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Preface

Boolean functions are at the core of computer science and the foundation of today’s
circuits and systems. The International Workshop on Boolean Problems (IWSBP)
is a bi-annually held and a well-established forum to discuss the recent advances on
problems related to Boolean logic and Boolean algebra. In 2020, the 14th edition
of the workshop was held virtually from September 24 to September 25 due to the
worldwide pandemic. The workshop provided a forum for researchers and engineers
from different disciplines to exchange ideas as well as to discuss problems and
solutions. The workshop is devoted to both theoretical discoveries and practical
applications. This edited book contains a selection of best papers presented at the
workshop and one additional paper. The papers in this volume demonstrate new
accomplishments in the theory of Boolean problems. Furthermore, several papers
illustrate how these results find their way into important practical applications.

The first two chapters in the book are contributions that resulted from the
invited keynotes at the workshop. In Chap. 1, Daniela Kaufmann presents Formal
Verification of Integer Multiplier Circuits using Algebraic Reasoning—A Survey.
In Chap. 2, Victor M. van Santen, Florian Klemme, and Hussam Amrouch write
about The Vital Role of Machine Learning in Developing Emerging Technologies.
The following six chapters are extended manuscripts based on the workshop
submissions. In Chap. 3, Bernd Steinbach and Christian Posthoff consider Fast
Optimal Synthesis of Symmetric Index Generation Functions. Felix Weitkämper
targets Axiomatizing Boolean Differentiation in Chap. 4. In Chap. 5, Radomir S.
Stanković, Milena Stanković, Claudio Moraga, and Jaakko Astola investigate bent
functions in Construction of Binary Bent Functions by FFT-Like Permutation
Algorithms. In Chap. 6, Jan Schmidt and Petr Fišer write about Nonlinear Codes for
Test Patterns Compression: The Old School Way. D. Michael Miller and Gerhard W.
Dueck address Translation Techniques for Reversible Circuit Synthesis with Positive
and Negative Controls in Chap. 7. In Chap. 8, Claudio Moraga focuses on Hybrid
Control of Toffoli and Peres Gates. Finally, the book is concluded in Chap. 9 by
Alireza Mahzoon, Daniel Große, and Rolf Drechsler with GenMul: Generating
Architecturally Complex Multipliers to Challenge Formal Verification Tools.

v
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Formal Verification of Integer Multiplier
Circuits Using Algebraic Reasoning: A
Survey

Daniela Kaufmann

1 Introduction

Digital circuits carry out logical operations, which make them an important
component in computers and digital systems, because they represent models for
various digital components and arithmetic operations. The basic function of a digital
circuit is to compute binary digital values for the logical function it implements,
given binary values at the input. The computation is usually realized by logic
gates that represent simple Boolean functions, such as negation (NOT), conjunction
(AND), disjunction (OR), or exclusive disjunction (XOR). These logic gates can be
combined to build more complex logical operations. A subclass of digital circuits
are combinational logic circuits, where the output of the circuit is a function of
the present input only, i.e., the output does not depend on previous input values.
Combinational logic is used in computer circuits to perform Boolean algebra. For
example, the part of an arithmetic logic unit (ALU) in a CPU, which is responsible
for mathematical calculations, is constructed using combinational logic. If a circuit
implements an arithmetic operation, it is called an arithmetic circuit, which can be
further refined to determine specific arithmetic operations such as adder circuits or
multiplier circuits.

Since these circuits are such a crucial part of processors, it is extremely important
to guarantee their correctness in order to prevent issues like the famous Pentium
FDIV bug [49] that was detected in 1994. This bug affected the floating point unit
of early Intel Pentium processors. The division algorithm for floating points used a
lookup table to calculate the intermediate quotients. Due to a programming error,
five entries of the lookup table contained zero instead of +2. Thus the result was
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2 D. Kaufmann

incorrect and in the worst case the error could affect the fourth significant digit of
a decimal number. Even more than 25 years after detecting this bug, automatically
proving the correctness of arithmetic circuits, and especially multiplier circuits, is
still considered to be a challenge.

