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Preface

Another advantage of a mathematical statement is
that it is so definite that it might be definitely wrong. . .
Some verbal statements have not this merit.

L.F. Richardson (1881–1953)

Many interesting problems in mathematical fluid mechanics involve the behavior
of solutions to systems of nonlinear partial differential equations as certain param-
eters vanish or become infinite. Frequently the solutions converge, provided the
limit exists, to a solution of a limit problem represented by a qualitatively different
system of differential equations. The simplest physically relevant example of this
phenomenon is the behavior of a compressible fluid flow in the situation when the
Mach number tends to zero, where the limit solution formally satisfies a system
describing the motion of an incompressible fluid. Other interesting phenomena
occur in the equations of magnetohydrodynamics, when either the Mach or the
Alfven number, or both, tend to zero. As a matter of fact, most, if not all mathe-
matical models used in fluid mechanics rely on formal asymptotic analysis of more
complex systems. The concept of incompressible fluid itself should be viewed as a
convenient idealization of a medium in which the speed of sound dominates the
characteristic velocity.

Singular limits are closely related to scale analysis of differential equations.
Scale analysis is an efficient tool used both theoretically and in numerical experi-
ments to reduce the undesirable and mostly unnecessary complexity of investigated
physical systems. The simplified asymptotic limit equations may provide a deeper
insight into the dynamics of the original, mathematically more complicated, sys-
tem. They reduce considerably the costs of computations, or offer a suitable alter-
native in the case when these fail completely or become unacceptably expensive
when applied to the original problem. However, we should always keep in mind
that these simplified equations are associated with singular asymptotic limits of
the full governing equations, this fact having an important impact on the behavior
of their solutions, for which degeneracies as well as other significant changes of the
character of the governing equations become imminent.

Despite the vast amount of existing literature, most of the available studies
devoted to scale analysis are based on formal asymptotic expansion of (hypothet-
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ical) solutions with respect to one or several singular parameters. Although this
might seem wasted or at least misguided effort from the purely theoretical point
of view, such an approach proved to be exceptionally efficient in real world ap-
plications. On the other hand, progress at the purely theoretical level has been
hampered for many years by almost complete absence of a rigorous existence the-
ory that would be applicable to the complex nonlinear systems arising in math-
ematical fluid dynamics. Although these problems are essentially well posed on
short time intervals or for small, meaning close to equilibrium states, initial data,
a universal existence theory is still out of reach of modern mathematical methods.
Still, understanding the theoretical aspects of singular limits in systems of partial
differential equations in general, and in problems of mathematical fluid mechanics
in particular, is of great interest because of its immediate impact on the develop-
ment of the theory. Last but not least, a rigorous identification of the asymptotic
problem provides a justification of the mathematical model employed.

The concept of weak solution based on direct integral formulation of the un-
derlying physical principles provides the only available framework for studying the
behavior of solutions to problems in fluid mechanics in the large. The class of weak
solutions is reasonably wide in order to accommodate all possible singularities that
may develop in a finite time because of the highly nonlinear structures involved.
Although optimality of this class of solutions may be questionable and still not
completely accepted by the whole community, we firmly believe that the mathe-
matical theory elaborated in this monograph will help to promote this approach
and to contribute to its further development.

The book is designed as an introduction to problems of singular limits and
scale analysis of systems of differential equations describing the motion of com-
pressible, viscous, and heat conducting fluids. Accordingly, the primitive problem
is always represented by the Navier-Stokes-Fourier System of equations gov-
erning the time evolution of three basic state variables: the density, the velocity,
and the absolute temperature associated to the fluid. In addition we assume the
fluid is linearly viscous, meaning the viscous stress is determined through New-
ton’s rheological law, while the internal energy flux obeys Fourier’s law of heat
conduction. The state equation is close to that of a perfect gas, at least for mod-
erate values of density and temperature. General ideas as well as the variational
formulation of the problem based on a system of integral identities rather than
partial differential equations are introduced and properly motivated in Chapter 1.

Chapters 2, 3 contain a complete existence theory for the full Navier-Stokes-
Fourier system without any essential restriction imposed on the size of the data
as well as the length of the existence interval. The ideas developed in this part are
of fundamental importance for the forthcoming analysis of singular limits.

Chapter 4 resumes the basic concepts and methods to be used in the study
of singular limits. The underlying principle used amply in all future considera-
tions is a decomposition of each quantity as a sum of its essential part, relevant
in the limit system, and a residual part, where the latter admits uniform bounds
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induced by the available a priori estimates and vanishes in the asymptotic limit.
This chapter also reveals an intimate relation between certain results obtained in
this book and the so-called Lighthill’s Acoustic Analogy used in numerous
engineering applications.

