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Editors’ Introduction

The conference “C∗-algebras and elliptic theory, II” was held at the Stefan Banach
International Mathematical Center in Bȩdlewo, Poland, in January 2006, one of a
series of meetings in Poland and Russia. This volume is a collection of original and
refereed research and expository papers related to the meeting. Although centered
on the K-theory of operator algebras, a broad range of topics is covered including
geometric, L2- and spectral invariants, such as the analytic torsion, signature and
index, of differential and pseudo-differential operators on spaces which are possi-
bly singular, foliated or non-commutative. This material should be of interest to
researchers in Mathematical Physics, Differential Topology and Analysis.

The series of conferences including this one originated with an idea of Profes-
sor Bogdan Bojarski, namely, to strengthen collaboration between mathematicians
from Poland and Russia on the basis of common scientific interests, particularly
in the field of Non-commutative Geometry. This led to the first meeting, in 2004,
which brought together about 60 mathematicians not only from Russia and Poland,
but from other leading centers. It was supported by the European program “Geo-
metric Analysis Research Training Network”. Since then there have been annual
meetings alternating between Bȩdlewo and Moscow. The second conference was
organized in Moscow in 2005 and was dedicated to the memory of Yu.P. Solovyov.
The proceedings will appear in the Journal of K-Theory. The conference on which
this volume is based was the third conference in the overall series with the fourth
being held in Moscow in 2007. A further meeting in Bȩdlewo is planned for 2009.

D. Burghelea, R.B. Melrose, A. Mishchenko, E. Troitsky



viii Editors’ Introduction

Contents

Pseudo-differential operators
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index questions and the homotopy classification of pseudo-differential operators
on manifolds with corners.

The paper “Dixmier traceability for general pseudo-differential operators” by
F. Nicola and L. Rodino generalizes previous results about the finiteness of the
Dixmier trace of pseudo-differential operators.
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Lefschetz Distribution of Lie Foliations

Jesús A. Álvarez López and Yuri A. Kordyukov

Abstract. Let F be a Lie foliation on a closed manifold M with structural
Lie group G. Its transverse Lie structure can be considered as a transverse
action Φ of G on (M,F); i.e., an “action” which is defined up to leafwise
homotopies. This Φ induces an action Φ∗ of G on the reduced leafwise co-
homology H(F). By using leafwise Hodge theory, the supertrace of Φ∗ can
be defined as a distribution Ldis(F) on G called the Lefschetz distribution
of F . A distributional version of the Gauss-Bonett theorem is proved, which
describes Ldis(F) around the identity element. On any small enough open
subset of G, Ldis(F) is described by a distributional version of the Lefschetz
trace formula.

Mathematics Subject Classification (2000). 58J22, 57R30, 58J42.

Keywords. Lie foliation, Riemannian foliation, leafwise reduced cohomology,
distributional trace, Lefschetz distribution, Λ-Euler characteristic, Λ-Lefschetz
number, Lefschetz trace formula.
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1. Introduction

Let F be a C∞ foliation on a manifold M . Let Diff(M,F) be the group of foli-
ated diffeomorphisms (M,F) → (M,F). The elements of Diff(M,F) that are C∞

leafwisely homotopic to idM form a normal subgroup Diff0(F), and let Diff(M,F)
denote the corresponding quotient group. A right transverse action of a group G
on (M,F) is an anti-homomorphism Φ : G → Diff(M,F). A local representation of
Φ on some open subset O ⊂ G is a map φ : M×O → M such that φg = φ(·, g) is a
foliated diffeomorphism representing Φg for all g ∈ G. Then Φ is said to be of class
C∞ if it has a C∞ local representation on each small enough open subset of G.

Recall that the leafwise de Rham complex (Ω(F), dF ) consists of the differen-
tial forms on the leaves which are C∞ on M , endowed with the de Rham derivative
of the leaves. Its cohomology H(F) is called the leafwise cohomology. This becomes
a topological vector space with the topology induced by the C∞ topology, and its
maximal Hausdorff quotient is the reduced leafwise cohomology H(F).

Consider the canonical right action of Diff(M,F) on H(F) defined by pulling-
back leafwise differential forms. Since Diff0(F) acts trivially, we get a canonical
right action of Diff(M,F) on H(F). Then any right transverse action Φ of a group
G on (M,F) induces a left action Φ∗ of G on H(F).

Suppose from now on that F is a Lie foliation and the manifold M is closed.
It is shown that its transverse Lie structure can be described as a right transverse
action Φ of its structural Lie group G on (M,F). Consider the induced left action
Φ∗ of G on H(F). For each g ∈ G, we would like to define the supertrace Trs Φ∗

g,
which could be called the leafwise Lefschetz number L(Φg) of Φg. This can be
achieved when H(F) is of finite dimension, obtaining a C∞ function L(F) on G
defined by L(F)(g) = L(Φg); the value of L(F) at the identity element e of G

is the Euler characteristic χ(F) of H(F), which can be called the leafwise Euler
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characteristic of F . But H(F) may be of infinite dimension, even when the leaves
are dense [1], and thus L(F) is not defined in general.

The first goal of this paper is to show that, in general, the role of the function
L(F) can be played by a distribution Ldis(F) on G, called the Lefschetz distribution
of F , whose singularities are motivated by the infinite dimension of H(F).

The first ingredient to define Ldis(F) is the leafwise Hodge theory studied in
[2] for Riemannian foliations; recall that Lie foliations form a specially important
class of Riemannian foliations [19]. Fix a bundle-like metric on M whose transverse
part is induced by a left invariant Riemannian metric on G. For the induced
Riemannian structure on the leaves, let ΔF be the Laplacian of the leaves operating
in Ω(F). The kernel H(F) of ΔF is the space of harmonic forms on the leaves
that are C∞ on M . The metric induces an L2 inner product on Ω(F), obtaining
a Hilbert space Ω(F). Then ΔF is an essentially self-adjoint operator in Ω(F)
whose closure is denoted by ΔF . The kernel of ΔF is denoted by H(F), and let
Π : Ω(F) → H(F) denote the orthogonal projection. In [2], it is proved that Π
has a restriction Π : Ω(F) → H(F) that induces an isomorphism H(F) ∼= H(F),
which can be called the leafwise Hodge isomorphism.

