Topics in Mining, Metallurgy and Materials Engineering *Series Editor:* Carlos P. Bergmann

Abdel Salam Hamdy Makhlouf Gomaa A. M. Ali *Editors*

Waste Recycling Technologies for Nanomaterials Manufacturing

Topics in Mining, Metallurgy and Materials Engineering

Series Editor

Carlos P. Bergmann, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

"Topics in Mining, Metallurgy and Materials Engineering" welcomes manuscripts in these three main focus areas: Extractive Metallurgy/Mineral Technology; Manufacturing Processes, and Materials Science and Technology. Manuscripts should present scientific solutions for technological problems. The three focus areas have a vertically lined multidisciplinarity, starting from mineral assets, their extraction and processing, their transformation into materials useful for the society, and their interaction with the environment.

** Indexed by Scopus (2020) **

More information about this series at http://www.springer.com/series/11054

Abdel Salam Hamdy Makhlouf · Gomaa A. M. Ali Editors

Waste Recycling Technologies for Nanomaterials Manufacturing

Editors
Abdel Salam Hamdy Makhlouf
Central Metallurgical Research
and Development Institute (CMRDI)
Cairo, Egypt

Engineering, Metallurgy, Coatings & Corrosion Consultancy (EMC3) Edinburg, TX, USA Gomaa A. M. Ali Chemistry Department, Faculty of Science Al-Azhar University Assiut, Egypt

ISSN 2364-3293 ISSN 2364-3307 (electronic)
Topics in Mining, Metallurgy and Materials Engineering
ISBN 978-3-030-68030-5 ISBN 978-3-030-68031-2 (eBook)
https://doi.org/10.1007/978-3-030-68031-2

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Nowadays, nanomaterials (NMs) are used in many areas and applications, including medicine, energy, and environment. The initial cost of the NMs is high; thus, finding cheap sources is required. In addition, waste accumulation is a serious environmental problem. Therefore, recycling waste into valuable NMs is highly required, where it has environmental and economic benefits.

Waste management is pressing hard to warn the industry. Humans always produce waste and discard it in some way, influencing the environment. At present, no spot on the earth is not exposed to some waste. These materials may cause immediate health risks to humans and animals. Other wastes persist for a long time in the environment until they reach damaging levels to ecosystems. Hence, the upsurge in waste generated by the industries and human activities needs to be managed. Various recycling methods have been developed and applied for the conversion of wastes into useful forms of materials and NMs. The standard methods applied to recover the generated wastes, including recycling, reducing, and reuse, still need more developments.

Information and techniques for investigations are minimal. Nonetheless, it is incredibly likely that NMs used in several items would be in the waste stream. Environmental risks related to the treatment of nanowastes remain unexplored. Another factor is whether items containing NMs, consisting of recycling processes, will affect the waste management capabilities/performance or not. In comparison, NMs may substitute certain substances that make products, e.g., smarter or more efficient, to get into waste management sooner and potentially play a role in waste reduction. Draw up an overview of nanomaterial and waste-related scientific, health, and environmental problems, and assess the available recycling issues are needed. The ultimate goal is to consider looking for identical statistics to compare the potential hazards associated with the existence of NMs in the waste.

This book provides in-depth studies about these challenges and covers these issues in four parts.

vi Preface

Part One: Fundamentals, Current Prospects, and Future Trends

In this part, we covered the basics of nanomaterials in terms of manufacturing, characteristics, and applications. Various techniques used to recycle waste have been discussed. In addition, this part highlights the fundamentals, current prospects, and future trends of the recovered nanomaterials.

Part Two: Electronics Waste Recycling Technologies

In this part, we highlighted the importance of recycling in terms of environmental and economic perspectives. We discussed the recycling techniques of electronic waste, including lithium-ion batteries, zinc-carbon batteries, etc. For example, hierarchical cobalt oxide nanostructure has been recovered from spent lithium-ion batteries using magnetic electrodeposition. In addition, MnO₂ nanoflower has obtained from zinc-carbon batteries using electrodeposition and other methods. The materials used for manufacturing lithium-ion batteries also recovered from various waste sources. The applications of the recovered materials for supercapacitors, batteries, electrocatalytic, and sensing have been discussed.