Formal verification can be used to prove or disprove the correctness of a given
system with respect to a predefined specification. To this end the system is translated
into a mathematical model, and automated decision processes are applied to derive
the desired correctness property. The different formal verification approaches are
distinguished by the mathematical formalism used in the verification process.

Up to now several solving techniques have been developed for multiplier
verification. The first technique that was shown to detect the Pentium bug is based
on binary decision diagrams [10], more precisely on binary moment diagrams
(BMDs) [13] and variants [14], since their size remains linear in the number of
input bits of a multiplier. However, this approach requires structural knowledge of
the multipliers [11, 13]. It is important to determine the order in which BMDs are
built, because it has tremendous influence on the size and thus performance.

A common approach models the problem as a satisfiability (SAT) problem,
where the circuit is translated into a formula in conjunctive normal form (CNF).
A large set of such encodings was submitted to the SAT Competition 2016 [7]. The
results indicated that verifying CNF miters of multipliers needs exponential-sized
resolution proofs [8], which implies exponential run-time of CDCL SAT solvers. For
simple multiplier architectures, this conjecture is neglected in theory in [5], where it
was shown that ring properties do admit polynomial-sized resolution proofs. Recent
work shows that pseudo-Boolean solvers can verify the word-level equivalence of
simple multiplier architectures that consist only of half- and full-adders [32]. This
method is so far not applicable for more complex architectures.

A further approach is based on the usage of theorem provers, such as ACL2 [26].
Theorem provers in combination with SAT are able to certify industrial multipli-
ers [22]. Typically, theorem provers are not fully automated and require domain
knowledge. Recently, progress has been made in the theorem prover ACL2 [52],
which now allows automated verification of a large set of multiplier architectures.
However, the multipliers have to be given as SVL netlists, which rely on the
preservation of hierarchical information of the circuits.

Approaches based on bit-level reverse engineering [45, 50] use arithmetic bit-
level representations, which are extracted from the gate-level netlists. They are able
to verify simple multipliers, but fail to verify non-trivial multipliers. Methods based
on term rewriting [53] require domain knowledge and thus are not fully automated.

The currently most effective technique for automated verification of flattened
multipliers is based on computer algebra, e.g., [16, 24, 40]. In this method, all
gates of the circuit and its specification are represented by polynomials. If the gate
polynomials are ordered according to their topological appearance, they generate
a Gröbner basis [12]. Hence, the question whether a multiplier circuit is correct
can be answered by reducing the specification by the implied Gröbner basis. The
multiplier is correct if and only if the reduction returns zero. The main issue of
the general algebraic approach is that the size of the intermediate reduction results
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increases drastically. Thus, several preprocessing techniques and reduction methods
have been developed in recent years [16, 24, 40], which attempt to overcome this
issue.

Nonetheless, the verification process might not be error-free. Generating and
checking proofs independently increases trust in the results of automated reasoning
tools. Polynomial proofs can be obtained as a by-product of verifying multiplier
circuits [25, 30] and can be checked by independent proof checking tools.

In this chapter, we survey over the current state of the art in verifying integer
multipliers using computer algebra. For verification of Galois field multipliers, we
refer to [33, 34, 58, 59]. In Sect. 2, we introduce the technique of circuit verification
based on algebraic reasoning and present available proof formats. In Sect. 3, we
present recent verification tools and discuss their strategies to overcome the issue
of monomial blow-up in the intermediate reduction results. We show available
benchmark generators in Sect. 4 and conclude with a comprehensive evaluation in
Sect. 5.

2 Circuit Verification Using Computer Algebra

In this section, we introduce multiplier circuits and discuss architectural details.
We present the algebraic concepts that are needed in the technique of automated
circuit verification using computer algebra. Furthermore, we introduce algebraic
proof systems that can be used to validate the correctness of the verification results.

2.1 Multiplier Circuits

A digital circuit implements a logical function and computes binary digital values,
given binary values at the input. The computation of the function is realized by
logic gates, such as NOT, AND, OR, and XOR. The specification of a circuit is
the desired relation between its inputs and outputs. A circuit fulfills a specification
if for all inputs it produces outputs that match this desired relation. The goal of
verification is to formally prove that the circuit fulfills its specification.

