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Preface

The rapid development of urban areas in hot and humid regions has led to increases
in urban temperatures, a decrease of urban ventilation, and a transformation of the
once green outdoor environment into solar-energy-absorbing concrete and asphalt.
This situation has increased the discomfort both outdoor and indoor and decreased
air quality. Also, the energy consumption and CO2 emissions of urban areas are still
increasing despite many efforts to improve efficiency of buildings and energy
systems.

The term urban heat island (UHI) refers to the current increase in urban tem-
peratures due to high thermal load, problems related to urban ventilation, and the
increased usage of asphalt and concrete. UHIs negatively affect the health of urban
dwellers and increase urban cooling energy consumption. The presence of UHIs, in
combination with global warming, means that the temperatures in metropolitan
areas within hot and humid regions are expected to increase, as the demand for
more thermal comfort and better ventilation results in increased usage of
air-conditioning and ventilation systems.

The UHI phenomenon in hot and humid regions affects the daily lives of the
populations living in these areas—it increases the urban temperature, which results
in increased discomfort. Furthermore, as the outdoor temperature increases, the
operation of air-conditioning systems increases, which further affects the outdoor
temperature. This will increase the urban temperature, which complicates the UHI
phenomenon in hot and humid regions as energy and environmental concerns
become interconnected. Hence, passive and active concepts and technologies are
being implemented to mitigate the effects of UHIs in hot and humid regions.

The research and development of concepts and technologies intended to mitigate
the effects of UHIs has advanced especially in countries within hot and humid
regions, as urban centers experience temperature increases, especially during the
hot summer season. As UHIs are expected to be of growing concern in many urban
areas in hot and humid countries, the development and application of UHI miti-
gation concepts and technologies will have a significant impact on public health and
energy consumption.
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This book compiles the concepts and technologies associated with the mitigation
of UHIs that are applicable in hot and humid regions. Several experts in the field
were invited to contribute chapters on the reduction of UHIs in different areas to
provide readers, researchers, and policymakers with insights into the concepts and
technologies that should be considered when planning and constructing urban
centers and buildings. This book offers solutions for the problem of increasing
UHIs in hot and humid climates. The chapters discuss passive and active methods
that can be incorporated during urban planning, urban renewal, building design, and
building retrofitting processes.

We acknowledge with gratitude each of the global experts who have fully
supported and contributed chapters. With their support, this book has become a
guide for urban planners, building designers, and policymakers with regard to the
consideration of the urban heat island (UHI) phenomenon in hot and humid regions.
We are grateful to Springer and the staff for the support given to us from this book’s
conceptualization through to its publication. We are also thankful to our families for
their support during the entire process of producing this book.

We hope that with this book, urban planning and building design in hot and
humid regions will not complicate the UHI problem. Hence, it will contribute to
lessening the impact of UHIs through the application of the latest concepts and
technologies for the reduction of urban temperatures.

Iligan, Philippines Napoleon Enteria
Sydney, Australia Matteos Santamouris
Montreal, Canada Ursula Eicker
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Morphology of Buildings and Cities
in Hot and Humid Regions

Napoleon Enteria, Odinah Cuartero-Enteria, Mattheos Santamouris,
and Ursula Eicker

Abstract Hot and humid regions consist of the tropical climate, Middle Eastern
climate, and Mediterranean climate. Such regions are normally located near the
equator but also include dessert regions located far from the equator, such as the
Gobi Desert. These regions experience uncomfortable thermal comfort levels due
to the high outdoor air temperature and, in some cases, high humidity. This situa-
tion makes it challenging to provide thermal comfort in these regions. The increased
economic activities in most of the countries in hot and humid regions have changed
the morphology of urban areas, cities, buildings, and houses. The increase in urban-
ization affects the outdoor and indoor environments of buildings and houses. The
increasing urban temperature due to the increase of heat generation frompeople, cars,
appliances, and other human activities affect the chemical and biological situations
of urban areas. The increasing outdoor air temperature due to urban heat generation
(aka, urban heat island) in hot and humid regions worsens the already unpleasant
outdoor air conditions. It has also resulted in an increase in the use of air condi-
tioning systems and energy consumption as the heat sink temperature (outdoor air)
increases.With this, the difference between the indoor air and outdoor air temperature
has increased.