Let Λ be the volume form of G, and let φ : M × O → M be a C∞ local
representation of Φ. For each f ∈ C∞

c (O), consider the operator

Pf =
∫

G

φ∗
g · f(g) Λ(g) ◦Π

in Ω(F). Our first main result is the following.

Proposition 1.1. Pf is of trace class, and the functional f �→ Trs Pf defines a
distribution on O.

It can be easily seen that Trs Pf is independent of the choice of φ, and thus
the distributions given by Proposition 1.1 can be combined to define a distribution
Ldis(F) on G; this is the Lefschetz distribution of F .

Observe that Ldis(F) ≡ L(F) · Λ when H(F) is of finite dimension. This
justifies the consideration of Ldis(F) as a generalization of L(F); in particular, the
germ of Ldis(F) at e generalizes χ(F).

If the operators Pf are restricted to Ωi(F) for each degree i, its trace defines
a distribution Tri

dis(F), called distributional trace, whose germ at e generalizes the
leafwise Betti number βi(F) = dimH

i
(F).

The distributions Ldis(F) and Tri
dis(F) depend on Λ and F , endowed with the

transverse Lie structure. If the leaves are dense, then the transverse Lie structure
is determined by the foliation, and thus these distributions depend only on Λ and
the foliation. On the other hand, the dependence on Λ can be avoided by using
top-dimensional currents instead of distributions, in the obvious way.

Our second goal is to prove a distributional version of the Gauss-Bonett
theorem, which describes Ldis(F) around e. Let RF be the curvature of the leafwise
metric. Suppose for simplicity that F is oriented. Then Pf(RF/2π) ∈ Ωp(F) (p =
dimF) can be called the leafwise Euler form. This form can be paired with Λ,
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considered as a transverse invariant measure, to give a differential form ωΛ ∧
Pf(RF/2π) of top degree on M . In particular, if dimF = 2, then

ωΛ ∧ Pf(RF/2π) =
1
2π

KF ωM ,

where KF is the Gauss curvature of the leaves and ωM is the volume form of M .
Let δe denote the Dirac measure at e.

Theorem 1.2 (Distributional Gauss-Bonett theorem). We have

Ldis(F) =
∫

M

ωΛ ∧ Pf(RF/2π) · δe

on some neighborhood of e.

To prove Theorem 1.2, we really prove that

Ldis(F) = χΛ(F) · δe (1.1)

around e, where Λ is considered as a transverse invariant measure of F , and χΛ(F)
is the Λ-Euler characteristic of F introduced by Connes [9]. Then Theorem 1.2
follows from the index theorem of [9].

The third goal is to prove a distributional version of the Lefschetz trace
formula, which describes Ldis(F) on any small enough open subset of G. For a C∞

local representation φ : M × O → M of Φ, let φ′ : M × O → M × O be the map
defined by φ′(x, g) = (φg(x), g). The fixed point set of φ′, Fix(φ′), consists of the
points (x, g) such that φg(x) = x. A point (x, g) ∈ Fix(φ′) is said to be leafwise
simple when φg∗ − id : TxF → TxF is an isomorphism; in this case, the sign
of the determinant of this isomorphism is denoted by ε(x, g). The set of leafwise
simple fixed points of φ′ is denoted by Fix0(φ′). Let pr1 : M × O → M and pr2 :
M ×O → O be the factor projections. It is proved that Fix0(φ′) is a C∞ manifold
of dimension equal to codimF . Moreover the restriction pr1 : Fix0(φ′) → M is
a local embedding transverse to F . So Λ defines a measure Λ′

Fix0(φ′) on Fix0(φ′).
Observe that pr2 : Fix(φ′) → O is a proper map.

Theorem 1.3 (Distributional Lefschetz trace formula). Suppose that every fixed
point of φ′ is leafwise simple. Then

Ldis(F) = pr2∗(ε · Λ′
Fix(φ′))

on O.

To prove Theorem 1.3, we consider certain submanifold M ′
1 ⊂ M×O endowed

with a foliation F ′
1, whose leaves are of the form L × {g}, where L is a leaf of F

and g ∈ G. It is proved that pr2(M ′
1) is open in some orbit of the adjoint action

of G on itself, pr1 : M ′
1 → M is a local diffeomorphism, and F ′

1 = pr∗1 F . So Λ lifts
to a transverse invariant measure Λ′

1 of F ′
1. Moreover the restriction φ′

1 of φ′ to
M ′

1 is defined and maps each leaf of F ′
1 to itself. For each f ∈ C∞

c (O) supported
in an appropriate open subset O1 ⊂ O, the transverse invariant measure Λ′

1,f =
pr∗2 f · Λ′

1 is compactly supported. Then the Λ′
1,f -Lefschetz number LΛ′

1,f
(φ′

1) is
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defined according to [14]. Without assuming any condition on the fixed point set,
we show that

〈Ldis(F), f〉 = LΛ′
1,f

(φ′
1) . (1.2)

We have that Fix(φ′
1) is a C∞ local transversal of F ′

1. Hence Theorem 1.3 follows
from (1.2) and the foliation Lefschetz theorem of [14, 24].

The numbers χΛ(F) and LΛ′
1,f

(φ′
1) are defined by using L2 differential forms

on the leaves, whilst Ldis(F) is defined by using leafwise differential forms that are
C∞ on M . These are sharply different conditions when the leaves are not compact.
So (1.1) and (1.2) are surprising relations.