Part Three: Agriculture Waste Recycling Technologies

In this part, we covered the conversion of agricultural waste into nanomaterials, mainly carbon-based nanomaterials and their composites. The studied agriculture waste includes rice husk, rice husk ash, bamboo leaves, bio-waste sago bark, banana fibers, argania spinosa seeds, corn grains, sugarcane fibers, and oil palm shells, palm kernel shells, orange peel, wheat flour, etc. Various nanomaterials compositions and morphologies were obtained, such as pure activated carbon, hetero-atom-doped carbon materials, and metal oxides/carbon nanocomposites. The recovered materials have been studied for various applications, including water treatments, energy storage, and forensic medicine applications.

Part Four: Plastic and Polymeric Waste Recycling Technologies

Plastic is one of the most significant hazards to the environment. Plastic is a non-biodegradable material, and several toxic chemicals leach out of it and seep through the soil, water, plants, and animals. In this part, we introduced the topic of utilizing plastic wastes as a precursor for the fabrication of carbon-based materials. While also highlighting the factors affecting the efficiency of each process and the recent progress in this regard, this part also highlights recycling polyethylene terephthalate waste into a novel magnetic nanoadsorbent. Recent breakthroughs in

Preface vii

carbon-based nanomaterials' science and technology use paraffinic waxes as a carbon source where it consists of not less than 18 carbon number per single paraffin crystal. This part also describes the separation of paraffinic petroleum wax, its purification, and characterization beside nanocarbon synthesis. Different nanomaterials can be synthesized from the waste plastics, such as polyvinyl chloride plastic is used as the carbon source for the fabrication of MoC_2 nanoparticles.

Cairo, Egypt Edinburg, USA Assiut, Egypt November 2020 Abdel Salam Hamdy Makhlouf

Gomaa A. M. Ali

Contents

rundamentais, Current Prospects, and Future Trends	
Fundamentals of Waste Recycling for Nanomaterial Manufacturing Gomaa A. M. Ali and Abdel Salam Hamdy Makhlouf	3
Recycling, Management, and Valorization of Industrial Solid Wastes	25
Environmental Susceptibility and Nanowaste	65
Electronics Waste Recycling Technologies	
Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method Eslam A. A. Aboelazm, Nourhan Mohamed, Gomaa A. M. Ali, Abdel Salam Hamdy Makhlouf, and Kwok Feng Chong	91
Recovery of Nanomaterials for Battery Applications	125
Cost-Effective Nanomaterials Fabricated by Recycling Spent Batteries Himadri Tanaya Das, T. Elango Balaji, K. Mahendraprabhu, and S. Vinoth	147
Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications	175

x Contents

Recovery of Metal Oxide Nanomaterials from Electronic Waste Materials	203
Heba H. El-Maghrabi, Amr A. Nada, Fathi S. Soliman, Patrice Raynaud, Yasser M. Moustafa, Gomaa A. M. Ali, and Maged F. Bekheet	203
Nanosensors and Nanobiosensors for Monitoring the Environmental	
Pollutants Alaa El Din Mahmoud and Manal Fawzy	229
Waste-Recovered Nanomaterials for Emerging Electrocatalytic	
Applications Abdelaal S. A. Ahmed, Ibrahim Saana Amiinu, Xiujian Zhao, and Mohamed Abdelmottaleb	247
Agriculture Waste Recycling Technologies	
Recycling of Nanosilica Powder from Bamboo Leaves and Rice Husks for Forensic Applications	295
Nik Fakhuruddin Nik Hassan, Cik Norhazrin Che Hamzah, Revathi Rajan, and Yusmazura Zakaria	
Recycling of Nanosilica from Agricultural, Electronic, and Industrial Wastes for Wastewater Treatment	325
Tarek A. Seaf El-Nasr, Hassanien Gomaa, Mohammed Y. Emran, Mohamed M. Motawea, and Abdel-Rahman A. M. Ismail	
Extraction of Silica and Lignin-Based Nanocomposite Materials from Agricultural Waste for Wastewater Treatment Using	
Photocatalysis Technique	363
Recovery of Nanomaterials from Agricultural and Industrial Wastes	
for Water Treatment Applications	385
Carbon Nanomaterials Synthesis-Based Recycling	419
Recent Trends of Recycled Carbon-Based Nanomaterials	443
and Their Applications M. Abd Elkodous, Gharieb S. El-Sayyad, Mohamed Gobara, and Ahmed I. El-Batal	443
Heteroatoms Doped Porous Carbon Nanostructures Recovered	165
from Agriculture Waste for Energy Conversion and Storage Diab Khalafallah, Mingjia Zhi, and Zhanglian Hong	465

