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Preface
The use of biomolecular systems for processing
information, performing logic operations, computational
operations, and even automata performance is a rapidly
developing research area. The entire field was named with
the general buzzwords, “biomolecular computing” or
“biocomputing.” Exciting advances in the area include the
use of various biomolecular systems including
proteins/enzymes, DNA, RNA, DNAzymes,
antigens/antibodies, and even whole biological (usually
microbial) cells operating as “hardware” for
unconventional computing. The present book concentrates
on DNA and RNA molecules utilized for information
processing (biocomputing). Extensive ongoing research in
the DNA‐ and RNA‐based biocomputing has been motivated
by speeding up computation, at least for solving some
special problems, due to massive parallel operation of
numerous biomolecules. The advantages of the DNA and
RNA computing systems are also in their ability to operate
in a biological environment for solving biomedical problems
in terms of diagnostics and possibly therapeutic action,
operating as nanorobots in living organisms. DNA
molecules are also applicable as memory material with
extremely high data density storage.
The present book summarizes research efforts of many
groups in different universities and countries. The book
reviews and exemplifies these developments, as well as
offering an outlook for possible future research foci. The
various topics covered highlight key aspects and the future
perspectives of the DNA‐ and RNA‐based computing. The
different topics addressed in this book will be of high
interest to the interdisciplinary community active in the



area of unconventional biocomputing. The readers can find
additional complementary material on molecular [1],
biomolecular [2], and enzyme‐based [3] computing
published recently by Wiley‐VCH (see book cover pages
below). It is hoped that the present book will be important
and beneficial for researchers and students working in
various areas related to biochemical computing, including
biochemistry, materials science, computer science, and so
on. Furthermore, the book is aimed to attract young
scientists and introduce them to the field while providing
newcomers with an enormous collection of literature
references. I, indeed, hope that the book will spark the
imagination of scientists to further develop the topic.
I would like to conclude this preface by thanking my wife
Nina for her support in every respect in the past 49  years.
Without her help it would not have been possible to
complete this work. Also, cooperation and hard work of all
authors working together with me on this edited volume
are highly appreciated.

Potsdam, NY, USA

January 2020

Evgeny Katz
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1
DNA Computing: Origination,
Motivation, and Goals – Illustrated
Introduction

Evgeny Katz
Clarkson University, Department of Chemistry and
Biomolecular Science, Potsdam, NY, 13699, USA

1.1 Motivation and Applications
Exponential development of computing systems based on
silicon materials and binary algorithms formulated as
“Moore's law” [1] (Figure 1.1) is coming to the end being
limited by further component miniaturization and by the
speed of operation. Conceptually novel ideas are needed to
break through these limitations. The quest for novel ideas
in the information processing has resulted in several
exciting directions in the general area of unconventional
computing [2–4], including research in quantum computing
[5] and biologically inspired molecular computing [6–9].
Molecular computing systems, generally motivated by
mimicking natural biological information processing
[10,11], are not necessarily based on biomolecules and
could be represented by synthetic molecules with signal‐
controlled switchable properties. Synthetic molecular
systems and nano‐species have been designed to mimic
operation of Boolean logic gates and demonstrate basic
arithmetic functions and memory units. However, despite
progress achieved in assembling synthetic molecular
systems performing basic Boolean operations and simple
computations [6–9], these systems have limited complexity,
and further increase of their complexity is very challenging.



A new advance in the development of molecular
information systems has been achieved with use of
biomolecular species [12] (Figure 1.2) such as
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
[13–16], oligopeptides [17], proteins [18], enzymes
[2,19,20], antigens/antibodies [21], and even whole
biological cells/organisms [22–24] capable of operating in a
biological environment [25], borrowing some ideas from
systems biology [26]. The advantage of the biomolecular
computing systems is their ability to be integrated in
artificially designed complex reacting processes mimicking
multistep information processing networks. These systems
are still far away from the natural information processing
in cells but are already much more complex than pure
synthetic molecular systems. In fact, biochemical reactions
are at the core of the mechanism of life itself, and therefore
one could set rather ambitious expectations for how far can
(bio)chemical reaction systems be scaled up in complexity,
if not speed, for information processing. While in a long
perspective a “biocomputer” might become a reality [27],
particularly for some special applications, e.g., for solving
complex combinatorial problems [28], potentially promising
to have an advantage over silicon‐based electronic
computers due to parallel computing performed by
numerous biomolecular units, the present level of
technology does not allow any practical use of biomolecular
systems for real computational applications. For achieving
any practical result soon, some other applications, different
from making a biocomputer, should be considered using the
(bio)molecular systems with a limited complexity. One of
the immediate possible applications for molecular logic
systems is a special kind of biosensing [29–31] where the
multiple input signals are logically processed through
chemical reactions resulting in YES/NO decisions in the
binary (0,1) format. In this subarea of biomolecular logic
systems, practical results are already possible at the



present level of the system complexity, particularly for
biomedical applications [32–35]. Overall, the research in
molecular/biomolecular information processing, which has
been motivated originally to progress unconventional
computing applications, is broadly developing to areas not
directly related to computing in its narrow definition. This
research is bringing us to novel areas in sensing/biosensing
[29–31], switchable “smart” materials controlled by
logically processed signals [32–36], bioelectronic devices
(e.g., biofuel cells) controlled by external signals [37,38],
signal‐controlled release processes [39–43], etc.

Figure 1.1 Moore's law – exponential increase of transistors
on integrated circuit chips. (The plot shown in the figure is
based on the data provided by Wikipedia:
https://en.wikipedia.org/wiki/Moore%27s_law.)

Source: From Katz [2]. Reprinted with the permission of John Wiley and
Sons.

https://en.wikipedia.org/wiki/Moore%27s_law


Figure 1.2 Biomolecular computing systems mimicking
operation of different Boolean logic gates and circuitries
can be based on various species including oligopeptides,
enzymes/proteins, DNA/RNA, antibodies, and even whole
biological (e.g., microbial) cells.

Source: From Katz 2019 [2], Boolean Logic Gates Realized with Enzyme‐
Catalyzed Reactions – Unusual Look at Usual Chemical Reactions.
ChemPhysChem © 2018. Reproduced with the permission of John Wiley &
Sons.

1.2 DNA‐ and RNA‐Based
Biocomputing Systems in Progress
While the general topics of the biomolecular computing
[12] and specifically the enzyme‐based computing [44] have
been covered with recently published books, the present
book is concentrated on the use of DNA and RNA molecules
in computing systems, broadly defined as information
processing systems. From the time (1953) when James D.
Watson and Francis H.C. Crick (Figure 1.3) discovered
chemical structure of DNA (Figure 1.4) [45], the progress
in the DNA study resulted in many novel fundamental
scientific concepts [46–48] and highly important practical