Keywords Hot and humid regions · Urban heat island (UHI) ·Mitigation
techniques · Cities and urban centers · Buildings and houses
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1 Introduction

The economic development of different countries in hot and humid regions has
different accounts. The development of countries in hot and humid tropical countries
in South East Asia has centered on the development of natural resources [1] and
commercial andmanufacturing activities [2], which have resulted in a better standard
of living and urbanization. The case of Middle Eastern countries has resulted in the
booming production of oils, which has resulted in the development of metropolitan
areas [3, 4]. Situations in other regions in Latin America, North America, and the
Mediterranean are due to increased economic activities owing to a combination of
natural resources development and manufacturing-commercial operations, which, in
turn, have resulted in urban development and an influx of people [5, 6].

The increase of populations of urban areas, either due to permanent migration
or movement during working hours, has led to extensive energy consumption [7]
for transportation, houses, food establishment, offices, health centers, etc. [8]. The
increase of building energy consumption has resulted in an increase in heat emis-
sion as the energy consumed in those establishments is intended to produce better
indoor comfortable conditions (e.g., better thermal comfort, air quality, lighting, and
energy for work equipment and personal gadgets) [9]. In addition, the systems that
transport workers and goods create environmental concerns [10–12] in addition to
climatic conditions (e.g., heating due to the absorption of solar energy by urban
structures) [13].

Due to the large influx of people in concentrated commercial, trade, manufac-
turing, and urban areas, heat generation has increased [14, 15]. The flourishing of
urban areas and centers has resulted in high concentrations of people, transportation
services (public and private), restaurants, and other amenities to provide comfort to
the people in the surrounding areas [16]. Large-scale and quickly developing urban
centers have created stress related to supporting the requirements of the general
population living and working around these areas. In turn, the situation has resulted
in environmental degradation [17, 18]. Environmental degradation has affected the
environment’s ability to support a healthy population as emissions increase [19].

The rapid development of urban areas and cities, which have resulted in unplanned
urban planning and zoning, have created an imbalance between natural and artificial
structures around densely populated areas, which, in turn, has resulted in unhealthy
environmental conditions [20]. In hot and humid regions, these conditions have
furthered the localized heating of urban areas owing to heat generation, absorption of
solar energy, and the effect of hampered urban ventilation [21–23]. The resultant heat
increase—the so-called urban heat island (UHI)—further complicates the situation of
hot and humid regions [24, 25]. This has resulted in the further utilization of artificial
mechanical cooling and ventilation systems [26], which generates additional urban
anthropogenic heat [27].

Due to the limitations of horizontal space development, vertical development has
become more widespread in urban areas and cities. High-rise buildings containing
offices, residential complexes, amenities, and other vertical structures, have become
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the norm in highly urbanized areas; these structures lead to a high building density and
contribute to UHIs [28]. The vertical development of urban areas also increases the
anthropogenic heat and hampers the flow of natural air ventilation while increasing
pedestrian-level airspeed and lowering solar energy absorption due to sun-shading
[29, 30]. Buildings affect solar irradiation absorption, which either helpswith heating
or cooling urban areas [31]. In compact cities, the street-level thermal environ-
ment affects the outdoor thermal comfort, the urban environment, and pollutant
dispersion [32].

With the large-scale influx of people in urban areas and cities, housing devel-
opments in nearby areas flourish to cater to the needs of the people in the middle
and upper echelons of society [33–35]. The development of subdivisions eliminates
the natural vegetation of the areas around the urban areas and cities [36]. The alter-
ation of the land to cater to the needs of urban growth has resulted in increased air
temperature [37]. Hence, the preservation of nature should be considered in all land
development projects [38]. Otherwise, it will result in biodiversity loss [36].