Contents xi

Recycled Activated Carbon-Based Materials for the Removal of Organic Pollutants from Wastewater	513
Rice Husk-Derived Nanomaterials for Potential Applications	541
Recycle Strategies to Deal with Metal Nanomaterials by Using Aquatic Plants Through Phytoremediation Technique Jyoti Mehta, Moharana Choudhury, Arghya Chakravorty, Rehab A. Rayan, Neeta Laxman Lala, and Andrews Grace Nirmala	589
Advanced Waste Recycling Technologies for Manufacturing of Nanomaterials for Green Energy Applications Tahany Mahmoud, Mohamed A. Sayed, A. A. Ragab, and Eslam A. Mohamed	617
Nanoformulated Materials from Citrus Wastes	649
Bottom-Up Approach Through Microbial Green Biosynthesis of Nanoparticles from Waste	671
Plastic and Polymeric Waste Recycling Technologies	
Recycling the Plastic Wastes to Carbon Nanotubes	701
Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials	729
Recycling Polyethylene Terephthalate Waste to Magnetic Carbon/Iron Nanoadsorbent for Application in Adsorption of Diclofenac Using Statistical Experimental Design Premanjali Rai and Kunwar P. Singh	753
Waste Plastic-Based Nanomaterials and Their Applications	781
Recycling Nanofibers from Polyethylene Terephthalate Waste	905
Using Electrospinning Technique	805

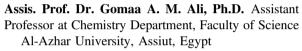
xii Contents

Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials Fathi S. Soliman, Heba H. El-Maghrabi, Gomaa A. M. Ali, Mohamed Ayman Kammoun, and Amr A. Nada	823	
Manufacturing of Nanoalumina by Recycling of Aluminium Cans Waste Aiman Awadh Bin Mokaizh and Jun Haslinda Binti Haji Shariffuddin	851	

Editors and Contributors

About the Editors

Prof. Dr. Abdel Salam Hamdy Makhlouf, Ph.D.President of Engineering, Metallurgy, Coatings and Corrosion Consultancy (EMC3), Texas, USA


Full Professor: Central Metallurgical R&D Institute Website: https://www.emc3.website/

E-mail: asalam85@yahoo.com

Professor Makhlouf is an internationally recognized leader in the field of materials science and engineering with more than 27 years of independent research project management, teaching, and consulting. He has been included in Stanford University's List of World's Top 2% of Scientists, USA, 2020. He has a blend of both industrial and academic leadership as a President of EMC3, Full Professor at Central Metallurgical Research and Development Institute, Egypt, and a Former Full Professor of Manufacturing Engineering at the University of Texas, USA. He is the recipient of numerous national and international prizes and awards Humboldt Research Award including the Experienced Scientists, at Max Planck Institute, Germany; Fulbright Scholar, NSF, and Department of Energy Fellowships, USA; Shoman Award in Engineering Science; and the State Prize of Egypt in Advanced Science and Technology, and more. He is a member of TMS-USA, EPSRC-UK, European Science Foundation—College of Expert Reviewers, Fulbright Alumni, Alexander von Humboldt Alumni, Max Planck Institute Alumni, etc. He has served as both a xiv Editors and Contributors

Senior Editor and board member of many international journals, as well as a reviewer for several international funding agencies. He has excellent knowledge of USA, EU, and UK research landscape. He is a Consultant and Reviewer for several universities, and Advisory Editor for Elsevier USA.

Dr. Makhlouf is the author of over 200 peer-reviewed journal and conference papers, 19 books and handbooks, 30 book-chapters, as well as +100 technical reports. The h-index is 37, with > 4570 citations. Many of his publications have been ranked among the World's Best in the fields of Nanostructures, Nanomaterials, Biomedical Engineering, Materials Science, Coatings, Environmental Science, Nuclear Materials.

E-mail: gomaasanad@gmail.com; gomaasanad@az-har.edu.eg

Dr. Gomaa A. M. Ali is an Assistant Professor at the Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt. He has 14 years of experience working in the research areas of materials science, nanocomposites, humidity sensing, graphene, supercapacitors, water treatment, and drug delivery. He was awarded his Ph.D. in Advanced Nanomaterials for Energy Storage from UMP, Malaysia. He is the recipient of some national and international prizes and awards such as TWAS-AREP (2018), Gold Medal (Archimedes, Russia, 2014), Green Technology Award (CITREX, Malaysia, 2015), Gold Medal (British Invention Show, UK, 2015). Dr. Gomaa has published over 100 journal articles and 6 book chapters on a broad range of crossdisciplinary research fields, including advanced multifunctional materials, nanotechnology, supercapacitor, water treatment, and humidity sensing, biosensing, corrosion, drug delivery, and materials for energy applications. So far, he has more than 1800 citations and h-index of 24. Dr. Gomaa has served as both Senior

Editors and Contributors xv

Editor and board member of many international journals and a reviewer for more than 50 WoS journals. Dr. Gomaa is a member of some national and international scientific societies such as the American Chemical Society (ACS) and the Egyptian Young Academy of Sciences (EYAS).