By (1.2), Ldis(F) is supported in the union of a discrete set of orbits of the
adjoint action. Therefore, when codimF > 0, Ldis(F) is C∞ just when it is trivial,
obtaining the following.

Corollary 1.4. If H(F) is of finite dimension and codimF > 0, then Ldis(F) ≡
L(F) = 0.

By Corollary 1.4, χ(F) is useless: it vanishes just when it can be defined.
Moreover χΛ(F) = 0 in this case by (1.1). So, when codimF > 0, the condition
χΛ(F) �= 0 yields dim H(F) = ∞. More precise results of this type would be
desirable.

Let dimF = p. When the leaves are dense, β0(F) and βp(F) are finite,
and thus Tr0dis(F) and Trp

dis(F) are C∞. On the other hand, when the leaves are
not compact, the Λ-Betti numbers of [9] satisfy β0

Λ(F) = βp
Λ(F) = 0. Then the

following result follows from (1.1) and Corollary 1.4.

Corollary 1.5. If codimF > 0, dimF = 2 and the leaves are dense, then Tr1dis(F)−
β1

Λ(F) · δe is C∞ around e.

In Corollary 1.5, we could say that β1
Λ(F)·δe is the “singular part” of Tr1dis(F)

around e.

Corollary 1.6. Suppose that codimF > 0 and dimF = 2. If there is a nontrivial
harmonic L2 differential form of degree one on some leaf, then dimH

1
(F) = ∞.

It would be nice to generalize Corollary 1.6 for arbitrary dimension. Thus we
conjecture the following.

Conjecture 1.7. If codimF > 0 and the leaves are dense, then Tri
dis(F)−βi

Λ(F) ·δe

is C∞ around e for each degree i.

The main results were proved in [3] for the case of codimension one. Our
results also overlap the corresponding results of [20].

We hope to prove elsewhere another version of Theorem 1.3 with a more
general condition on the fixed points, always satisfied by some local representation
φ of Φ defined around any point of G. By (1.2), what is needed is another version
of the Lefschetz theorem of [14], which holds for more general fixed point sets when
the transverse measure is C∞.
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The idea of using such type of trace class operators to define distributional
spectral invariants is due to Atiyah and Singer [5, 30]. They consider transversally
elliptic operators with respect to compact Lie group actions. Further generaliza-
tions to foliations and non-compact Lie group actions were given in [21, 10, 15, 17].
In our case, ΔF is not transversally elliptic with respect to any Lie group action or
any foliation, but it can be considered as being “transversely elliptic” with respect
to the structural transverse action; this simply means that it is elliptic along the
leaves of F .

2. Transverse actions

Recall that a foliation F on a manifold M can be described by a foliated cocycle,
which is a collection {Ui, fi}, where {Ui} is an open cover of X and each fi is a
topological submersion of Ui onto some manifold Ti whose fibers are connected
open subsets of Rn, such that the following compatibility condition is satisfied:
for every x ∈ Ui ∩ Uj , there is an open neighborhood Ux

i,j of x in Ui ∩ Uj and
a homeomorphism hx

i,j : fi(Ux
i,j) → fj(Ux

i,j) such that fj = hx
i,j ◦ fi on Ux

i,j .
Two foliated cocycles describe the same foliation F when their union is a foliated
cocycle. The leaf topology on M is the topology with a base given by the open
sets of the fibers of all the submersions fi. The leaves of F are the connected
components of M with the leaf topology. The leaf through each point x ∈ M is
denoted by Lx. The pseudogroup on

⊔
i Ti generated by the maps hx

i,j , given by the
compatibility condition, is called (a representative of) the holonomy pseudogroup
of F , and describes the “transverse dynamics” of F . Different foliated cocycles of
F induce equivalent pseudogroups in the sense of [12, 13].

Another representative of the holonomy pseudogroup is defined on any trans-
versal of F that meets every leaf. It is generated by “sliding” small open subsets
(local transversals) along the leaves; its precise definition is given in [12].

When M is a C∞ manifold, it is said that F is C∞ if it is described by a
foliated cocycle {Ui, fi} which is C∞ in the sense that each fi is a C∞ submersion
to some C∞ manifold.

Let Γ be a group of homeomorphisms of a manifold T . A foliated cocycle
(Ui, fi) of F , with fi : Ui → Ti, is said to be (T, Γ)-valued when each Ti is an open
subset of T , and the maps hx

i,j , given by the compatibility condition, are restrictions
of maps in Γ. A transverse (T, Γ)-structure of F is given by a (T, Γ)-valued foliated
cocycle, and two (T, Γ)-valued foliated cocycles define the same transverse (T, Γ)-
structure when their union is a (T, Γ)-valued foliated cocycle. When F is endowed
with a transverse (T, Γ)-structure, it is called a (T, Γ)-foliation.

Let F and G be foliations on manifolds M and N , respectively. Recall the
following concepts. A foliated map f : (M,F) → (N,G) is a map f : M → N
that maps each leaf of F to a leaf of G; the simpler notation f : F → G will be
also used. A leafwise homotopy (or integrable homotopy) between two continuous
foliated maps f, f ′ : (M,F) → (N,G) is a continuous map H : M × I → N
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(I = [0, 1]) such that the path H(x, ·) : I → N lies in a leaf of G for each x ∈ M ; in
this case, it is said that f and f ′ are leafwisely homotopic (or integrably homotopic).