Chapter 5 gives a comprehensive treatment of the low Mach number limit for
the Navier-Stokes-Fourier system in the regime of low stratification, that means,
the Froude number is strongly dominated by the Mach number. As a limit sys-
tem, we recover the well-known Oberbeck-Boussinesq Approximation widely
used in many applications. Remarkably, we establish uniform estimates of the set
of weak solutions of the primitive system derived by help of the so-called dissi-
pation inequality. This can be viewed as a direct consequence of the Second Law
of Thermodynamics expressed in terms of the entropy balance equation, and the
hypothesis of thermodynamic stability imposed on the constitutive relations. Con-
vergence toward the limit system in the field equations is then obtained by means
of the nowadays well-established technique based on compensated compactness.
Another non-standard aspect of the analysis is a detailed description of propaga-
tion of the acoustic waves that arise as an inevitable consequence of ill-prepared
initial data. In contrast with all previous studies, the underlying acoustic equation
is driven by an external force whose distribution is described by a non-negative
Borel measure. This is one of the intrinsic features encountered in the framework
of weak solutions, where a piece of information concerning energy transfer through
possible singularities is lost.

Chapter 6 is primarily concerned with the strongly stratified fluids arising in
astrophysics and meteorology. The central issue discussed here is anisotropy of the
propagation of sound waves resulting from the strong stratification imposed by the
gravitational field. Accordingly, the asymptotic analysis of the acoustic waves must
be considerably modified in order to take into account the dispersion effects. As
a model example, we identify the asymptotic system proposed by several authors
as a suitable Model of Stellar Radiative Zones.

Most wave motions, in particular the sound waves propagation examined in
this book, are strongly influenced by the effect of the boundary of the underlying
physical space. If viscosity is present, a strong attenuation of sound waves is ex-
pected, at least in the case of the so-called no-slip boundary conditions imposed on
the velocity field. These phenomena are studied in detail in Chapter 7. In particu-
lar, it is shown that under certain geometrical conditions imposed on the physical
boundary, the convergence of the velocity field in the low Mach number regime is
strong, meaning free of time oscillations. Although our approach parallels other
recent studies based on boundary layer analysis, we tried to minimize the num-
ber of necessary steps in the asymptotic expansion to make it relatively simple,
concise, and applicable without any extra effort to a larger class of problems.

Another interesting aspect of the problem arises when singular limits are
considered on large or possibly even unbounded spatial domains, where “large”
is to be quantified with regard to the size of other singular dimensionless param-
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eters. Such a situation is examined in Chapter 8. It is shown that the acoustic
waves redistribute rapidly the energy and, leaving any fixed bounded subset of
the physical space during a short time as the speed of sound becomes infinite,
render the velocity field strongly (pointwise) convergent. Although the result is
formally similar to those achieved in Chapter 7, the methods are rather different
based on dispersive estimates of Strichartz type and finite speed of propagation
for the acoustic equation.

Chapter 9 interprets the results on singular limits in terms of the acoustic
analogies used frequently in numerical analysis. We identify the situations where
these methods are likely to provide reliable results and point out their limitations.
Our arguments here rely on the uniform estimates obtained in Chapter 5.

The book is appended by two supplementary parts. In order to follow the
subsequent discussion, the reader is recommended first to turn to the preliminary
chapter, where the basic notation, function spaces, and other useful concepts,
together with the fundamental mathematical theorems used in the book, are re-
viewed. The material is presented in a concise form and provided with relevant
references when necessary. Appendix (Chapter 10) provides for reader’s conve-
nience some background material, with selected proofs, of more advanced but
mostly standard results widely applicable in the mathematical theory of viscous
compressible fluids in general, and, in the argumentation throughout this mono-
graph, in particular. Besides providing a list of the relevant literature, Appendix
offers a comprehensive and self-contained introduction to various specific recent
mathematical tools designed to handle the problems arising in the mathematical
theory of compressible fluids. As far as these results are concerned, the proofs are
performed in full detail.

Since the beginning of this project we have greatly profited from a number
of seminal works and research studies. Although the most important references
are included directly in the text of Chapters 1–10, Chapter 11 is designed to take
the reader through the available literature on the topics addressed elsewhere in
the book. In particular, a comprehensive list of reference material is given, with a
clear indication of the corresponding part discussed in the book. The reader is en-
couraged to consult these resources, together with the references cited therein, for
a more complex picture of the problem as well as a more comprehensive exposition
of some special topics.

The authors sincerely appreciate all who have offered comments and criti-
cisms concerning the content of this book, in particular, many thanks go to Gio-
vanni P. Galdi for many fruitful discussions, and to Jan Březina, Petr Kaplický,
Josef Málek, William Layton, Šárka Nečasová, Hana Petzeltová, Milan Pokorný,
Dalibor Pražák, Jan Stebel, and Ivan Straškraba for careful reading of several
chapters of the manuscript.

Eduard Feireisl and Antońın Novotný
Praha and Toulon, September 2008
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Notation, Definitions,
and Function Spaces

0.1 Notation

Unless otherwise indicated, the symbols in the book are used as follows:

(i) The symbols const, c, ci denote generic constants, usually found in inequali-
ties. They do not have the same value when used in different parts of the text.

(ii) Z, N, and C are the sets of integers, positive integers, and complex num-
bers, respectively. The symbol R denotes the set of real numbers, RN is the N -
dimensional Euclidean space.

(iii) The symbol Ω ⊂ RN stands for a domain – an open connected subset of RN .
The closure of a set Q ⊂ RN is denoted by Q, its boundary is ∂Q. By the symbol
1Q we denote the characteristic function of the set Q. The outer normal vector to
∂Q, if it exists, is denoted by n.