Contributors

M. Abd Elkodous Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Giza, Egypt

Sabah M. Abdelbasir Central Metallurgical Research and Development Institute, Helwan, Cairo, Egypt

Mohamed Abdelmottaleb Chemistry Department, Faculty of Science, Al-Azhar University, Assuit, Egypt

Eslam A. A. Aboelazm Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt

Abdelaal S. A. Ahmed Chemistry Department, Faculty of Science, Al-Azhar University, Assuit, Egypt;

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road, Wuhan, People's Republic of China

Omid Akbarzadeh Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University for Malaya (UM), Kuala Lumpur, Malaysia

Atika Alhanish Chemical Engineering Department, Faculty of Petroleum and Natural Gas Engineering, University of Zawia, Zawia, Libya

Gomaa A. M. Ali Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt;

The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don, Russian Federation

Shimaa Hosny Ali Department of Chemistry, Faculty of Science, New Valley University, New Valley, Egypt

Enas Amdeha Process Design and Development Department, Egyptian Petroleum Research Institute, Cairo, Egypt

Ibrahim Saana Amiinu State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, People's Republic of China

Hasna Aziam High Throughput Multidisciplinary Research Laboratory (HTMRL), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco; IMED-Lab, Cadi Ayyad University (UCA), Marrakesh, Morocco

Radwa Mahmoud Azmy Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Rania Azouz Clinical Microbiology Unit, Clinical and Chemical Pathology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt; Medical Administration, Beni Suef University, Beni Suef, Egypt

Zinab H. Bakr Physics Department, Faculty of Science, Assiut University, Assiut, Egypt

Maged F. Bekheet Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universität Berlin, Institut für Werkstoffwissenschaften und -technologien, Berlin, Germany

Aiman Awadh Bin Mokaizh Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

Arghya Chakravorty School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India

Cik Norhazrin Che Hamzah Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia

Kwok Feng Chong Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Malaysia

Moharana Choudhury Voice of Environment (VoE), Guwahati, Assam, India

Himadri Tanaya Das Department of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan;

Center of Excellence for Advanced Materials and Applications, RUSA, Utkal University, Vanivihar, Bhubaneswar, Odisha, India

Asmaa M. El Shafey Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia

T. Elango Balaji Department of Chemistry, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India

Ahmed I. El-Batal Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt

Editors and Contributors xvii

Heba H. El-Maghrabi Department of Refining, Egyptian Petroleum Research Institute, Cairo, Egypt

Mohamed E. Elmowafy Chemical Engineering Department, Military Technical College, Cairo, Egypt

Radwa A. El-Salamony Egyptian Petroleum Research Institute, Cairo, Egypt

Mohamed A. Elsayed Chemical Engineering Department, Military Technical College, Cairo, Egypt

Gharieb S. El-Sayyad Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt;

Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt

Mohammed Y. Emran Department of Chemistry, Faculty of Science, Al-Azhar University-Assiut Branch, Assiut, Egypt

Manal Fawzy Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, Egypt;

Green Technology Group, Faculty of Science, Alexandria University, Alexandria, Egypt;

National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt

Mohamed Gobara Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt

Hassanien Gomaa Faculty of Science, Department of Chemistry, Al-Azhar University, Assiut, Egypt

A. Hamdy Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Egypt

Zhanglian Hong State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China

Abdel-Rahman A. M. Ismail Faculty of Science, Department of Chemistry, Al-Azhar University, Assiut, Egypt

Mohd Rafie Johan Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University for Malaya (UM), Kuala Lumpur, Malaysia

Mohamed Ayman Kammoun Laboratoire Sciences des Matériaux et Environnement, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia

Javaria Kanwal Department of Chemistry, The Women University Multan, Multan, Pakistan

Diab Khalafallah State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China;

Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan, Egypt

Chin Wei Lai Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University for Malaya (UM), Kuala Lumpur, Malaysia