Suppose from now on that F and G are C∞. Two C∞ foliated maps are said to
be C∞ leafwisely homotopic when there is a C∞ leafwise homotopy between them.
As usual, TF ⊂ TM denotes the subbundle of vectors tangent to the leaves of F ,
X(M,F) denotes the Lie algebra of infinitesimal transformations of (M,F), and
X(F) ⊂ X(M,F) is the normal Lie subalgebra of vector fields tangent to the leaves
of F (C∞ sections of TF → M). Then we can consider the quotient Lie algebra
X(M,F) = X(M,F)/X(F), whose elements are called transverse vector fields.
Observe that, for each x ∈ M , the evaluation map evx : X(M,F) → TxM induces
a map evx : X(M,F) → TxM/TxF , which can be also called evaluation map.
For any Lie algebra g, a homomorphism g → X(M,F) is called an infinitesimal
transverse action of g on (M,F). In particular, we have a canonical infinitesimal
transverse action of X(M,F) on (M,F).

Let Diff(M,F) be the group of C∞ foliated diffeomorphisms (M,F) →
(M,F) with the operation of composition, let Diff(F) ⊂ Diff(M,F) be the nor-
mal subgroup C∞ foliated diffeomorphisms that preserve each leaf of F , and let
Diff0(F) ⊂ Diff(F) be the normal subgroup of C∞ foliated diffeomorphisms that
are C∞ leafwisely homotopic to the identity map. Then we can consider the quo-
tient group Diff(M,F) = Diff(M,F)/ Diff0(F), whose operation is also denoted
by “◦”. The elements of Diff(M,F) can be called transverse transformations of
(M,F). For any group G, an anti-homomorphism Φ : G → Diff(M,F), g �→ Φg,
is called a right transverse action of G on (M,F). For an open subset O ⊂ G, a
map φ : M ×O → M is called a local representation of Φ on O if φg = φ(·, g) ∈ Φg

for all g ∈ O. For any leaf L of F and any g ∈ O, the leaf φg(L) is independent
of the local representative φ, and thus it will be denoted by Φg(L). When G is a
Lie group, Φ is said to be of class C∞ if it has a C∞ local representation around
each element of G.

Somehow, we can think of Diff(M,F) as a Lie group whose Lie algebra is
X(M,F); indeed, it will be proved elsewhere that, if G is a simply connected
Lie group and g is its Lie algebra of left invariant vector fields, then there is a
canonical bijection between infinitesimal transverse actions of g on (M,F) and
C∞ right transverse actions of G on (M,F).

The leafwise de Rham complex (Ω(F), dF ) is the space of differential forms
on the leaves smooth on M (C∞ sections of

∧
TF∗ → M) endowed with the

leafwise de Rham differential. It is also a topological vector space with the C∞

topology, and dF is continuous. The cohomology H(F) of (Ω(F), dF ) is called the
leafwise cohomology of F , which is a topological vector space with the induced
topology. Its maximal Hausdorff quotient H(F) = H(F)/0 is called the reduced
leafwise cohomology.

By pulling back leafwise differential forms, any C∞ foliated map f : (M,F) →
(N,G) induces a continuous homomorphism of complexes, f∗ : Ω(G) → Ω(F),
obtaining a continuous homomorphism f∗ : H(G) → H(F). Moreover, if f is
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C∞ leafwisely homotopic to another C∞ foliated map f ′ : (M,F) → (M,F),
then f∗ = f ′∗ : H(G) → H(F) by standard arguments [7]. Therefore, for any
F ∈ Diff(M,F) and any f ∈ F , the endomorphism f∗ of H(F) can be denoted by
F ∗. So any right transverse action Φ of a group G on (M,F) induces a left action
Φ∗ of G on H(F) given by (g, ξ) �→ Φ∗

gξ.

3. Lie foliations

Let F be a C∞ foliation of codimension q on a C∞ closed manifold M . Let G be a
simply connected Lie group of dimension q, and g its Lie algebra of left invariant
vector fields. A transverse Lie structure of F , with structural Lie group G and
structural Lie algebra g, can be described with any of the following objects that
determine each other [11, 19]:

(L.1) A transverse (G, G)-structure of F , where G is identified with the group of
its left translations.

(L.2) A g-valued 1-form ω on M such that ωx : TxM → g is surjective with kernel
TxF for every x ∈ M , and

dω +
1
2

[ω, ω] = 0 .

(L.3) A homomorphism θ : g → X(M,F) such that the composite

g
θ−−−−→ X(M,F) evx−−−−→ TxM/TxF

is an isomorphism for every x ∈ M .
In (L.1), the elements of G whose corresponding left translations are involved in
the definition of the transverse (G, G)-structure form a subgroup Γ, which is called
the holonomy group of F . So the transverse (G, G)-structure is a transverse (G, Γ)-
structure. In (L.2) and (L.3), ω and θ can be respectively called the structural form
and the structural infinitesimal transverse action.

A C∞ foliation endowed with a transverse Lie structure is called a Lie foli-
ation; the terms Lie G-foliation or Lie g-foliation are used too. If the leaves are
dense, then the transverse Lie structure is unique, and thus it is determined by
the foliation.

A Lie G-foliation F on a C∞ closed manifold M has the following description
due to Fedida [11, 19]. There exists a regular covering π : M̃ → M , a fibre bundle
D : M̃ → G and an injective homomorphism h : Aut(π) → G such that the leaves
of F̃ = π∗F are the fibres of D, and D is h-equivariant; i.e.,

D ◦ σ(x̃) = h(σ) ·D(x̃)

for all x̃ ∈ M̃ and σ ∈ Aut(π). This h is called the holonomy homomorphism.
By using the covering space ker(h)\M̃ of M if necessary, we can assume that h is
injective, and thus π restricts to diffeomorphisms of the leaves of F̃ to the leaves
of F . The leaf of F̃ through each point x̃ ∈ M̃ will be denoted by L̃x̃.
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Given a (G, G)-valued foliated cocycle {Ui, fi} defining the transverse Lie
structure according to (L.1), the g-valued 1-form ω of (L.2) and the infinitesimal
transverse action θ of (L.3) can be defined as follows. For x ∈ Ui and v ∈ TxM ,
ωx(v) is the left invariant vector field on G whose value at fi(x) is fi∗(v). To
define θ, fix an auxiliary vector subbundle ν ⊂ TM complementary of TF (TM =
ν ⊕ TF). Each X ∈ g defines a C∞ vector field Xν ∈ X(M,F) by the conditions
Xν(x) ∈ νx and fi∗(Xν(x)) = X(fi(x)) if x ∈ Ui. Then θ(X) is the class of Xν in
X(M,F), which is independent of the choice of ν.