The symbol T N denotes the flat torus,

T N =
(
[−π, π]|{−π;π}

)N = (R|2πZ)N

considered as a factor space of the Euclidean space RN , where x ≈ y whenever
all coordinates of x differ from those of y by an integer multiple of 2π. Functions
defined on T N can be viewed as 2π-periodic in RN .

The symbol B(a; r) denotes an (open) ball in RN of center a ∈ RN and
radius r > 0.

(iv) Vectors and functions ranging in a Euclidean space are represented by sym-
bols beginning by a boldface minuscule, for example u, v. Matrices (tensors) and
matrix-valued functions are represented by special Roman characters such as S,
T, in particular, the identity matrix is denoted by I = {δi,j}N

i,j=1. The symbol I is
also used to denote the identity operator in a general setting.
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The transpose of a square matrix A = {ai,j}N
i,j=1 is AT = {aj,i}N

i,j=1. The
trace of a square matrix A = {ai,j}N

i,j=1 is trace[A] =
∑N

i=1 ai,i.

(v) The scalar product of vectors a = [a1, . . . , aN ], b = [b1, . . . , bN ] is denoted by

a · b =
N∑

i=1

aibi,

the scalar product of tensors A = {Ai,j}N
i,j=1, B = {Bi,j}N

i,j=1 reads

A : B =
N∑

i,j=1

Ai,jBj,i.

The symbol a ⊗ b denotes the tensor product of vectors a, b, specifically,

a ⊗ b = {a⊗ b}i,j = aibj .

The vector product a × b is the antisymmetric part of a ⊗ b. If N = 3, the
vector product of vectors a = (a1, a2, a3), b = (b1, b2, b3) is identified with a vector

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The product of a matrix A with a vector b is a vector Ab whose components
are

[Ab]i =
N∑

j=1

Ai,jbj for i = 1, . . . , N,

while the product of a matrix A = {Ai,j}N,M
i,j=1 and a matrix B = {Bi,j}M,S

i,j=1 is a
matrix AB with components

[AB]i,j =
M∑

k=1

Ai,kBk,j .

(vi) The Euclidean norm of a vector a ∈ RN is denoted by

|a| =
√

a · a =

√√√√ N∑
i=1

a2
i .

The distance of a vector a to a set K ⊂ RN is denoted as

dist[a, K] = inf{|a − k| | k ∈ K},
and the diameter of K is

diam[K] = sup
(x,y)∈K2

|x − y|.

The closure of K is denoted by closure[K], the Lebesgue measure of a set Q is |Q|.
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0.2 Differential operators

The symbol

∂yig(y) ≡ ∂g

∂yi
(y), i = 1, . . . , N,

denotes the partial derivative of a function g = g(y), y = [y1, . . . , yN ], with respect
to the (real) variable yi calculated at a point y ∈ RN . The same notation is used for
distributional derivatives introduced below. Typically, we consider functions g =
g(t, x) of the time variable t ∈ (0, T ) and the spatial coordinate x = [x1, x2, x3] ∈
Ω ⊂ R3. We use italics rather than boldface minuscules to denote the independent
variables, although they may be vectors in many cases.

(i) The gradient of a scalar function g = g(y) is a vector

∇g = ∇yg = [∂y1g(y), . . . , ∂yN g(y)];

∇T g denotes the transposed vector to ∇g.
The gradient of a scalar function g = g(t, x) with respect to the spatial

variable x is a vector

∇xg(t, x) = [∂x1g(t, x), ∂x2g(t, x), ∂x3g(t, x)].

The gradient of a vector function v = [v1(y), . . . , vN (y)] is the matrix

∇v = ∇yv = {∂yj vi}N
i,j=1;

∇T v denotes the transposed matrix to ∇v. Similarly, the gradient of a vector
function v = [v1(t, x), v2(t, x), v3(t, x)] with respect to the space variables x is the
matrix

∇xv(t, x) = {∂xj vi(t, x)}3
i,j=1.

(ii) The divergence of a vector function v = [v1(y), . . . , vN (y)] is a scalar

divv = divyv =
N∑

i=1

∂yivi.

The divergence of a vector function depending on spatial and temporal variables
v = [v1(t, x), v2(t, x), v3(t, x)] with respect to the space variable x is a scalar

divxv(t, x) =
3∑

i=1

∂xivi(t, x).

The divergence of a tensor (matrix-valued) function B = {Bi,j(t, x)}3
i,j=1 with

respect to the space variable x is a vector

[divB]i = [divxB(t, x)]i =
3∑

j=1

∂xj Bi,j(t, x), i = 1, . . . , 3.
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(iii) The symbol Δ = Δx denotes the Laplace operator ,

Δx = divx∇x.

(iv) The vorticity (rotation) curl of a vectorial function v = [v1(y), . . . , vN (y)] is
an antisymmetric matrix

curl v = curlyv = ∇v −∇T v =
{
∂yj vi − ∂yivj

}N

i,j=1
.

The vorticity of a vectorial function v = [v1(t, x), . . . , v3(t, x)] is an antisym-
metric matrix

curlxv = ∇xv −∇T
x v =

{
∂xj vi − ∂xivj

}3

i,j=1
.