In this chapter, we consider gate-level integer multipliers with input bits
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈ {0, 1}.
If the circuit represents multiplication of unsigned integers, the multiplier is correct
if and only if for all possible inputs the specification Un = 0 holds, where:

Un = −
2n−1∑

i=0

2i si +
(

n−1∑

i=0

2iai

)(
n−1∑

i=0

2ibi

)
(1)



4 D. Kaufmann

11011000

123

4

0 1 2 3

2

a[0]

4

b[0]

6

a[1]

8

b[1]

10 1214

1618

20

22

2426

28

s[0]

s[1]

s[2]

s[3]

Fig. 1 Gate-level (left) and AIG (right) representation of a 2-bit multiplier circuit [24]

Example 1 The left side of Fig. 1 shows the gate-level representation of a 2-bit
unsigned integer multiplier. The variables a1, a0, b1, b0 represent the input bits of
the multiplier and s3, s2, s1, s0 are the binary outputs of the multiplier. The word-
level specification of this circuit is−8s3−4s2−2s1−s0+(2b1+b0)(2a1+a0) = 0.

If the circuit represents signed multiplication, we have to take into account that
the integers in the specification Sn are represented using two’s complement.

Sn = −22n−1s2n−1 (2)

+
2n−2∑

i=0

2i si −
(
−2n−1an−1 +

n−2∑

i=0

2iai

)(
−2n−1bn−1 +

n−2∑

i=0

2ibi

)

A common representation of combinational circuits is the encoding as an and-
inverter-graph (AIG) [31]. An AIG is a directed acyclic graph, which consists of
two-input nodes representing logical conjunction. The edges may contain a marking
that indicates logical negation. The AIG representation usually contains more nodes
than the gate-level representation but has an unequivocal syntax and semantics and
is very efficient to manipulate. The right side of Fig. 1 shows the AIG representation
of the gate-level multiplier that is depicted on the left side.

The space and time complexity of a multiplier depends on its architecture.
In general, a multiplier circuit can be divided into three parts [44]. In the first
component, partial product generation (PPG), the partial products aibj for 0 ≤
i < n, 0 ≤ j < n, as contained in the specification, are generated. This can, for
example, be achieved by using simple AND-gates or using a more complex Booth
encoding [44].
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Fig. 2 Architecture of array multipliers (left) and diagonal multipliers (right) [24]

In the second component, partial product accumulation (PPA), the partial
products are reduced to two layers by multi-operand addition using half-adders
(HA), full-adders (FA), and compressors. Well-known accumulation structures
are, for example, array or diagonal accumulation, Wallace trees, or compressor
trees [44].

In the final-stage adder (FSA), the output of the circuit is computed using an
adder circuit. Generally, adder circuits can be split into two groups: either the carries
are computed alongside the sum bits or they are calculated before the sums. Adders
of the first group consist of a sequence of half- and full-adders, giving them a simple
but inefficient structure. Examples are ripple-carry or carry-select adders. In order
to decrease the latency of carry computation, the adder circuits of the second group
precompute the carry bits of the adder. They are called generate-and-propagate
(GP) adders. Examples are carry look-ahead adders and Kogge-Stone adders [44].

We call multipliers, that can be fully decomposed into half- and full-adders
simple multipliers, all other architectures are called complex multipliers.

Example 2 We show two simple multiplier architectures with input bit-width 4 in
Fig. 2. In both circuits, the PPG uses AND-gates, i.e., pij = ai ∧ bj . In array
multipliers, which are shown on the left side, the partial products are accumulated
using a grid-like structure. The multiplier on the right side uses a diagonal structure.
In both multipliers, the FSA is a ripple-carry adder, which is highlighted in red.

2.2 Algebra

Let us now briefly summarize algebraic concepts, following [18]. Throughout this
section, let K[X] = K[x1, . . . , xn] denote the ring of polynomials in variables
x1, . . . , xn with coefficients in a field K.