Neeta Laxman Lala Voice of Environment (VoE), Guwahati, India

K. Mahendraprabhu Department of Chemistry, MEPCO Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India

Alaa El Din Mahmoud Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, Egypt;

Green Technology Group, Faculty of Science, Alexandria University, Alexandria, Egypt;

National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt

Tahany Mahmoud Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt

Abdel Salam Hamdy Makhlouf Engineering, Metallurgy, Coatings & Corrosion Consultancy (EMC3), Edinburg, TX, USA;

Central Metallurgical Research and Development Institute, Helwan, Cairo, Egypt

Jyoti Mehta Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India

Eslam A. Mohamed Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt

Nourhan Mohamed Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey

Seyedehmaryam Moosavi Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University for Malaya (UM), Kuala Lumpur, Malaysia

Mohamed M. Motawea Faculty of Science, Department of Chemistry, Al-Azhar University, Assiut, Egypt

Yasser M. Moustafa Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Egypt

Sara Musaddiq Department of Chemistry, The Women University Multan, Multan, Pakistan

Editors and Contributors xix

Kiran Mustafa Department of Chemistry, The Women University Multan, Multan, Pakistan

Amr A. Nada Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Egypt;

Laboratoire Plasma et Conversion de l'Energie (LAPLACE), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Nik Fakhuruddin Nik Hassan Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia

Andrews Grace Nirmala Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India

A. A. Ragab Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt

Premanjali Rai Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India

Revathi Rajan Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia; Forensic Science Programme, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia

Rehab A. Rayan Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt

Patrice Raynaud Laboratoire Plasma et Conversion de l'Energie (LAPLACE), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Priyabrata Roy Centre for Interdisciplinary Studies, Barrackpore, Kolkatta, India; Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India

Ibtisam Saeed College of Science, University of Duhok, Duhok, Iraq

Vahid Safarifard Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

Mohamed F. Sanad Basic Science Departments, Modern Academy for Engineering and Technology, Maadi, Egypt;

Basic Science Department, British University in Egypt, Cairo, Egypt;

Chemistry Department, Faculty of Science, Ain-Shams University, Abbasia, Cairo, Egypt;

University of Texas at El Paso, El Paso, TX, USA

Mohamed A. Sayed Refining Department, Egyptian Petroleum Research Institute, Cairo, Egypt

xx Editors and Contributors

Tarek A. Seaf El-Nasr Faculty of Science, Department of Chemistry, Jouf University, Sakaka, Aljouf, Saudi Arabia;

Faculty of Science, Department of Chemistry, Al-Azhar University, Assiut, Egypt

Hanaa Selim Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Egypt

Jun Haslinda Binti Haji Shariffuddin Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

Kunwar P. Singh Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India

Fathi S. Soliman Department of Refining, Egyptian Petroleum Research Institute, Cairo, Egypt

S. Vinoth Department of Electronics and Communication Engineering, Manakulavinayagar Institute of Technology, Kalitheerthalkuppam, Puducherry, India

Suhad Yasin Chemistry Department, College of Science, University of Duhok, Kurdistan Region, Iraq

Yusmazura Zakaria Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia

Xiujian Zhao State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China

Mingjia Zhi State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China

Fundamentals, Current Prospects, and Future Trends

Fundamentals of Waste Recycling for Nanomaterial Manufacturing

Gomaa A. M. Ali and Abdel Salam Hamdy Makhlouf

Abstract Nowadays, nanomaterials are used in many areas and applications, including medicine, energy, and environment. The initial cost of the nanomaterials is high; thus, finding another cheap source is required. In addition, waste accumulation is a serious environmental problem. Therefore, recycling waste into valuable nanomaterials is highly required, where it has environmental and economic benefits.

Keywords Nanomaterials · Waste · Recycling · Nanotechnology · Manufacturing

List of Abbreviations

CVD Chemical vapour deposition mZVI Meso-scale zero valent iron NSMs Nanostructured materials PVD Physical vapour deposition

ppb Parts per billion

SG Sol-Gel

TEOS Tetraethylorthosilicate

Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt e-mail: gomaasanad@azhar.edu.eg; gomaasanad@gmail.com