The vorticity operator in R3 is sometimes interpreted as a vector curl v = ∇x×v.

(v) For a surface S ⊂ R3, with an outer normal n, we introduce the normal
gradient of a scalar function g : G → R3 defined on an open set G ⊂ R3 containing
S as

∂ng = ∇xg · n,

and the tangential gradient as

[∂S ]ig = ∂xig − (∇xg · n)ni, i = 1, 2, 3.

The Laplace-Beltrami operator on S is defined as

Δsg =
3∑

i=1

[∂S ]i[∂S ]ig

(see Gilbarg and Trudinger [96, Chapter 16]).

0.3 Function spaces

If not otherwise stated, all function spaces considered in this book are real. For a
normed linear space X , we denote by ‖ · ‖X the norm on X . The duality pairing
between an abstract vector space X and its dual X∗ is denoted as 〈·; ·〉X∗;X , or
simply 〈·; ·〉 in case the underlying spaces are clearly identified in the context. In
particular, if X is a Hilbert space, the symbol 〈·; ·〉 denotes the scalar product
in X .

The symbol span{M}, where M is a subset of a vector space X , denotes the
space of all finite linear combinations of vectors contained in M .
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(i) For Q ⊂ RN , the symbol C(Q) denotes the set of continuous functions on
Q. For a bounded set Q, the symbol C(Q) denotes the Banach space of functions
continuous on the closure Q endowed with norm

‖g‖C(Q) = sup
y∈Q

|g(y)|.

Similarly, C(Q; X) is the Banach space of vectorial functions continuous in Q and
ranging in a Banach space X with norm

‖g‖C(Q) = sup
y∈Q

‖g(y)‖X .

(ii) The symbol Cweak(Q; X) denotes the space of all vector-valued functions on
Q ranging in a Banach space X continuous with respect to the weak topology.
More specifically, g ∈ Cweak(Q; X) if the mapping y → ‖g(y)‖X is bounded and

y → 〈f ; g(y)〉X∗;X

is continuous on Q for any linear form f belonging to the dual space X∗.
We say that gn → g in Cweak(Q; X) if

〈f ; gn〉X∗;X → 〈f ; g〉X∗;X in C(Q) for all g ∈ X∗.

(iii) The symbol Ck(Q), Q ⊂ RN , where k is a non-negative integer, denotes the
space of functions on Q that are restrictions of k-times continuously differentiable
functions on RN . Ck,ν(Q), ν ∈ (0, 1) is the subspace of Ck(Q) of functions having
their k-th derivatives ν-Hölder continuous in Q. Ck,1(Q) is a subspace of Ck(Q)
of functions whose k-th derivatives are Lipschitz on Q. For a bounded domain Q,
the spaces Ck(Q) and Ck,ν(Q), ν ∈ (0, 1] are Banach spaces with norms

‖u‖Ck(Q) = max
|α|≤k

sup
x∈Q

|∂αu(x)|

and
‖u‖Ck,ν(Q) = ‖u‖Ck(Q) + max

|α|=k
sup

(x,y)∈Q2, x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ν ,

where ∂αu stands for the partial derivative ∂α1
x1

. . . ∂αN
xN

u of order |α| =
∑N

i=1 αi.
The spaces Ck,ν(Q; RM ) are defined in a similar way. Finally, we set C∞ =
∩∞

k=0C
k.

(iv)

� Arzelà-Ascoli Theorem:

Theorem 0.1. Let Q ⊂ RM be compact and X a compact topological metric space
endowed with a metric dX . Let {vn}∞n=1 be a sequence of functions in C(Q; X)
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that is equi-continuous, meaning, for any ε > 0 there is δ > 0 such that

dX

[
vn(y), vn(z)

]
≤ ε provided |y − z| < δ independently of n = 1, 2, . . . .

Then {vn}∞n=1 is precompact in C(Q; X), that is, there exists a subsequence
(not relabeled) and a function v ∈ C(Q; X) such that

sup
y∈Q

dX

[
vn(y), v(y)

]
→ 0 as n → ∞.

See Kelley [119, Chapter 7, Theorem 17]. �

(v) For Q ⊂ RN an open set and a function g : Q → R, the symbol supp[g]
denotes the support of g in Q, specifically,

supp[g] = closure [{y ∈ Q | g(y) �= 0}] .

(vi) The symbol Ck
c (Q; RM ), k ∈ {0, 1, . . . ,∞} denotes the vector space of func-

tions belonging to Ck(Q; RM ) and having compact support in Q. If Q ⊂ RN is an
open set, the symbol D(Q; RM ) will be used alternatively for the space C∞

c (Q; RM )
endowed with the topology induced by the convergence:

ϕn → ϕ ∈ D(Q) if supp[ϕn] ⊂ K, K ⊂ Q a compact set,

ϕn → ϕ in Ck(K) for any k = 0, 1, . . . .
(1)

We write D(Q) instead of D(Q; R).
The dual space D′(Q; RM ) is the space of distributions on Ω with values in

RM . Continuity of a linear form belonging to D′(Q) is understood with respect to
the convergence introduced in (1).

(vii) A differential operator ∂α of order |α| can be identified with a distribution

〈∂αv; ϕ〉D′(Q);D(Q) = (−1)|α|
∫

Q

v∂αϕ dy

for any locally integrable function v.