Definition 1 A term τ is a product of the form τ = x
e1
1 · · · xen

n for e1, . . . , en ∈ N.
A monomial m = ατ is a constant multiple of a term, with α ∈ K. A polynomial
p = m1 + · · · +ms is a finite sum of monomials.
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On the set of terms, an order ≤ is fixed such that for all terms τ, σ1, σ2 we have
1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. A term order is called a lexicographic term
order if for all terms σ1 = x

u1
1 · · · xun

n , σ2 = x
v1
1 · · · xvn

n we have σ1 < σ2 if and only
if there exists an index i with uj = vj for all j < i, and ui < vi . Every polynomial
p �= 0 contains only finitely many terms, the largest of which (with respect to the
chosen order ≤) is called the leading term and denoted by lt(p). If p = ατ + · · ·
and lt(p) = τ , then lc(p) = α is called the leading coefficient and lm(p) = ατ is
called the leading monomial of p. We call p − ατ the tail of p.

Definition 2 A nonempty set I ⊆ K[X] is called an ideal if ∀ p, q ∈ I : p + q ∈
I and ∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I . If I ⊆ K[X] is an ideal, then a set
P = {p1, . . . , pm} ⊆ K[X] is called a basis of I if I = {q1p1 + · · · + qmpm |
q1, . . . , qm ∈ K[X]}. We say I is generated by P and write I = 〈P 〉.

The theory of Gröbner bases offers a decision procedure for the so-called ideal
membership problem, i.e., given q ∈ K[X] and a basis P = {p1, . . . , pm} ⊆ K[X],
decide whether q belongs to the ideal generated by p1, . . . , pm. If {p1, . . . , pm} is
a Gröbner basis, then the question can be answered using a multivariate version of
polynomial division with remainder (cf. Thm. 3 in Chap. 2 §3 of [18]).

Definition 3 A basis P = {p1, . . . , pm} of an ideal I ⊆ K[X] is called a Gröbner
basis (with respect to a fixed order ≤) if and only if ∀q ∈ I∃pi ∈ P : lm(pi) |
lm(q).

Lemma 1 Every ideal I ⊆ K[X] has a Gröbner basis with respect to a fixed
order ≤.
Proof Cor. 6 in Chap. 2 §5 of [18]. �

Given an arbitrary basis of an ideal, Buchberger’s algorithm [12] is able to
compute a Gröbner basis for it in finitely many steps.

Lemma 2 If P = {p1, . . . , pm} is a Gröbner basis, then every f ∈ K[X] has a
unique remainder r with respect to P . Furthermore, it holds that f − r ∈ 〈P 〉.
Proof Prop. 1 in Chap. 2 §6 of [18]. �

Ultimately the following Lemma provides the answer on how we can solve
the ideal membership problem with the help of Gröbner basis and thus can check
whether a polynomial belongs to an ideal or not.

Lemma 3 Let P = {p1, . . . , pm} ⊆ K[X] be a Gröbner basis, and let f ∈ K[X].
Then f is contained in the ideal I = 〈P 〉 if and only if the remainder of f with
respect to P is zero.

Proof Cor. 2 in Chap. 2 §6 of [18]. �
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2.3 Circuit Verification Using Computer Algebra

In this section we introduce the technique of circuit verification using computer
algebra, following [27]. We consider circuits C with inputs a0, . . . , an−1 and
b0, . . . , bn−1, outputs s0, . . . , s2n−1, and a number of logical gates, denoted by
g1, . . . , gk . By R we denote the ring K[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0,

. . . , s2n−1] = K[X].
The semantics of each circuit gate implies a polynomial relation among the input

and output variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v

u = v ∧ w implies 0 = −u+ vw

u = v ∨ w implies 0 = −u+ v + w − vw

u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(3)

We call these polynomials gate polynomials or gate constraints. Let G(C) ⊆ R

denote the set of polynomials, which contains for each gate of the given circuit the
corresponding polynomial of (3).

Example 3 The possible solutions for the gate constraint p00 = a0∧b0 represented
as (p00, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which are all solutions of
the polynomial−p00+a0b0 = 0, when a0, b0 are restricted to the Boolean domain.

