value, such that the generated autocor-
related error varies relatively slowly as time progresses. Therefore a
large fraction of the autoregressive process is absorbed by the nonpara-
metric effect and the original sine curve as well as the autoregressive
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Fig. 6. Goodness of fit and variability measures for varying specifications of
the prior for the nonparametric effect. The autoregressive parameter is fixed
at α = 0.9 and the nonparametric effect is modeled as a piecewise constant
P-spline with 100 knots.

component are not very well identified. This again indicates, that trend
estimation and modelling of correlation are not opponent concepts but
overlapping areas of statistical inference.

3 Spatial Correlation

The modelling approaches for nonparametric trend estimation and tem-
poral correlation considered in the previous section can be extended to
estimation of spatial surfaces while simultaneously taking into account
spatial correlation. Therefore we replace the univariate temporal model
(15) with the bivariate spatial model

y(s) = f(s) + ε(s) + δ(s)

where s = (sx, sy) ∈ S ⊂ R
2 represents continuous coordinates in

some suitable spatial region S, f(s) models a smooth spatial trend