(viii)The Lebesgue spaces Lp(Q; X) are spaces of (Bochner) measurable functions
v ranging in a Banach space X such that the norm

‖v‖p
Lp(Q;X) =

∫
Q

‖v‖p
X dy is finite, 1 ≤ p < ∞.

Similarly, v ∈ L∞(Q; X) if v is (Bochner) measurable and

‖v‖L∞(Q;X) = ess sup
y∈Q

‖v(y)‖X < ∞.
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The symbol Lp
loc(Q; X) denotes the vector space of locally Lp-integrable func-

tions, meaning

v ∈ Lp
loc(Q; X) if v ∈ Lp(K; X) for any compact set K in Q.

We write Lp(Q) for Lp(Q; R).
Let f ∈ L1

loc(Q) where Q is an open set. A Lebesgue point a ∈ Q of f in Q
is characterized by the property

lim
r→0+

1
|B(a, r)|

∫
B(a;r)

f(x)dx = f(a). (2)

For f ∈ L1(Q) the set of all Lebesgue points is of full measure, meaning
its complement in Q is of zero Lebesgue measure. A similar statement holds for
vector-valued functions f ∈ L1(Q; X), where X is a Banach space (see Brezis [34]).

If f ∈ C(Q), then identity (2) holds for all points a in Q.

(ix)

� Linear Functionals on Lp(Q; X):

Theorem 0.2. Let Q ⊂ RN be a measurable set, X a Banach space that is reflexive
and separable, 1 ≤ p < ∞.

Then any continuous linear form ξ ∈ [Lp(Q; X)]∗ admits a unique represen-
tation wξ ∈ Lp′

(Q; X∗),

〈ξ; v〉Lp′(Q,X∗);Lp(Q;X) =
∫

Q

〈wξ(y); v(y)〉X∗;X dy for all v ∈ Lp(Q; X),

where
1
p

+
1
p′

= 1.

Moreover the norm on the dual space is given as

‖ξ‖[Lp(Q;X)]∗ = ‖wξ‖Lp′(Q;X∗).

Accordingly, the spaces Lp(Q; X) are reflexive for 1 < p < ∞ as soon as X is
reflexive and separable.

See Gajewski, Gröger, Zacharias [91, Chapter IV, Theorem 1.14, Remark 1.9]. �

Identifying ξ with wξ, we write

[Lp(Q; RN )]∗ = Lp′
(Q; RN), ‖ξ‖[Lp(Q;RN )]∗ = ‖ξ‖Lp′(Q;RN ), 1 ≤ p < ∞.

This formula is known as the Riesz representation theorem.
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(x) If the Banach space X in Theorem 0.2 is merely separable, we have

[Lp(Q; X)]∗ = Lp′

weak−(∗)(Q; X∗) for 1 ≤ p < ∞,

where
Lp′

weak−(∗)(Q; X∗)

:=
{
ξ : Q → X∗

∣∣∣ y ∈ Q → 〈ξ(y); v〉X∗;X measurable for any fixed v ∈ X,

y → ‖ξ(y)‖X∗ ∈ Lp′
(Q)
}

(see Edwards [69, Theorem 8.20.3], Pedregal [172, Chapter 6, Theorem 6.14]).

(xi) Hölder’s inequality reads

‖uv‖Lr(Q) ≤ ‖u‖Lp(Q)‖v‖Lq(Q),
1
r

=
1
p

+
1
q

for any u ∈ Lp(Q), v ∈ Lq(Q), Q ⊂ RN (see Adams [1, Chapter 2]).

(xii) Interpolation inequality for Lp-spaces reads

‖v‖Lr(Q) ≤ ‖v‖λ
Lp(Q)‖v‖

(1−λ)
Lq(Q),

1
r

=
λ

p
+

1 − λ

q
, p < r < q, λ ∈ (0, 1)

for any v ∈ Lp ∩ Lq(Q), Q ⊂ RN (see Adams [1, Chapter 2]).

(xiii)

� Gronwall’s Lemma:

Lemma 0.1. Let a ∈ L1(0, T ), a ≥ 0, β ∈ L1(0, T ), b0 ∈ R, and

b(τ) = b0 +
∫ τ

0

β(t) dt

be given. Let r ∈ L∞(0, T ) satisfy

r(τ) ≤ b(τ) +
∫ τ

0

a(t)r(t) dt for a.a. τ ∈ [0, T ].

Then

r(τ) ≤ b0 exp
(∫ τ

0

a(t) dt

)
+
∫ τ

0

β(t) exp
(∫ τ

t

a(s) ds

)
dt

for a.a. τ ∈ [0, T ].

See Carroll [41]. �
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0.4 Sobolev spaces

(i) A domain Ω ⊂ RN is of class C if for each point x ∈ ∂Ω, there exist r > 0
and a mapping γ : RN−1 → R belonging to a function class C such that – upon
rotating and relabeling the coordinate axes if necessary – we have

Ω ∩ B(x; r) = {y | γ(y′) < yN} ∩ B(x, r)
∂Ω ∩ B(x; r) = {y | γ(y′) = yN} ∩ B(x, r)

}
, where y′ = (y1, . . . , yN−1).