All variables x ∈ X are Boolean and we enforce this property by assuming the
set B(X) = {x(1− x) | x ∈ X} ⊆ R of Boolean value constraints.

Since the logical gates are functional, the values of g1, . . . , gk, s0, . . . , s2n−1 in a
circuit are determined as soon as the inputs a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are
fixed. This motivates the following definition of polynomial circuit constraints [27].

Definition 4 Let C be a circuit. A polynomial p ∈ R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and the resulting values g1, . . . , gk, s0, . . . , s2n−1 which are implied by the gates of
the circuit C, the substitution of all these values into the polynomial p gives zero.
The set of all PCCs for C is denoted by I (C).

It is easy to see that I (C) is an ideal of R. Since it contains all PCCs, this ideal
includes all relations that hold among the values at the different points in the circuit.
The circuit fulfills a certain specification L if and only if the polynomial relation
corresponding to the specification of the circuit is contained in the ideal I (C).

Thus, checking whether a given circuit C is a correct multiplier reduces to an
ideal membership test. Definition 4 does not provide any information of a basis
of I (C), hence Gröbner basis technology is not directly applicable. However, we
can deduce at least some elements of I (C) from the semantics of circuit gates.
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Definition 5 Let C be a circuit and assume G(C) ⊆ R be the set which contains
for each gate of C the corresponding polynomial of (3).

Let B0(G) = B({a0, . . . , an−1, b0, . . . , bn−1}) and J (C) = 〈G(C) ∪ B0(G)〉 ⊂
R.

Assume that we have a verifier which checks for a given circuit C and a given
specification polynomial L ∈ R whether it holds that L ∈ J (C). Because it holds
that J (C) = I (C) [27], such a verifier is sound and complete.

Theorem 1 Let C be a circuit, and let J (C) be as in Definition 5. Furthermore, let
≤ be a reverse topological lexicographic term order where the variables are ordered
such that the variable of a gate output is always greater than the variables attached
to the input edges of that gate. Then G(C) ∪ B0(G) is a Gröbner basis for J (C)

with respect to the ordering ≤.
Proof This theorem is shown for instance in [27, 34, 54].

Hence G(C) ∪ B0(G) is a Gröbner basis for the ideal J (C) and we can decide
membership using Gröbner bases theory, i.e., we reduce the specification L by
elements of G(C) ∪ B0(G) until no further reduction is possible. The circuit is
correct if and only if the final remainder is zero.

In this section we restricted the theory to polynomial rings over a field K.
A generalization for polynomial rings over principal ideal domains (such as Z)
can be found in [28], where it is furthermore discussed how to invoke modular
reasoning, i.e., reasoning in rings R = Zl[X]. Modular reasoning allows to
eliminate monomials that have large coefficients.

As a final remark, in the case when a polynomial g is not contained in an ideal
I = 〈P 〉, i.e., the remainder of dividing g by P is not zero and allows to determine a
concrete choice of input assignments for which g does not vanish. In our application
of multiplier verification, these evaluations provide counter-examples, in case a
circuit is determined not to be a multiplier.

2.4 Algebraic Proof Systems

Although the verification method is sound and complete, it may happen that the
implementation contains errors and the reasoning engine delivers wrong results.
One way to overcome this issue is to verify the implementation, e.g., [52], which
is typically very tedious and requires a lot of effort. Thus, it is common to produce
proof certificates in the reasoning engine to monitor the verification process. These
proofs are generated as by-product of the reasoning technique and are given to
independent (and ideally verified) proof checkers to validate the verification result.

For computer algebra, two algebraic proof systems are used in practice, the
practical algebraic calculus (PAC) [46], which is based on the polynomial calculus
(PC) [17], and the Nullstellensatz proof format (NSS) [4].
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Practical Algebraic Calculus The practical algebraic calculus [46] is an instanti-
ated version of PC [17] which allows efficient proof checking. A PAC proof consists
of three components (i) the given set of polynomials G, i.e., the constraint set, (ii)
the core proof, i.e., a sequence of proof rules P that model the properties of an ideal,
and (iii) the target polynomial f . In a correct proof, it is derived whether the target
polynomial can be derived from the constraint set using the proof rules.