2 Buildings and Houses

The buildings and houses in hot and humid regions evolved since the start of civiliza-
tion until the present generation. Numerous structures have been changed regarding
their design, selection of materials, methods of construction, and operation. From
passively operated buildings and houses in previous years to the advanced and
smart-operated buildings and houses in modern times are typical in the regions.

2.1 Old Situation

In previous years, buildings and houses were designed and constructed based on
the available materials, safety considerations, and climatic conditions. In the Middle
Eastern climate, the buildings and houses are designed based on the available mate-
rials, such as mud, clay, and stones, and the hot climate [39–42]. In the hot and
humid climates of tropical regions, buildings and houses are typically constructed
using wood [43–45]. Variations of the design and construction can be seen based on
records [46]. From these designs and methods of construction, it can be concluded
that the design of old houses and buildings is solely based on the materials present
and the climatic conditions [47].

The maintenance of safety and a comfortable environment based on the building
materials, design, and construction were important considerations in ancient times
[48–50]. In the hot climate of the Middle East, parts of South America, and the
Mediterranean area, different cooling and ventilation techniques were applied [51–
53]. Local materials that could minimize heat transfer (thus minimizing the indoor
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heating effect) were used [54, 55]. Natural ventilation was also applied based on the
design of buildings and houses [51].

2.2 Present Situation

The structural design of buildings and houses in hot and humid regions has changed
as science and technology have changed [56–58]. Today, buildings and houses are
mostly designed and constructed using concrete, steel, and glass [59]. These designs
absorb a lot of solar energy and increase the indoor temperature [60]. Buildings in
hot and dry regions such as the Middle East become solar energy absorber due to the
building materials and glass facades. Thus, the application of solar energy reflectors
[61] and thermal storage [62] could minimize indoor heating. The same pattern (e.g.,
the application of sun shading and heat insulation) has been observed in other hot
and humid regions, such as tropical regions of Asia and Latin America [57].

Because of the demand for better indoor thermal comfort, air quality, and energy
conservation, buildings nowadays are designed to have air handling systems that can
provide the needed indoor thermal and air quality environment for different building
requirements [63]. With the structure of buildings absorbing a higher percentage of
solar energy, the energy demand for maintaining a comfortable indoor environment
has caused the buildings in hot and humid regions to consume a large percentage of
the energy required for the building sector [64]. Buildings situated in central areas
or urban centers are expected to continuously operate air handling systems to main-
tain a comfortable indoor environment [65]. Hence, making the indoor environment
thermally comfortable makes the outdoor environment more uncomfortable due to
energy consumption and heat emission [66, 67].

2.3 Future Situation

Environmental concerns have become intense due to global warming and climate
change, which are caused by large amounts of greenhouse gas emissions, to which
the building sector has contributed a sizable percentage [68, 69]. Buildings and
houses are to be designed to minimize the absorption of solar energy to avoid indoor
heating [70, 71]. Buildings are designed to be sustainable by utilizing recyclable and
organic materials in their construction [72, 73]. With the application of advanced
building technologies in hot and humid regions andwith the consideration of climatic
conditions such green walling [74] and smart windows for passive ventilation [75],
buildings will become energy efficient and sustainable, thereby having a smaller
impact on the outdoor environment [76]. This will create smart buildings whose
operation depends on the changing requirements of the occupants and the outdoor
environment [77].
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Due to concerns about the environmental impact and energy requirements for
providing the needed indoor environment, buildings and houses are to be energy-
efficient with clean energy generating capabilities [78]. In the future, buildings and
houses are expected to be this to minimize energy waste while providing comfortable
air quality in the indoor environment [79]. With advancements of building technolo-
gies, buildings and houses are expected to minimize their contribution to increasing
the surrounding temperature from the solar energy absorption [11], constraining
urban ventilation [80], and emitting heat from their air handling systems [81].

3 Urban Centers and Cities

Civilization starts when people build cities for trade, commerce, government centers,
and areas for living. The convergence of people and buildings changes the structure
of urban centers and cities. This situation creates stress on the environment, as cities
and urban centers become unsustainable due to the environmental impact created
within an outside its boundaries to cater to the needs of the population.