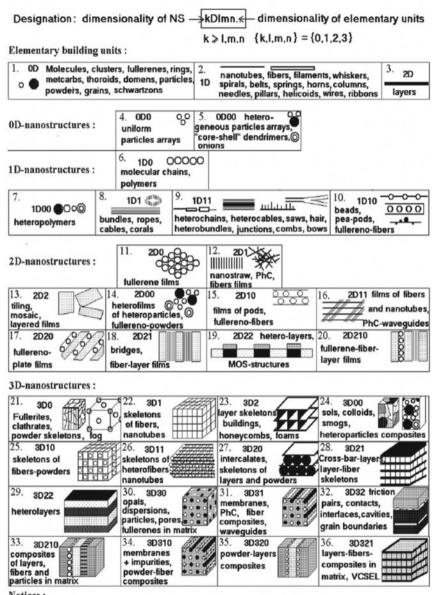
G. A. M. Ali (⊠)

1 Fundamentals of Nanomaterials Manufacturing

1.1 Nanoscience and Nanotechnology

Nanoscience is one of the hottest areas and rapidly expanding research fields. It aims to synthesize, study, characterize, and evaluate new materials, for which one or more of their dimensions lies in the nanometer scale (1–100 nm). Nano refers to the 10⁻⁹ power or one billionth. Nanotechnology aims to fabricate these materials in the form of devices systems and other industrial products. Advances in nanoscience lead to new developments in nanotechnology. Materials of this size are particularly attractive because of their inherent physical and chemical characteristics because of their high surface-to-volume ratio. Nanoparticles are very sensitive to surface environments. Nanotechnology aims to better understanding these properties and to find new ways of utilizing them in our daily life.

Nanomaterials have received a great deal of research interest because of their unique catalytic [1, 2], optical [3, 4], electrical [5–7], magnetic [8, 9], sensing [10–12], storage [13–16], and mechanical and chemical properties. Nanomaterials have unique characteristics than when in bulk (micro or macro) form. Nanomaterials can be classified into several categories based on their structures such as nanoparticles, nanotubes, nanoflowers, nanocapsules, nanocoatings, nano-thin-films, nanorods, nanoflakes, nanofibers, nanocarriers, nanoceramics [13, 17–25], and nanocomposites. The nanomaterials' applications can also be classified as nanomagnetism, nanomedicine, nanotoxicology, nanoelectrochemistry, nanoengineering, nanoscience, etc. [26–29].


1.2 Types of Nanomaterials

Solid substances can be divided into metals, ceramics, semiconductors, composites, and polymers [6, 7, 10, 30–36]. When the size of these materials is decreased to the nano-range, they can be further subdivided into nanoparticles, nanocrystals, nanotubes, nanorods, and nanocomposites [14, 15, 37–40]. The first classification scheme of nanostructured materials (NSMs) was provided by Gleiter in 2000 [41], and other classification was extended by Pokropivny and Skorokhod [42] as shown in Fig. 1. 0D, 1D, 2D, and 3D are the main classifications of NSs based on their dimensionality.

1.3 Nanosized Structures

Nanomaterials are the bridge between bulk materials and atomic structures. The physical properties of the bulk materials are constant regardless of its size, but for

Dimensionality classification of nanostructures (L < 100 - 500 nm)

Notices:

- 1. Interfaces between building units not regarded as additional 2D-NSs
- 2. Inverse NSs with cavity building units not regarded as separate ones
- 3. The classification may be extended with account of fourfold combinations

Fig. 1 Dimensionality classifications of nanostructured materials Adapted with permission from Ref. [42], Copyright 2007, Elsevier

the nanomaterials, the properties are varied with the variation in the particles size. Size-dependent properties are detected, such as quantum confinement [43] in semiconductor nanoparticles, surface plasmon resonance [44] in some metal nanoparticles, which are the fundamentals behind many colour-based biosensor applications superparamagnetism [45] magnetic and in nanomaterials. Nanocomposite materials can be considered as multiphase materials in which one or more from its components have nanometer dimensions [46]. One of its components is considering a guest phase, and the other is considered as the host one. The host phase acts as a matrix in which the guest phase is distributed [35], or as a shell coated the guest core [47, 48]. The nanocomposite materials exhibit properties of both the gust and host compounds [31, 49, 50].

2 Synthesis of Nanomaterials

The top-down and bottom-up are main approaches to nanomaterials synthesis. A typical top-down method is attrition or milling, whereas the bottom-up approach examples include colloidal dispersion and deposition. Synthesis routes play a crucial role in the properties of the target product. Many synthesis techniques have been evaluated and developed to obtain nanoscale materials with proper morphologies.