In particular, Ω is called a Lipschitz domain if γ is Lipschitz.
If A ⊂ Γ := ∂Ω ∩ B(x; r), γ is Lipschitz and f : A → R, then one can define

the surface integral

∫
A

f dSx :=
∫

Φγ (A)

f(y′, γ(y′))

√√√√1 +
N−1∑
i=1

(
∂γ

∂yi

)2

dy′,

where Φγ : RN → RN , Φγ(y′, yN ) = (y′, yN − γ(y′)), whenever the (Lebesgue)
integral at the right-hand side exists. If f = 1A then SN−1(A) =

∫
A dSx is the

surface measure on ∂Ω of A that can be identified with the (N − 1)-Hausdorff
measure on ∂Ω of A (cf. Evans and Gariepy [75, Chapter 4.2]). In the general case
of A ⊂ ∂Ω, one can define

∫
A f dSx using a covering B = {B(xi; r)}M

i=1, xi ∈ ∂Ω,
M ∈ N of ∂Ω by balls of radii r and subordinated partition of unity F = {ϕi}M

i=1,
and set ∫

A

f dSx =
M∑
i=1

∫
Γi

ϕif dSx, Γi = ∂Ω ∩ B(xi; r),

see Nečas [162, Section I.2] or Kufner, Fučik, John [125, Section 6.3].
A Lipschitz domain Ω admits the outer normal vector n(x) for a.a. x ∈ ∂Ω.

Here a.a. refers to the surface measure on ∂Ω.
The distance functiond(x) = dist[x, ∂Ω] is Lipschitz continuous. Moreover, d

is differentiable a.a. in R3, and

∇xd(x) =
x − ξ(x)

d(x)

whenever d is differentiable at x ∈ R3 \ Ω, where ξ denotes the nearest point to
x on ∂Ω (see Ziemer [207, Chapter 1]). Moreover, if the boundary ∂Ω is of class
Ck, then d is k-times continuously differentiable in a neighborhood of ∂Ω (see
Foote [88]).

(ii) The Sobolev spaces W k,p(Q; RM ), 1 ≤ p ≤ ∞, k a positive integer, are the
spaces of functions having all distributional derivatives up to order k in Lp(Q; RM ).
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The norm in W k,p(Q; RM ) is defined as

‖v‖W k,p(Q;RM ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
( M∑

i=1

∑
|α|≤k

‖∂αvi‖p
Lp(Q)

)1/p

if 1 ≤ p < ∞

max
1≤i≤M, |α|≤k

{‖∂αvi‖L∞(Q)} if p = ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

where the symbol ∂α stands for any partial derivative of order |α|.
If Q is a bounded domain with boundary of class Ck−1,1, then there exists

a continuous linear operator which maps W k,p(Q) to W k,p(RN ); it is called an
extension operator. If, in addition, 1 ≤ p < ∞, then W k,p(Q) is separable and the
space Ck(Q) is its dense subspace.

The space W 1,∞(Q), where Q is a bounded domain, is isometrically isomor-
phic to the space C0,1(Q) of Lipschitz functions on Q.

For basic properties of Sobolev functions, see Adams [1] or Ziemer [207].

(iii) The symbol W k,p
0 (Q; RM ) denotes the completion of C∞

c (Q; RM ) with re-
spect to the norm ‖ · ‖W k,p(Q;RM). In what follows, we identify W 0,p(Ω; RN ) =
W 0,p

0 (Ω; RN ) with Lp(Ω; RN ).
We denote L̇p(Q) = {u ∈ Lp(Q) |

∫
Q

u dy = 0} and Ẇ 1,p(Q) = W 1,p(Q) ∩
L̇p(Q). If Q ⊂ R

N is a bounded domain, then L̇p(Q) and Ẇ 1,p(Q) can be viewed
as closed subspaces of Lp(Q) and W 1,p(Q), respectively.

(iv) Let Q ⊂ RN be an open set, 1 ≤ p ≤ ∞ and v ∈ W 1,p(Q). Then we have:

(a) |v|+, |v|− ∈ W 1,p(Q) and

∂xj |v|+ =

{
∂xk

v a.a. in {v > 0}
0 a.a. in {v ≤ 0}

}
,

∂xj |v|− =

{
∂xk

v a.a. in {v < 0}
0 a.a. in {v ≥ 0}

}
,

j = 1, . . . , N , where |v|+ = max{u, 0} denotes a positive part and |v|− =
min{u, 0} a negative part of v.

(b) If f : R → R is a Lipschitz function and f ◦ v ∈ Lp(Q), then f ◦ v ∈ W 1,p(Q)
and

∂xj [f ◦ v](x) = f ′(v(x))∂xj v(x) for a.a. x ∈ Q.

For more details see Ziemer [207, Section 2.1].
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(v) Dual spaces to Sobolev spaces.

� Dual Sobolev Spaces:

Theorem 0.3. Let Ω ⊂ R
N be a domain, and let 1 ≤ p < ∞. Then the dual space

[W k,p
0 (Ω)]∗ is a proper subspace of the space of distributions D′(Ω). Moreover, any

linear form f ∈ [W k,p
0 (Ω)]∗ admits a representation

〈f ; v〉[W k,p
0 (Ω)]∗;W k,p

0 (Ω) =
∑
|α|≤k

∫
Ω

(−1)|α|wα ∂αv dx, (3)

where wα ∈ Lp′
(Ω),

1
p

+
1
p′

= 1.