Initially the proof format has been defined for polynomial rings K[X], where K

is a field [17, 46] and all variables represent Boolean values.
The soundness and completeness arguments have been generalized to rings

R[X], where all polynomials in the constraint set have unique leading terms that
contain only a single variable, cf. Thm. 1 and Thm. 2 in [28]. Recently, the PAC
format has been revised to derive a more compact proof representation [30].

Let P be a sequence of polynomials that can be accessed via indices. We write
P(i) = ⊥ to denote that the sequence P at index i does not contain a polynomial,
and P(i �→ p) to determine that P at index i is set to p. The initial state is (X =
Var (G ∪ {f }), P ) where P maps indices to polynomials of G.

[ADD (i, j, k, p)] (X, P ) �⇒ (X, P (i �→ p))

where P(j) �= ⊥, P(k) �= ⊥, P(i) = ⊥, p ∈ R[X]/〈B(X)〉, and p = P(j) +
P(k).

[MULT (i, j, q, p)] (X, P ) �⇒ (X, P (i �→ p))

where P(j) �= ⊥, P(i) = ⊥, p, q ∈ R[X]/〈B(X)〉, and p = q · P(j).

PAC proofs that are defined over Z[X] can be checked by the checkers PACHECK

(implemented in C) [30] and PASTÈQUE (verified in Isabelle/HOL) [30].

Nullstellensatz The Nullstellensatz proof system [4] allows to derive whether a
target polynomial f ∈ R[X] can be represented as a linear combination from a given
set of polynomials G = {g1, . . . , gl} ⊆ R[X] and the Boolean value constraints
B(X). Similar to PAC, the NSS proof system is initially defined for polynomial
rings over fields [4]. By the same arguments given for PAC, the soundness and
completeness arguments can be generalized for rings R[X] where all polynomials
in G have unique leading terms that contain only one variable [25].

Again, we handle the Boolean value constraints implicitly and derive the
following proof format. For a polynomial f ∈ R[X]/〈B(X)〉 and a given set of
polynomials G = {g1, . . . , gl} ⊆ R[X]/〈B(X)〉, an NSS proof is an equality P ,
such that

l∑

i=1

higi = f ∈ R[X]/〈B(X)〉, (4)

with hi ∈ R[X]/〈B(X)〉.
Nullstellensatz proofs over Z[X] can be checked using NUSS-CHECKER [25].
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3 Verification Tools

In this section we present reasoning tools for verification of flattened gate-level
integer multipliers using computer algebra. We focus on the most recent work
that has been developed in the last 3 years and consider the tools from Yu
et al.: ABC/ARTI [16, 60]; Kaufmann et al.: AMULET [28]; and Mahzoon et
al.: POLYCLEANER [38], REVSCA/REVSCA-2.0 [40], DYPOSUB [42] (sorted
chronologically).

We discuss the scope of application of these tools and present their techniques
that help to overcome the issue of monomial blow-up during reduction. All these
tools are considered in the experimental evaluation in Sect. 5.

3.1 Algebraic RewriTing in ABC [15, 16, 57, 60]

The authors of [15, 57] use a method called function extraction to verify circuits.
Function extraction is a similar algebraic approach to Gröbner basis reduction
as presented in Sect. 2. The difference to Gröbner basis reduction is that it
is not required to provide the complete specification polynomial of the circuit
for reduction. Instead the word-level output of the circuit, i.e., the bit-vector∑2n−1

i=0 2i si for unsigned numbers resp. −22n−1s2n−1 + ∑2n−2
i=0 2i si for signed

number representation, is reduced by the gate constraints of the given circuit.
The Boolean value constraints are reduced implicitly, i.e., every exponent greater
than one is immediately reduced to one. This method returns a unique polynomial
representation of the functionality of the circuit in terms of the circuit inputs. In
order to verify correctness of a circuit, this remainder polynomial needs to be
compared to the desired circuit functionality.