2.1 Vapor State Processing Routes

2.1.1 Physical Vapor Deposition

Thin-film nanomaterials could be easily prepared by physical vapor deposition (PVD). The process includes the generation of vapor phase species via sputtering [51], laser ablation [52], or plasma spray [53] (Fig. 2), and then the vapor is condensed onto a substrate followed by the nucleation and growth. The process has some limitations in the case of preparation of the multicomponent materials (nanocomposites) due to the differences in the evaporation temperature of the components because of the differences in vapor pressures of the evaporating species.

2.1.2 Chemical Vapor Deposition

The process in which the gaseous species decompose or react on a heated surface to make stable solid products is called chemical vapor deposition (CVD) [55]. Metallic, ceramic, and semiconducting thin films could be deposited using CVD. The process can be classified into thermally activated, laser-assisted, and

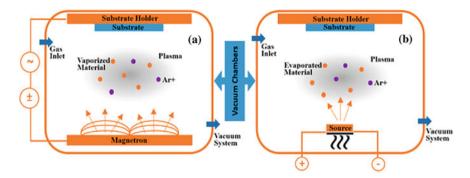
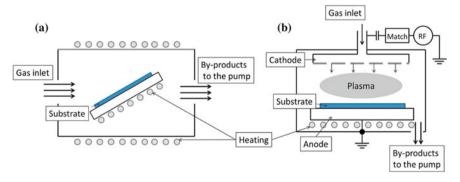



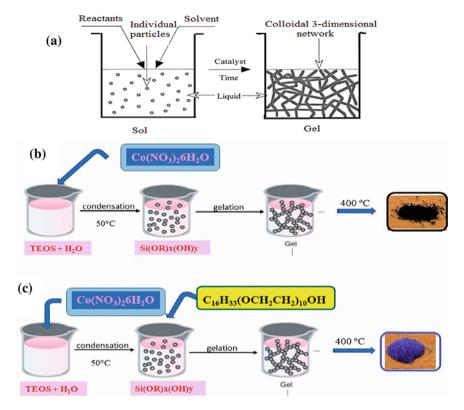
Fig. 2 Schematic illustration of conventional PVD processes (sputtering (a) and evaporating (b)). Adapted with permission from Ref. [54], Copyright 2018, MDPI

plasma-assisted CVD based on the activation sources for the chemical reactions [56]. Figure 3 shows the setup of a horizontal CVD and parallel-plate plasma-enhanced CVD reactors. In the case of metal chloride precursors, corrosive chlorine-containing by-products are formed [56]. CVD is a more complex method of forming thin films and coatings than PVD due to the surface and gas phase interactions.

2.1.3 Spray Conversion Processing

The chemical precursors could be atomized into aerosol droplets that are dispersed throughout a gas atmosphere, then moved into a heated reactor to form thin films or ultrafine particles. The atomization purposes use various aerosol generators, including pressure, electrostatic, or ultrasonic atomizer. Spray pyrolysis is the most commonly used aerosol processing method [58].

Fig. 3 Setup of a horizontal CVD (a) and a parallel-plate plasma-enhanced CVD (b) reactors. Adapted with permission from Ref. [57], Copyright 2019, Elsevier


2.2 Liquid State Processing Routes

2.2.1 Sol-Gel Method

The sol-gel (SG) route has been used for metal oxide and ceramic powders production with high homogeneity and purity [10, 35, 59, 60]. SG process involves the formation of a colloidal suspension (sol), which is converted to viscous gel and solid material. In the process, reactive metal precursors were hydrolyzed, followed by condensation and polymerization reactions. Many types of metal precursors can be used (alkoxides, carboxylic salts, chlorides, nitrates, etc. [61]). To achieve gel densification, the solvent removal and appropriate drying are required. Tetraethylorthosilicate (TEOS; Si(OC₂H₅)₄) is the most common studied metal alkoxides [62]. However, the conversion of metal precursor molecules needs acid or base catalysts such as sulphuric acid or ammonium hydroxide since the hydrolysis of silicon alkoxides is very slow. The conversion from a solution containing individual solvated particles to a colloidal three-dimensional network is represented in Fig. 4a. In addition, Fig. 4b, c shows the detailed synthesis process of CoO_x-SiO₂ system. The most advantages of the SG method are high purity, good homogeneity of the prepared materials, lower preparation temperature, precise composition control, versatile shaping, and preparation by cheap and straightforward apparatus compared with other methods.