The norm of f in the dual space is given as

‖f‖[W k,p
0 (Ω)]∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
{(∑

|α|≤k ‖wα‖p′

Lp′(Ω)

)1/p′ ∣∣∣wα satisfy (3)
}

for 1 < p < ∞;

inf
{

max|α|≤k{‖wα‖L∞(Q)}
∣∣∣wα satisfy (3)

}
if p = 1.

The infimum is attained in both cases.

See Adams [1, Theorem 3.8], Mazya [154, Section 1.1.14]. �

The dual space to the Sobolev space W k,p
0 (Ω) is denoted as W−k,p′

(Ω).
The dual to the Sobolev space W k,p(Ω) admits formally the same represen-

tation formula as (3). However it cannot be identified as a space of distributions
on Ω. A typical example is the linear form

〈f ; v〉 =
∫

Ω

wf · ∇xv dx, with divxwf = 0

that vanishes on D(Ω) but generates a non-zero linear form when applied to v ∈
W 1,p(Ω).

(vi)

� Rellich-Kondrachov Embedding Theorem:

Theorem 0.4. Let Ω ⊂ RN be a bounded Lipschitz domain.

(i) Then, if kp < N and p ≥ 1, the space W k,p(Ω) is continuously embedded in
Lq(Ω) for any

1 ≤ q ≤ p∗ =
Np

N − kp
.

Moreover, the embedding is compact if k > 0 and q < p∗.
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(ii) If kp = N , the space W k,p(Ω) is compactly embedded in Lq(Ω) for any q ∈
[1,∞).

(iii) If kp > N , then W k,p(Ω) is continuously embedded in Ck−[N/p]−1,ν(Ω), where
[ ] denotes the integer part and

ν =

{
[N

p ] + 1 − N
p if N

p /∈ Z,

arbitrary positive number in (0, 1) if N
p ∈ Z.

Moreover, the embedding is compact if 0 < ν < [N
p ] + 1 − N

p .

See Ziemer [207, Theorem 2.5.1, Remark 2.5.2]. �

The symbol ↪→ will denote continuous embedding, ↪→↪→ indicates compact
embedding.

(vii) The following result may be regarded as a direct consequence of Theorem 0.4.

� Embedding Theorem for Dual Sobolev Spaces:

Theorem 0.5. Let Ω ⊂ RN be a bounded domain. Let k > 0 and q < ∞ satisfy

q >
p∗

p∗ − 1
, where p∗ =

Np

N − kp
if kp < N,

q > 1 for kp = N, or q ≥ 1 if kp > N.

Then the space Lq(Ω) is compactly embedded into the space W−k,p′
(Ω), 1/p +

1/p′ = 1.

(viii)The Sobolev-Slobodeckii spaces W k+β,p(Q), 1 ≤ p < ∞, 0 < β < 1,
k = 0, 1, . . ., where Q is a domain in RL, L ∈ N, are Banach spaces of functions
with finite norm

W k+β,p(Q) =

⎛
⎝‖v‖p

W k,p(Q)
+
∑
|α|=k

∫
Q

∫
Q

|∂αv(y) − ∂αv(z)|p
|y − z|L+βp

dy dz

⎞
⎠

1
p

,

see, e.g., Nečas[162, Section 2.3.8].
Let Ω ⊂ RN be a bounded Lipschitz domain. Referring to the notation

introduced in (i), we say that f ∈ W k+β,p(∂Ω) if (ϕf)◦(I′, γ) ∈ W k+β,p(RN−1) for
any Γ = ∂Ω∩B with B belonging to the covering B of ∂Ω and ϕ the corresponding
term in the partition of unity F . The space W k+β,p(∂Ω) is a Banach space endowed
with an equivalent norm ‖ · ‖W k+β,p(∂Ω), where

‖v‖p
W k+β,p(∂Ω)

=
M∑
i=1

‖(vϕi) ◦ (I′, γ)‖p
W k+β,p(RN−1)

.
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In the above formulas (I′, γ) : RN−1 → RN maps y′ to (y′, γ(y′)). For more details
see, e.g., Nečas [162, Section 3.8].

In the situation when Ω ⊂ R
N is a bounded Lipschitz domain, the Sobolev-

Slobodeckii spaces admit similar embeddings as classical Sobolev spaces. Namely,
the embeddings

W k+β,p(Ω) ↪→ Lq(Ω) and W k+β,p(Ω) ↪→ Cs(Ω)

are compact provided (k + β)p < N , 1 ≤ q < Np
N−(k+β)p , and s = 0, 1, . . . , k,

(k − s + β)p > N , respectively. The former embedding remains continuous (but
not compact) at the border case q = Np

N−(k+β)p .