In follow-up works [16, 60], the authors introduced an optimization, where half-
and full-adders are extracted by identifying subcircuits in the given circuit that repre-
sent MAJ3 and XOR3 gates. These XOR3 and MAJ3 gates are essential components
of adder trees that are present in most arithmetic circuits. The polynomial constraints
of all circuit gates that belong to a MAJ3 or XOR3 gate are replaced by a single
polynomial that encodes a MAJ3 or XOR3 gate in order to simplify the polynomial
representation of the circuit. These polynomials are sorted topologically pairwise.

The authors developed a framework called ARTI (Algebraic RewriTing) [56]
that is integrated within the ABC tool [6]. Verification of multipliers that are given
as AIGs is executed using the command &polyn, which can be configured to define
whether signed or unsigned multiplication is considered. The extraction of the adder
trees is invoked by the command &atree [16, 60].

This technique is able to handle very large multipliers that can be fully decom-
posed into half- and full-adders (for instance, the array and diagonal multipliers of
Fig. 2) efficiently, but fails on slightly optimized multiplier architectures, because
invoking the command &atree on these multipliers leads to incompleteness. In
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the experimental evaluation, we use &atree only for those benchmarks where we
know that the circuit can be represented by adder trees, i.e., the experiments of
Sect. 5.5.

3.2 AMULET [28]

In [28], it is presented how the verification approach can be generalized to
polynomial rings that include modular reasoning, i.e., Zl[X] for l = 22n. This allows
to cancel monomials in the intermediate results with coefficients that are multiples
of 22n.

The technique of [28] uses an incremental verification algorithm for circuit
verification. In this method, the multiplier circuit is divided into column-wise slices
and the specification polynomial is split into multiple polynomials. The correctness
of the circuit is shown by incrementally verifying the correctness of each slice.
The main advantage of this approach is that only one small part of the global
specification is used for reduction, which helps to reduce the size of the intermediate
results.

Furthermore, variable elimination is applied before reduction, i.e., after assigning
the gates to slices, all variables that occur in only one other polynomial within the
same slice are eliminated. Structures that implement a Booth encoding are detected
by pattern matching, and their internal gates are eliminated too.

After variable elimination, the column-wise specifications are reduced by the
rewritten Gröbner basis until completion. However, certain parts of the multiplier,
more precisely particular final stage adders, are hard to verify using computer
algebra. These adders usually contain sequences of OR-gates, which lead to an
exponential blow-up of the intermediate reduction results. On the other hand,
equivalence checking of adders is easy for SAT [29].

We will take a quick excursion and introduce the SAT problem following [19]:

• A literal l is either a positive Boolean variable x or its negation x.
• A clause C is a finite disjunction of literals.
• A formula in conjunctive normal form (CNF) F is a finite conjunction of clauses.
• An assignment τ is a function that consistently maps the literals of F to v ∈ {t, f},

such that τ(x) = v ⇔ τ(x) = ¬v, where ¬t = f and ¬f = t.
• A formula evaluates to t if and only if every clause in the formula evaluates to t. A

clause C evaluates to t if ∃l ∈ C with τ(l) = t. Given a CNF formula F , the SAT
problem is to decide if there exists an assignment such that F evaluates to t. If
such an assignment exists, the formula is satisfiable, otherwise it is unsatisfiable.

Based on the observation, the technique of [28] combines SAT and computer
algebra. It is detected whether a multiplier contains a complex final stage adder,
which is then replaced by a simple ripple-carry adder. A bit-level miter, which is
expected to be unsatisfiable, is produced to verify the correctness of the replacement
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using SAT solvers, and the rewritten multiplier is verified by computer algebra
techniques.

The authors implemented a tool called AMULET [28] that is able to handle
signed and unsigned multipliers given as AIGs. The tool automatically applies
adder substitution and verifies the (rewritten) multiplier using computer algebra.
Furthermore, AMULET is so far the only tool that is able to produce proof
certificates in the PAC and NSS proof formats, cf. Sect. 2.4. In the experiments
of this chapter, we will use the maintained version AMULET 1.5 that is currently
available on GitHub [23].