2.2.2 Citrate-Gel-Pechini Process

In the citrate-gel-Pechini method, an organic network formed in precursor solutions; thus, fine oxide powders are obtained after a heating process stabilizes metal ions. This method can be used for the preparation of multicomponent compositions with good homogeneity and control of stoichiometry [64]. The citric acid is used as a capping agent because of its relatively strong multifunctional organic acid. Pechini route utilizes poly-chelates between the metal ions and C=O ligands of citric acid [65]. The chelating process takes place during the aggressive stirring of precursor solution containing metallic salts and CA. Figure 5 shows Pechini process for CuO/CeO₂ nanocomposites preparation. The simplicity of the method, homogeneous microstructure, and low crystallization temperature of the obtained material are the main advantages of the Pechini route [64]. Different types of precursors can be used. Moreover, both thin films and nanocomposite powders can be obtained [64, 66]. Higher surface area and lower particle size products can be obtained.

Fig. 4 Simple representation for sol-to-gel transformation (**a**) sol-gel process of CoO_x -SiO₂ preparation in presence of (**b**) hydrolytic alkoxide and non-ionic surfactant (**c**). Adapted with permission from Ref. [63], Copyright 2019, MPDI

2.2.3 Wet Chemical Synthesis

This simple and single-step method includes chemical reaction producing different shapes nanorods [68], and nanoparticles with approximate spherical shape [69]. Various nanostructured forms (nanoflowers, nanoneedles, and staking of flake-like structures) are achieved by controlling the experimental conditions [70]. Both organic and inorganic additives can yield different shapes of nanomaterials products. The shape of particles can be controlled by controlling the adsorption of some inorganic anions to particular crystal faces [71]. ZnO nanopencils have been synthesized using wet chemical method as shown in Fig. 6 together with its morphological investigations.

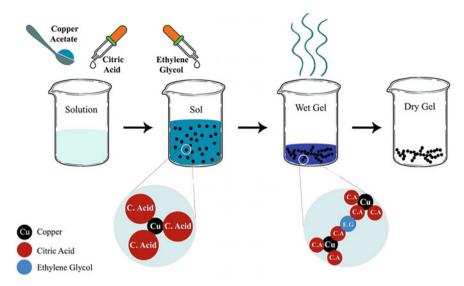
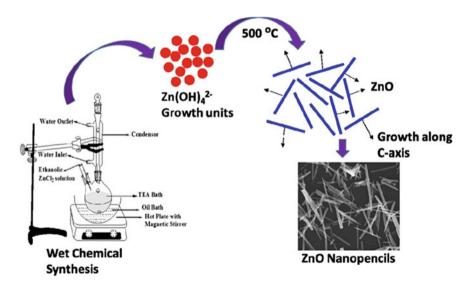



Fig. 5 Pechini process for CuO/CeO₂ nanocomposites preparation. Adapted with permission from Ref. [67], Copyright 2019, Elsevier

Fig. 6 Synthesis of ZnO nanopencils using wet chemical method. Adapted with permission from Ref. [72], Copyright 2016, Elsevier

2.3 Solid-State Processing Routes

2.3.1 Mechanical Milling

The particles' size of metal and ceramic materials can be reduced to the nanoscale by high-energy ball milling. Some factors must be taken in the account such as: (i) the powder-to-ball mass ratio, and (ii) addition of process control agent [73]. The ball milling techniques can successfully reduce the particle size to few nanometers, but phase transformation may occur [73, 74]. Present size reduction methods possess some disadvantages, such as contaminations from grinding media. Figure 7 shows the formation mechanism of meso-scale zero valent iron (mZVI) nanoparticles as an example by high-energy ball milling process.

2.3.2 Mechanochemical Preparation

The mechanochemical preparation process of the nanomaterials includes mechanical activation of solid-state displacement reactions in a ball mill. Thus, chemical

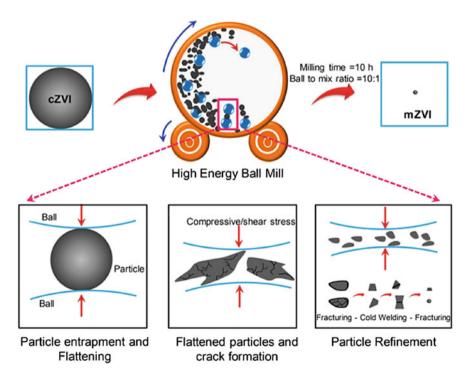


Fig. 7 Formation mechanism of meso-scale zero valent iron nanoparticles by high-energy ball milling process. Adapted with permission from Ref. [75], Copyright 2016, Elsevier