(ix)

� Trace Theorem for Sobolev Spaces and Green’s formula:

Theorem 0.6. Let Ω ⊂ RN be a bounded Lipschitz domain.
Then there exists a linear operator γ0 with the following properties:

[γ0(v)](x) = v(x) for x ∈ ∂Ω provided v ∈ C∞(Ω),

‖γ0(v)‖
W

1− 1
p

,p
(∂Ω)

≤ c‖v‖W 1,p(Ω) for all v ∈ W 1,p(Ω),

ker[γ0] = W 1,p
0 (Ω)

provided 1 < p < ∞.
Conversely, there exists a continuous linear operator

� : W 1− 1
p ,p(∂Ω) → W 1,p(Ω)

such that
γ0(�(v)) = v for all v ∈ W 1− 1

p ,p(∂Ω)

provided 1 < p < ∞.
In addition, the following formula holds:∫

Ω

∂xiuv dx +
∫

Ω

u∂xiv dx =
∫

∂Ω

γ0(u)γ0(v)ni dSx, i = 1, . . . , N,

for any u ∈ W 1,p(Ω), v ∈ W 1,p′
(Ω), where n is the outer normal vector to the

boundary ∂Ω.

See Nečas [162, Theorems 5.5, 5.7]. �
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The dual [W 1− 1
p ,p(∂Ω)]∗ to the Sobolev-Slobodeckii space W 1− 1

p ,p(∂Ω)) =
W

1
p′ ,p(∂Ω) is denoted simply by W

− 1
p′ ,p′

(∂Ω).

(ix) If Ω ⊂ RN is a bounded Lipschitz domain, then we have the interpolation-
inequality

‖v‖W α,r(Ω) ≤ c‖v‖λ
W β,p(Ω)‖v‖1−λ

W γ,q(Ω), 0 ≤ λ ≤ 1, (4)

for

0 ≤ α, β, γ ≤ 1, 1 < p, q, r < ∞, α = λβ + (1 − λ)γ,
1
r

=
λ

p
+

1 − λ

q

(see Sections 2.3.1, 2.4.1, 4.3.2 in Triebel [190]).

0.5 Fourier transform

Let v = v(x) be a complex-valued function integrable on RN . The Fourier trans-
form of v is a complex-valued function Fx→ξ[v] of the variable ξ ∈ RN defined as

Fx→ξ[v](ξ) =
(

1
2π

)N/2 ∫
RN

v(x) exp(−iξ · x) dx. (5)

Therefore, the Fourier transform Fx→ξ can be viewed as a continuous linear map-
ping defined on L1(RN ) with values in L∞(RN ).

(i) For u, v complex-valued square integrable functions on RN , we have Parse-
val’s identity: ∫

RN

u(x)v(x) dx =
∫

RN

Fx→ξ[u](ξ)Fx→ξ[v](ξ) dξ,

where bar denotes the complex conjugate. Parseval’s identity implies that Fx→ξ

can be extended as a continuous linear mapping defined on L2(RN ) with values
in L2(RN ).

(ii) The symbol S(RN ) denotes the space of smooth rapidly decreasing (complex-
valued) functions, specifically, S(RN ) consists of functions u such that

sup
|α|≤m

sup
x∈RN

(1 + |x|2)s|∂αu| < ∞

for all s, m = 0, 1, . . . . We say that un → u in S(RN ) if

sup
|α|≤m

sup
x∈RN

(1 + |x|2)s|∂α(un − u)| → 0, s, m = 0, 1, . . . . (6)

The space of tempered distributions is identified as the dual S′(RN ). Continuity
of a linear form belonging to S′(RN ) is understood with respect to convergence
introduced in (6).
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The Fourier transform introduced in (5) can be extended as a bounded linear
operator defined on S(RN ) with values in S(RN ). Its inverse reads

F−1
ξ→x[f ] =

( 1
2π

)N/2
∫

RN

f(ξ)exp(ix · ξ)dξ. (7)

(iii) The Fourier transform of a tempered distribution f ∈ S′(RN ) is defined as

〈Fx→ξ[f ]; g〉 = 〈f ;Fx→ξ[g]〉 for any g ∈ S(RN ). (8)

It is a continuous linear operator defined on S′(RN ) onto S′(RN ) with the inverse
F−1

ξ→x, 〈
F−1

ξ→x[f ]; g
〉

=
〈
f ;F−1

ξ→x[g]
〉

, f ∈ S′(RN ), g ∈ S(RN ). (9)

(iv) We recall formulas

∂ξk
Fx→ξ[f ] = Fx→ξ[−ixkf ], Fx→ξ[∂xk

f ] = iξkFx→ξ[f ], (10)

where f ∈ S′(RN ), and

Fx→ξ[f ∗ g] =
(
Fx→ξ[f ]

)
×
(
Fx→ξ[g]

)
, (11)

where f ∈ S(RN ), g ∈ S′(RN ) and ∗ denotes convolution.

(v) A partial differential operator D of order m,

D =
∑

|α|≤m

aα∂α,

can be associated to a Fourier multiplier in the form

D̃ =
∑

|α|≤m

aα(iξ)α, ξα = ξα1
1 . . . ξαN

N

in the sense that

D[v](x) = F−1
ξ→x

⎡
⎣ ∑
|α|≤m

aα(iξ)αFx→ξ[v](ξ)

⎤
⎦ , v ∈ S(RN ).

The operators defined through the right-hand side of the above expression are
called pseudodifferential operators.