3.1 Old Situation

At the start of civilization, cities were created that tended to change the balance
of the interactions between the people and the environment, as the people came to
demand more resources from the environment to support their existence [82, 83].
The availability of different resources and infrastructures resulted in an increase in
cities’ populations,which also resulted in an increase in environmental concerns [84].
Cities of the old times were built near the available needed resources and materials
(e.g., water, food, mud, clay, stones, timber) [85]. The development of old cities
affected the resources available in nearby areas and resulted in the destruction of
natural resources such as water resources, soils, and other resources [86, 87].

The rapid development of older cities andurban areas createddiscomfort in hot and
humid regions as a large influx of people and a build-up of different infrastructures
created different methods to maintain thermally comfortable environments [88]. Old
technologies (e.g., wind catchers, sun shading, evaporative cooling, prevailing wind
ventilation) were created to minimize the effect of air temperature [89–91]. The
innovations of the people living in these times in hot and humid regions contributed
to minimizing the effects of the increase in urban temperature [92].
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3.2 Present Situation

With the rapid development of urban planning and building sciences, the zonal plan-
ning of urban areas has become popular [93, 94]. In hot and humid regions, the rede-
velopment of cities and urban areas depends on each country’s capabilities through
proper investigation [23, 95]. In highly developed and economically stable countries,
existing cities have been redevelopedwith proper urban planning to cater to the needs
of the local populace [96], minimize the concentration of man-made structures [97],
and apply greening aroundurban areas [98].However, in developing countries, proper
urban redevelopment has become a concern, as it will involve massive investment
and the involvement of different stakeholders [99, 100].

Proper urban planning has resulted in the minimization of the increase of urban
temperature, air pollution, and the usage of air conditioning and ventilation systems
[101]. Moreover, it also contributed to the greening of different urban areas, which
resulted in an increase in urban air quality [102]. In well-planned urban centers and
cities, urban ventilation has contributed to a reduction in air pollution, urban tempera-
ture from solar energy absorption, and heat emitted from air handling systems, equip-
ment, devices, and people [22, 103].With proper urban planning, the use of the public
transportation systems can be minimized as people can use different transportation
modes, such as walking, biking [104].

3.3 Future Situation

With the global concern of energy and environment [105, 106] coupled with
increasing urban population [107], proper urban planning will become an impor-
tant consideration in the redevelopment of urban areas and cities, to minimize the
usage of common urban transportation methods [108] and typical energy sources by
promoting clean energy sources [109, 110]. Urban areas are expected to minimize
the build-up of heat, pollution, and the utilization of different urban greening tech-
nologies, which can contribute to the minimization of UHIs [9, 111–113]. This is
possible by synergizing natural and artificial structures to be built side by side [114,
115]. It can also be done by means of utilizing solar energy for different applications
[116].

The application of advanced urban planning and building sciences could create a
positive impact on the comfort, wellbeing, and health of the urban environment and
the people living in these environments [117, 118]. This creates a healthy population
and minimizes negative impacts on the environment by using smart technologies
[119–121]. Redeveloped andwell-planned urban centers and cities attract investment
and development as people tend to be more productive (e.g., no traffic, comfortable
environment, a healthy population, and lower pollution) [78, 122, 123]. This situation
has a great impact on whole countries, as well-planned urban centers and cities have
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a greater effect on the economy through which the concept of smart cities will be
realized [124–126].

4 Conclusions

This chapter describes the evolution of cities and buildings in hot and humid regions.
Hot and humid regions’ development further contributes to the increase of UHIs. As
these regions are already hot, the situation will become more complex if it is not
properly addressed soon.

Hence, to minimize the effect of UHIs in already hot and humid regions, proper
urban planning will be introduced. Urban greening will be an important component
with zoning to minimize the traffic situation. Application of different technologies
to reduce pollutant emissions, and the use of building materials that minimizes the
absorption of solar energy will be minimize the increase of urban temperature.