By using Fedida’s geometric description of F , the definitions of ω and Xν

can be better understood:
• Let ωG be the canonical g-valued 1-form on G defined by ωG(X(g)) = X

for any X ∈ g and any g ∈ G. Then ω is determined by the condition
π∗ω = D∗ωG.

• Let ν̃ = π−1∗ (ν) ⊂ TM̃ , which is a vector subbundle complementary of T F̃ .
Then, for any X ∈ g, there is a unique X̃ν ∈ X(M̃, F̃) which is a section of
ν̃ and satisfies D∗ ◦ X̃ν = X ◦ D. Since D is h-equivariant, X̃ν is Aut(π)-
invariant. Then Xν is the projection of X̃ν to M .

4. Structural transverse action

Let G be a simply connected Lie group, and let F be a Lie G-foliation on a closed
manifold M . According to Section 2, the structural infinitesimal transverse action
corresponds to a unique right transverse action of G on (M,F), obtaining another
description of the transverse Lie structure:

(L.4) A C∞ right transverse action Φ of G on (M,F) which has a C∞ local repre-
sentation φ around the identity element e of G such that the composite

TeG
φx
∗−−−−→ TxM −−−−→ TxM/TxF

is an isomorphism for all x ∈ M , where φx = φ(x, ·) and the second map
is the canonical projection. This condition is independent of the choice of φ.
This Φ is called the structural transverse action.

To describe Φ, consider Fedida’s geometric description of F (Section 3). For
any g ∈ G, take a continuous, piecewise C∞ path c : I → G with c(0) = e and
c(1) = g. For any x̃ ∈ M̃ , there exists a unique continuous piecewise C∞ path
c̃ν
x̃ : I → M̃ such that

• c̃ν
x̃(0) = x̃,

• c̃ν
x̃ is tangent to ν̃ at every t ∈ I where it is C∞, and

• D ◦ c̃ν
x̃(t) = D(x̃) · c(t) for any t ∈ I.

It is easy to see that such a c̃ν
x̃ depends smoothly on x̃.

Lemma 4.1. We have σ ◦ c̃ν
x̃ = c̃ν

σ(x̃) for x̃ ∈ M̃ and σ ∈ Aut(π).
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Proof. This is a direct consequence of the h-equivariance of D and the unicity of
the paths c̃ν

x̃. �

For each g ∈ G, let φ̃g : (M̃, F̃) → (M̃, F̃) be the C∞ foliated diffeomorphism
given by φ̃g(x̃) = c̃ν

x̃(1). For any x̃ ∈ M̃ and σ ∈ Aut(π), we have

σ ◦ φ̃g(x̃) = σ ◦ c̃ν
x̃(1) = c̃ν

σ(x̃)(1) = φ̃g ◦ σ(x̃)

by Lemma 4.1, yielding σ ◦ φ̃g = φ̃g ◦ σ. Therefore, there exists a unique C∞

foliated diffeomorphism φg : (M,F) → (M,F) such that π ◦ φ̃g = φg ◦ π.

Lemma 4.2. The C∞ leafwise homotopy class of φg is independent of the choice
of c.

Proof. Let d : I → G be another continuous and piecewise smooth path with
d(0) = e and d(1) = g, which defines a C∞ foliated map ϕg : (M,F) → (M,F)
as above. Since G is simply connected, there exists a family of continuous and
piecewise smooth paths cs : I → G, depending smoothly on s ∈ I, with cs(0) = e,
cs(1) = g, c0 = c and c1 = d. The paths cs induce a family of C∞ foliated maps
φg,s : (M,F) → (M,F) as above, defining a C∞ leafwise homotopy between φg

and ϕg. �

Lemma 4.3. The C∞ leafwise homotopy class of φg is independent of the choice
of ν.

Proof. Let ν′ ⊂ TM be another vector subbundle complementary of TF , which
can be used to define a C∞ foliated map φ′

g as above. It is easy to find a C∞

deformation of vector subbundles of νs ⊂ TM complementary of TF , s ∈ I, with
ν0 = ν and ν1 = ν′. Then the foliated maps φg,s, induced by the vector bundles
νs as above, define a C∞ leafwise homotopy between φg and φ′

g. �

Therefore, for each g, the C∞ leafwise homotopy class Φg of φg depends only
on g, F and its transverse Lie structure. So a map Φ : G → Diff(M,F) is given
by g �→ Φg.

Lemma 4.4. Φ is a right transverse action of G in (M,F).

Proof. Given g1, g2 ∈ G, let c1, c2 : I → G be continuous, piecewise smooth paths
such that c1(0) = c2(0) = e, c1(1) = g1 and c2(1) = g2, which are used to define φg1

and φg2 as above. Let c : I → G be the path product of c1 and Lg1 ◦ c2, where Lg1

denotes the left translation by g1. We have c(0) = e and c(1) = g1g2. We can use
this c to define φg1g2 , obtaining φg1g2 = φg2 ◦φg1 , and thus Φg1g2 = Φg2 ◦Φg1 . �

Lemma 4.5. Φ is C∞.

Proof. It is easy to prove that each element of G has a neighbourhood O such that
there is a C∞ map c : I × O → G so that each cg = c(·, g) is a path from e to
g. The corresponding foliated diffeomorphisms φg form a C∞ representation of Φ
on O. �
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This construction defines the structural transverse action Φ. According to
Section 2, Φ induces a left action Φ∗ of G on H(F).