3.3 POLYCLEANER [38]

The work of [38] provides an extensive analysis why the number of monomials in
the reduction results increases drastically, when no preprocessing is applied. The
reason of the size explosion are certain monomials, called vanishing monomials,
that reduce to zero later in the reduction process. The authors observe that the
vanishing monomials origin from gates where the sum and carry output of a half-
adder converge and the vanishing monomials remain in the intermediate reduction
results until all internal gate polynomials of the half-adders have been substituted.

The work of [38] proposes a method where the converging gates are identified,
and the vanishing monomials are locally removed before the specification is
reduced. First, for each occurring half-adder in the circuit, possible converging
gates are identified and the belonging input cones are determined. A polynomial
is extracted for each converging gate by substituting the gate polynomials of the
associated cone. Since the extracted polynomial contains the product of the sum and
carry output of the corresponding half-adder, it contains the vanishing monomials.
After locally removing these vanishing monomials, the specification polynomial is
reduced by these vanishing-free polynomials to verify the circuit.

This method is implemented in the tool POLYCLEANER [37] that is able to verify
unsigned multipliers that are given as flattened Verilog modules.

3.4 REVSCA/REVSCA-2.0 [40]

The paper [40] is a follow-up work on [38]. The authors elaborate on the disadvan-
tages of the proposed method of [38]. First, the method of [38] highly depends on
the detection of the half-adders that are considered to be implemented as pairs of
XOR and AND gates. The second disadvantage is that the search space for finding
the converging gates is very large. Consequently, the method of [38] only works for
those multipliers where all half-adders can be detected and fails for more complex
multiplier circuits.



Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 13

In [40] the authors generalize the detection of converging gates and propose
a technique that identifies so-called atomic blocks of the multiplier, i.e., half-
adders, full-adders, and compressors, using reverse engineering. The detection of
converging gates becomes more independent of the actual design of the atomic
blocks and the search space to identify these gates can be limited. Furthermore, since
not only half-adders are considered as atomic blocks, vanishing-free polynomials
are not only generated for converging gate cones, but also for the outputs of atomic
blocks and lead to a more compact polynomial representation.

The authors implemented a tool called REVSCA [39] that verifies unsigned
multipliers given as AIGs. The implementation has been improved and additionally
verification of signed multipliers is supported in REVSCA-2.0 [39].

3.5 DYPOSUB [42]

In contrast to the already described methods, the technique of [42], a follow-up work
of [40], explicitly tries to tackle the problem of verifying multiplier circuits, where
logic synthesis and technology mapping are applied.

The problem with these optimized multipliers is that the clear boundaries
of certain substructures, such as internal half- and full-adders, may be blurred.
Consequently, the compact representation of these internal substructures are no
longer available. For example, the discussed methods of Sects. 3.1 and 3.2 heavily
rely on these boundaries, either during rewriting or defining the substitution order.

The method described in [42] tries to overcome this issue by using a dynamic
substitution order that allows to keep the size of the intermediate reduction results
on a moderate level. Before reduction is applied, the circuit gates are preprocessed
as described in [40], where atomic blocks and converging gate cones are identified
and vanishing-free polynomials are extracted for these cones and atomic blocks.

After preprocessing, a dynamic backward rewriting approach is applied to
verify the circuit. The core idea is that for each substitution step, a number of
candidate polynomials is available, which maintains the overall topological sorting
and guarantees that the polynomials of atomic blocks are substituted consecutively.
This ensures that the gate polynomials only need to be considered once during
reduction.

At each backward rewriting step, there may be several such possible candidates
available. The dynamic backward rewriting chooses the reduction candidate by
the number of the occurrences of the leading term in the intermediate reduction
result in ascending order. After each substitution step, the increase in the number
of monomials is checked. If the number of monomials grows by more than 10%,
the step is undone and the specification is reduced by the next candidate polynomial
in line. If there is no reduction of any candidate satisfying the threshold limit, the
threshold limit is increased and the process is repeated from the first candidate.

This approach is implemented in the tool DYPOSUB [41] that verifies unsigned
multipliers given as AIGs. The experimental data of [42] shows that this technique