With this, it is expected that current urban planning practices will be reviewed,
and future urban planning and zoningmethods will be strictly implemented.With the
dynamic economic situation and technologies under development, the development
of urban centers and cities will be prepared to apply future technologies through
which the environmental, economic, and technological demands of urban dwellers
will be addressed.
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Assessment of the Effects of Urban Heat
Island on Buildings

Liangzhu (Leon) Wang and Chang Shu

Abstract Climate change and global warming have been indisputable as supported
bymounting evidence ofmore extended, severe, and frequent occurrences of extreme
weather events (EHEs), in particular, summertime heatwaves in recent years. EHEs
often interact with buildings in urban area centers, which are densely packed by
building blocks with vulnerable populations: the homeless, elderly, children, socially
disadvantaged people, the physically challenged, or the sick, creating a unique natural
phenomenon, urban heat island (UHI). This chapter covers a comprehensive effort
to assess the UHI impacts on buildings and the potentially vulnerable populations
through a series of surveys and field measurements in schools and hospitals, and a
multi-scale climatic modeling framework from global and regional climates, urban
microclimate, to building scale simulations. General methodologies are reported in
detail for a better understanding of the levels of impacts by UHIs on buildings,
e.g., excessively high indoor temperatures, energy demands and peak loads, and on
people, e.g., indoor overheating risks. The effort is essential for developing measures
and strategies to mitigate the UHI impacts on buildings and occupants for the current
and future climates.

Keywords Climate change · Urban heat island · Extreme heat event · Vulnerable ·
Survey · Field measurement · Overheating · Thermal comfort · Energy load ·
Mitigation ·WRF · UHI ·Microclimate ·Weather forecasting ·Multi-scale
simulation · Digital twin · CFD · Urban building energy model

1 Introduction

It is unequivocal that the global climate has been consistently warming and projected
toworsen in the future [1]. Furthermore, extreme climate events such as heatwaves are
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projected to increase in frequency and intensity [2]. Overheating of building interior
spaces as may arise from such climate change and extreme heat events (EHEs) have
been identified as a major concern to the comfort and health of building occupants,
particularly of the vulnerable people, such as the homeless, elderly, children, socially
disadvantaged people, the physically challenged or the sick. Urban area centers that
are subject to the urban heat island (UHI) effects may exacerbate the risk of the
overheating events in that the indoor thermal conditions can reach excessive values
over a prolonged period. In a recent heatwave of June 30–July 7, 2018, up to 66
deaths were reported in Montreal with most of them being older residents, such as
those people who suffered from mental or chronic illness and addiction more easily
than the others, as they were left without access to air conditioning in vulnerable
communities of the city center [3].

Buildings play a significant role in limiting the risk of overheating events [4].
Buildings influence the indoor thermal conditions to which occupants are exposed
most of the time, given the fact that people spend approximately 80–90%of their time
indoors [5]. Buildings that house vulnerable people and/or with poor management
of indoor thermal conditions will suffer the most from the effects of overheating. It
was found that most of the 66 heat-related deaths during the 2018 extreme heat event
in Montreal happens in the community, and still, around 11 happened in hospitals
[6, 7]. The resilience of hospitals against EHEs may help to reduce the mortality and
morbidity of vulnerable groups of people, e.g., the elderly, sick, and those having
mental illnesses [8]. The high indoor temperature in schools may also violate the
academic performance of the children students aged between 8–14 [9]. The risk of
overheating in mild climate area has been quantified by simulation studies, and more
field monitoring are needed to cope with the future overheating problem due to the
increase of I.T. equipment usage in classrooms and global warming trend [10]. The
severity of the indoor conditions depends onmany factors of buildings: types (houses,
retirement homes, apartment buildings, schools, hospitals, etc.), internal space usage
(occupant density, internal heat gains), construction characteristics (insulation levels,
windowproportions, solar shading, the orientation of facades), andbuildingoperation
(air-conditioning use, natural ventilation, etc.) [11].