Lemma 4.6. There is a local representation ϕ : M × O → M of Φ around the
identity element e such that ϕe = idM .

Proof. Construct φ like in the proof of Lemma 4.5 such that e ∈ O and ce is the
constant path at e. �

Let ϕ : M ×O → M be a local representation of Φ. A map ϕ̃ : M̃ ×O → M̃
is called a lift of ϕ if π◦ ϕ̃g = ϕg ◦π for all g ∈ O, where ϕ̃g = ϕ̃(·, g). In particular,
the above construction of φ also gives a lift φ̃. Let Rg : G → G denote the right
translation by any g ∈ G.

Lemma 4.7. Any C∞ lift ϕ̃ : M̃ × O → M̃ of each C∞ local representation ϕ :
M × O → M of Φ, such that O is connected, satisfies D ◦ ϕ̃g = Rg ◦ D for all
g ∈ O.

Proof. It is enough to prove the result when O is as small as desired. It is clear
that the property of the statement is satisfied by the maps φ̃ constructed above
for connected O.

For an arbitrary ϕ, if O is small enough and connected, there is some φ : M×
O → M defined by the above construction and some homotopy H : M×O×I → M
between ϕ and φ such that each path t �→ H(x, g, t) is contained in a leaf of F .
This H lifts to a homotopy H̃ : M̃ × O × I → M̃ between ϕ̃ and φ̃ so that each
path t �→ H̃(x̃, g, t) is contained in a leaf of F̃ . Then D ◦ ϕ̃ = D ◦ φ̃, completing
the proof. �

Corollary 4.8. ϕ̃ : L̃×O → M̃ is a C∞ embedding for each leaf L̃ of F̃ .

The transverse Lie structure of F lifts to a transverse Lie structure of F̃ ,
whose structural right transverse action is locally represented by the C∞ lifts of
C∞ local representations of Φ.

5. The Hodge isomorphism

Recall that any Lie foliation is Riemannian [23]. Then fix a bundle-like metric on M
[23], and equip the leaves of F with the induced Riemannian metric. Let δF denote
the leafwise coderivative on the leaves operating in Ω(F), and set DF = dF + δF .
Then ΔF = D2

F = dF ◦ dF + dF ◦ δF is the leafwise Laplacian operating in Ω(F).
Let H(F) = kerΔF (the space of leafwise harmonic forms which are smooth on
M). Since the metric is bundle-like, the transverse volume element is holonomy
invariant, which implies that DF and ΔF are symmetric, and thus they have the
same kernel.

Let Ω(F) be the Hilbert space of square integrable leafwise differential forms
on M . The metric of M induces a Hilbert structure in Ω(F). For any C∞ foliated
map f : (M,F) → (M,F), the endomorphism f∗ of Ω(F) is obviously L2-bounded,
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and thus extends to a bounded operator f∗ in Ω(F). Consider DF and ΔF as
unbounded operators in Ω(F), which are essentially self-adjoint [8], and whose
closures are denoted by DF and ΔF (see, e.g., [4, 16]). By [2], H(F) = kerΔF is
the closure of H(F) in Ω(F), and the orthogonal projection Π : Ω(F) → H(F)
has a restriction Π : Ω(F) → H(F), which induces a leafwise Hodge isomorphism

H(F) ∼= H(F) .

For any C∞ foliated map f : (M,F) → (M,F), the homomorphism f∗ : H(F) →
H(F) corresponds to the operator Π ◦ f∗ in H(F) via the Hodge isomorphism. So
the left G-action on H(F), defined in Section 4, corresponds to the left G-action
on H(F) given by (g, α) �→ Π ◦ φ∗

gα for any φg ∈ Φg.
Since the left action of G on H(F) is L2-continuous, we get an extended left

action of G on H(F) given by (g, α) �→ Π ◦ φ∗
gα for any φg ∈ Φg.

These actions on H(F) and H(F) are continuous on G since Φ is C∞.

6. A class of smoothing operators

6.1. Preliminaries on smoothing and trace class operators

Let ωM denote the volume forms of M . A smoothing operator in Ω(F) is a linear
map P : Ω(F) → Ω(F), continuous with respect to the C∞ topology, given by

(Pα)(x) =
∫

M

k(x, y)α(y)ωM (y)

for some C∞ section k of
∧

TF∗ �
∧

TF over M ×M ; thus

k(x, y) ∈
∧

TF∗
x ⊗
∧

TFy ≡ Hom(
∧

TF∗
y ,
∧

TF∗
x)

for any x, y ∈ M . This k is called the smoothing kernel or Schwartz kernel of P .
Such a P defines a trace class operator in Ω(F), and we have

TrP =
∫

M

Tr k(x, x)ωM (x) .

The supertrace formalism will be also used. For any homogeneous operator T in
Ω(F) or in

∧
TxF∗, let T± denote its restriction to the even and odd degree part,

and let T (i) denote its restriction to the part of degree i. If T is of trace class, then
its supertrace is

Trs T = TrT + − TrT− =
∑

i

(−1)i TrT (i) .

Thus
Trs P =

∫
M

Trs k(x, x)ωM (x) .

Let W kΩ(F) denote the Sobolev space of order k of leafwise differential forms
on M , and let ‖·‖k denote a norm of W kΩ(F). A continuous operator P in Ω(F) is
smoothing if and only if P extends to a bounded operator P : W kΩ(F) → W lΩ(F)
for any k and l.
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If an operator P in Ω(F) has an extension P : W kΩ(F) → W �Ω(F), then
‖P‖k,� denotes the norm of this extension; the notation ‖P‖k is used when k = �.
By the Sobolev embedding theorem, the trace of a smoothing operator P in Ω(F)
can be estimated in the following way: for any k > dimM , there is some C > 0
independent of P such that

|TrP | ≤ C ‖P‖0,k . (6.1)

6.2. The class D
Let A be the set of all functions ψ : R → C, extending to an entire function ψ on C
such that, for each compact set K ⊂ R, the set of functions {(x �→ ψ(x+ iy)) | y ∈
K} is bounded in the Schwartz space S(R). This A has a structure of Fréchet
algebra, and, in fact, it is a module over C[z]. This algebra contains all functions
with compactly supported Fourier transform, and the functions x �→ e−tx2

with
t > 0.