However, studies on building indoor thermal conditions as relating to the outdoor
conditions are still minimal to enable the healthcare and building code organizations
to establish threshold exposure limit of temperature and relative humidity to protect
the health of the vulnerable population, which could be attributed to the following
limitations and challenges: (1) There is a significant lack of field monitoring data of
outdoor and indoor thermal environments for different building types. As a result, no
reliable benchmarking data are available to support the assessment of the resilience
level of the existing building stocks against overheating and the establishment of
threshold overheating exposure limit criteria. (2) There are limited simulation studies
for establishing correlations between indoor and outdoor conditions, and the devel-
opment of climate-adaptive mitigation strategies for developing associated guide-
lines against overheating. Accurate whole building performance simulations require
adequate validations against field monitoring data. (3) The whole building simula-
tions also need accurate and detailed inputs of surrounding ambient conditions,which
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were often based on global/regional-scale weather and climate change data in the
previous studies without considering the impacts from local microclimate environ-
ment down to building scales [12]. A scientific challenge remains to derive reliable
climate change information at a spatial resolution that is relevant for building-scale
impact assessments (e.g., <1 m) as opposed to the resolution at which they are gener-
ated at a global scale (e.g., >100 km) and downscaled to regional level also taking
into account the uncertainty in projections as contributed due to the existence of
multiple Global Climate Models (GCMs) and greenhouse gas emission scenarios.
This chapter introduces a showcase study in Montreal, Canada, to assess the over-
heating risks in buildings as a result of urban heat island effects. In this study, (1) a
series of multi-year field measurements onmultiple buildings are conducted to deter-
mine the indoor condition exposure levels as related to the outdoor conditions to help
set up temperature and humidity threshold limits for vulnerable occupant health; (2)
A series of simulations, calibrations, and validations based on the field measurement
and urban-scale microclimate data are conducted. (3) A novel integrated regional-
urban-building-scale simulation platform is developed to study the impact of current
weather and future climate change on building indoor environments as a result of the
urban heat island. Note that for generality, this chapter focuses on the introduction
of approaches and methodologies instead of specific data obtained from this study.

2 Field Measurements of UHI Effects on Buildings

2.1 Building Selection and Site Visits

In this study, field monitoring is carried out for a limited number of school and
hospital buildings for three years. Therefore, determining the best combination of
buildings as regards to the most vulnerable to EHEs can be a significant challenge
to ensure capturing both the EHE and indoor overheating problems during the long-
term monitoring program. A five-step guideline for the screening and selection of
buildings for field monitoring is given in Fig. 1.

In the first step, a vast building database for all the hospital buildings and school
buildings in Montreal were obtained from the official institutes. A total of 200 hospi-
tals and 396 school buildings across the Montreal island were provided at first with
their locations (Fig. 2).

In the second step, a pre-screening of the building database was conducted to
further reduce the scope for building selection. An investigation on previous heat-
related deaths during EHEs showed that the location and distribution of emergency
calls and the heat-related deaths [7, 13] attributed to EHEs; these are highly related
to the urban heat island intensity as given in Fig. 2. The large dataset of buildings
were first filtered by the types of buildings. For hospital buildings, only three types
of hospitals with long-term residents are considered, i.e., residential and long-term
care centres (CHSLD), hospital center (C.H.), and rehabilitation center (C.R.). For
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Fig. 1 Procedure for
screening and selection of
buildings for field
monitoring
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school buildings, only preschools and primary schools with students aged between 8
and 14 are considered. An investigation on previous heat-related deaths during EHEs
showed the location and distribution of emergency calls and the heat-related deaths
attributed to EHEs; these are also highly related to the urban heat island intensity [7,
13].Most of the health events (i.e., heat-related deaths and emergency calls) happened
in areas with intensive heat island problems, indicating dwellings in these areas may
have had a higher exposure during the EHE, and the buildings in these areas may be
more vulnerable to overheating issues. Therefore, the location of the buildings and
their surrounding environment become an essential criterion for the pre-screening of
the buildings. The surrounding conditions of the buildings can be first studied from
Google Earth (G.E.) and street views. A graphic set of buildings were created from
the southern view from Google street views to study the orientation of the buildings
and to figure out if there are imperious or natural green open spaces, parks, tall plants
and high buildings adjacent to the buildings. The surrounding information can also
be confirmed later during the site visiting. After the building pre-screen process,
61 hospitals and 62 schools are targeted plotted in Fig. 2 to show their locations
to compare with the heat-related death locations in 2018. A graphic set of each of
the buildings was created from the southern view on Google street maps, and the
buildings were filtered using the following criteria:

1. Schools mainly with children aged 8–14;
2. Hospitals with long-term residents;
3. The building location is close to those sites where deaths had been previously

noted;
4. Buildings with the longer façade facing the north–south direction
5. Buildings that were not close to green areas or parks
6. Buildings located in a high-density neighborhood and close to major streets or

parking lots having large areas of impervious land cover without any shading.

For the reduced set of candidate buildings, a building information survey campaign
was prepared for gathering detailed information in the third step. A building informa-
tion survey formwasdistributed to the buildings to obtain informationon construction
details, building equipment, and related information. The survey sheet also contained
information inwhich the study objectives were provided and that to explain the possi-
bility for building managers to support the study. The building information survey
form is organized into five sections:

1. General information of buildings: building name construction year, number of
floors, number of occupants, etc.

2. Building performance and occupant behavior: thermal comfort and histor-
ical heat-related health events, building activities, overheating complaints, and
relevant measures to mitigate impacts of overheating.

3. HVAC system: type of system, fresh air system, cooling system, ventilation, etc.
4. Building envelope: type of envelope construction, materials, window type,

window-wall-ratio, etc.
5. Building plans.



20 L. (Leon) Wang and C. Shu

The fourth step is to conduct on-site visits and gather first-hand building informa-
tion. For hospital buildings, three types of hospital buildings with long-term residents
are considered including CHSLD, CH and C.R. For school buildings, a total of 15
school buildings from three school boards are visited. The selection of schools is
only limited to preschool or primary schools with the ages of the students between 8
and 14. A total of 14 residential buildings are provided for the site visiting. The visits
were conducted in July 2019 for hospital sites, September 2019 for schools, and
February 2020 for residential buildings. Due to the breakout of COVID-19, we have
only completed site visits to six residential buildings. Most of the visited residential
buildings are in the north and east of Montreal Island.

At last, in the fifth step, decisions can be made after a comprehensive analysis
of all the information from the previous steps to evaluate the visited buildings.
The overall distribution of selected buildings, the real conditions of the building,
and the willingness of collaborations of the building owners should be considered
comprehensively.

2.2 Summary of Building Information and Selection Results

As is mentioned in the previous section, the building information survey consists
of five parts covering comprehensive aspects of the building. But it was found that
it is hard to know the real performance of the buildings and hard to conclude the
occupant behavior and the HVAC system based on the concise answers to the survey
sheet. Although the building information survey is conducted before the site visiting,
it seems much efficient to analyze and extract useful information from the survey
forms after the site visitings. We therefore first classified the buildings into two
groups of categories according to the site investigations: (i) buildings with over-
heating complaints and (ii) without complaints, as shown in Table 1. Then the poten-
tial factors considered in the survey forms are analyzed to find out the most valuable
cases to study the overheating problems in the summer.

After the survey and site visiting, it was found that a cooling system is seldom
used in schools. Among the 15 buildings visited, only SB1-H has a cooling system
in a new building section. Most of the school buildings have fresh air supply to
the corridor, gym, and basement. The buildings are usually cooled through passive

Table 1 Overheating
complaints in the visited
buildings

Bldg. types With complaints Few complaints

Hospitals CHSLD-A, B
CH-A, B, D, F

CHSLD-C, D, E
CH-B, C, E
CR-A

Schools SB1-A, B, D, G
SB2-A, B, D, E

SB1-C, E, F, H
SB2-C, F
SB3-A