By [25, Proposition 4.1], there exists a “functional calculus map” A →
End(Ω(F)), ψ �→ ψ(DF ), which is a continuous homomorphism of C[z]-modules
and of algebras. Any operator ψ(DF ), ψ ∈ A, extends to a bounded operator in
W kΩ(F) for any k with the following estimate for its norm: there is some C > 0,
independent of ψ, such that

‖ψ(DF )‖k ≤
∫
|ψ̂(ξ)| eC |ξ| dξ , (6.2)

where ψ̂ denotes the Fourier transform of ψ. Therefore, for any natural N , the
operator (id +ΔF)Nψ(DF ) extends to a bounded operator in W kΩ(F) for any k
whose norm can be estimated as follows: there is some C > 0, independent of ψ,
such that

‖(id +ΔF)Nψ(DF )‖k ≤
∫
|(id−∂2

ξ )N ψ̂(ξ)| eC |ξ| dξ . (6.3)

Fix a left-invariant Riemannian metric on G, and let Λ denote its volume
form. We can assume that the metrics on M and G agree in the sense that the
maps fi of (L.1) are Riemannian submersions (Section 3). Thus D : M̃ → G is a
Riemannian submersion with respect to the lift of the bundle-like metric to M̃ .

A leafwise differential operator in Ω(F) is a differential operator which in-
volves only leafwise derivatives; for instance, dF , δF , DF and ΔF are leafwise
differential operators. A family of leafwise differential operators in Ω(F), A =
{Av | v ∈ V }, is said to be smooth when V is a C∞ manifold and, with respect to
C∞ local coordinates, the local coefficients of each Av depend smoothly on v in
the C∞-topology. We also say that A is compactly supported when there is some
compact subset K ⊂ V such that Av = 0 if v /∈ K. Given another smooth fam-
ily of leafwise differential operators in Ω(F) with the same parameter manifold,
B = {Bv | v ∈ V }, the composite A◦B is the family defined by (A◦B)v = Av ◦Bv.
Similarly, we can define the sum A + B and the product λ · A for some λ ∈ R.



14 J.A. Álvarez López and Y.A. Kordyukov

We introduce the class D of operators P : Ω(F) → Ω(F) of the form

P =
∫

O

φ∗
g ◦Ag Λ(g) ◦ ψ(DF) ,

where O is some open subset of G, φ : M ×O → M is a C∞ local representation
of Φ, A = {Ag | g ∈ O} is a smooth compactly supported family of leafwise
differential operators in Ω(F), and ψ ∈ A.

Proposition 6.1. Any operator P ∈ D is a smoothing operator in Ω(F).

Proof. Let P ∈ D as above. By (6.3) and since the operator φ∗
g preserves any

Sobolev space, P defines a bounded operator in W kΩ(F) for any k.
Let ϕ : M × O0 → M be a C∞ local representation of Φ on some open

neighborhood O0 of the identity element e; we can assume that ϕe = idM by
Corollary 4.8. For any Y ∈ g, let Ŷ be the first-order differential operator in Ω(F)
defined by

Ŷ u =
d

dt
ϕ∗

exp tY u

∣∣∣∣
t=0

,

which makes sense because exp tY ∈ O0 for any t > 0 small enough.
Fix a base Y1, . . . , Yq of g. Then the second-order differential operator L =

−∑q
j=1 Ŷ 2

j in Ω(F) is transversely elliptic. Moreover ΔF is leafwise elliptic. By
the elliptic regularity theorem, it suffices to prove that LN ◦P and ΔN

F ◦P belong
to D for any natural N . In turn, this follows by showing that Q ◦P and Ŷ ◦P are
in D for any leafwise differential operator Q and any Y ∈ g.

We have

Q ◦ P =
∫

O

φ∗
g ◦Bg Λ(g) ◦ ψ(DF ) ,

where Bg = (φ∗
g)−1◦Q◦φ∗

g ◦Ag. Since φg is a foliated map, it follows that {Bg | g ∈
O} is a smooth family of leafwise differential operators, yielding Q ◦ P ∈ D.

For g ∈ O and a ∈ O0 close enough to e, let

Fa,g = φag ◦ ϕa ◦ φ−1
g .

Observe that Fe,g = idM because ϕe = idM . For each Y ∈ g, we get a smooth
family VY = {VY,g | g ∈ O} of first-order leafwise differential operators in Ω(F)
given by

VY,gu =
d

dt
F ∗

exp tY,gu

∣∣∣∣
t=0

.

Let also LY A = {(LY A)g | g ∈ O} be the smooth family of leafwise differential
operators given by

(LY A)gu =
d

dt
Aexp(−tY )·gu

∣∣∣∣
t=0

.

In particular, if Ag is given by multiplication by f(g) for some f ∈ C∞
c (G), then

(LY A)g is given by multiplication by (Y f)(g).
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We proceed as follows:∫
O

ϕ∗
exp tY ◦ φ∗

g ◦Ag Λ(g) =
∫

O

φ∗
exp tY ·g ◦ F ∗

exp tY,exp(−tY )·g ◦Ag Λ(g)

=
∫

O

φ∗
g ◦ F ∗

exp tY,g ◦Aexp tY ·g Λ(g) ,

yielding

Ŷ ◦ P = lim
t→0

1
t

(∫
O

ϕ∗
exp tY ◦ φ∗

g ◦Ag dg −
∫

O

φ∗
g ◦Ag dg

)
◦ ψ(DF )

= lim
t→0

1
t

(∫
O

φ∗
g ◦ F ∗

exp tY,g ◦Aexp tY ·g dg −
∫

O

φ∗
g ◦Ag dg

)
◦ ψ(DF )

=
∫

O

φ∗
g ◦ (VY ◦A + LY A)g dg ◦ ψ(DF) .

So Ŷ ◦ P ∈ D. �
With the above notation, by the proof of Proposition 6.1 and (6.3), it can be

easily seen that, for integers k ≤ �, there are some C, C′ > 0 and some natural N
such that

‖P‖k,� ≤ C′
∫
|(id−∂2

ξ )N ψ̂(ξ)| eC|ξ| dξ . (6.4)

Here, C depends on k and �, and C′ depends on k, � and A.

6.3. A norm estimate

Let
P =

∫
O

φ∗
g · f(g) Λ(g) ◦ ψ(DF ) ∈ D ,

where φ and ψ are like in Section 6.2, and f ∈ C∞
c (O). In this case, (6.4) is

improved by the following result, where ΔG denotes the Laplacian of G.

Proposition 6.2. Let K ⊂ O be a compact subset containing supp f . For naturals
k ≤ �, there are some C, C′′ > 0 and some natural N , depending only on K, k
and �, such that

‖P‖k,� ≤ C′′ max
g∈K

|(id +ΔG)Nf(g)|
∫
|(id−∂2

ξ )N ψ̂(ξ)| eC|ξ| dξ .

Proof. Fix an orthonormal frame Y1, . . . , Yq of g. Consider any multi-index J =
(j1, . . . , jk) with j1, . . . , jk ∈ {1, . . . , q}. We use the standard notation |J | = k,
and, with the notation of the proof of Proposition 6.1, let:
• YJ = Yj1 ◦ · · · ◦ Yjk

(operating in C∞(G));
• ŶJ = Ŷj1 ◦ · · · ◦ Ŷjk

;
• VJ = VYj1

◦ · · · ◦ VYjk
; and

• LJA = LYj1
· · ·LYjk

A for any smooth family A of leafwise differential oper-
ators in Ω(F).

Consider the empty multi-index ∅ too, with |∅| = 0, and define:
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• Y∅ = idC∞(G);
• Ŷ∅ = idΩ(F);
• V∅,g = idΩ(F) for all g ∈ O, defining a smooth family V∅; and
• L∅A = A for any smooth family A of leafwise differential operators in Ω(F).

Given any natural N , there is some C1 > 0 such that

‖φ∗
g‖k ≤ C1 , ‖(LJVJ′)g‖ ≤ C1 ,

‖(YJf)(g)‖ ≤ C1 max
g∈K

|(id +ΔG)Nf(g)| ,

‖(id +φ∗−1
g ◦ΔF ◦ φ∗

g)
N ◦ ψ(ΔF)‖k ≤ C1 ‖(id +ΔF)N ◦ ψ(DF)‖k

for all g ∈ K and all multi-indices J and J ′ with |J |, |J ′| ≤ N .
For any multi-index J , we have

ŶJ ◦ P =
∫

O

φ∗
g ◦AJ,g Λ(g) ◦ ψ(DF ) ,

where AJ = {AJ,g | g ∈ G} is the smooth family of leafwise differential operators
inductively defined by setting

A∅,g = idΩ(F) ·f(g) ,

A(j,J) = Vj ◦AJ + LjAJ .

By induction on |J |, we easily get that AJ is a sum of smooth families of
leafwise differential operators of the form

LJ1VJ′
1
◦ · · · ◦ LJ�

VJ′
�
· YJ′′f ,

where J1, J
′
1, . . . , J�, J

′
�, J

′′ are possibly empty multi-indices satisfying

|J1|+ |J ′
1|+ · · ·+ |J�|+ |J ′

�|+ |J ′′| = |J | .
So there is some C2 > 0 such that

‖AJ,g‖k ≤ C2 max
g∈K

|(id +ΔG)Nf(g)|

for all g ∈ K and every multi-index J with |J | ≤ N . Hence

‖ŶJ ◦ P‖k ≤
∫

O

‖φ∗
g‖k‖AJ,g‖k dg ‖ψ(DF)‖k

≤ C1C2 max
g∈K

|(id +ΔG)Nf(g)|
∫
|ψ̂(ξ)| eC|ξ| dξ

for some C > 0 by (6.2). On the other hand,

‖(id+ΔF )N ◦ P‖k ≤
∫

O

‖(id +φ∗−1
g ◦ΔF ◦ φ∗

g)
N ◦ ψ(ΔF)‖k |f(g)|Λ(g)

≤ C1

∫
O

‖(id +ΔF)N ◦ ψ(ΔF )‖k |f(g)|Λ(g)

≤ C1 max
g∈K

|f(g)|
∫
|(id−∂2

ξ )N ψ̂(ξ)| eC|ξ| dξ
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for some C > 0 by (6.3). Now, the result follows because−
∑q

j=1 Ŷj

2
is transversely

elliptic, and ΔF is leafwise elliptic. �

6.4. Parameter independence of the supertrace

Choose an even function in A, which can be written as x �→ ψ(x2). Take also a C∞

local representation φ : M × O → M of Φ and some f ∈ C∞
c (O). Then consider

the one parameter family of operators Pt ∈ D, t > 0, defined by

Pt =
∫

O

φ∗
g · f(g) Λ(g) ◦ ψ(tΔF)2 .

Lemma 6.3. Trs Pt is independent of t.

Proof. The proof is similar to the proof of the corresponding result in the heat
equation proof of the Lefschetz trace formula (see, e.g., [28]). We have

d

dt
Trs Pt = 2 Trs

∫
O

φ∗
g · f(g) Λ(g) ◦ΔF ◦ ψ′(tΔF) ◦ ψ(tΔF)

= 2 Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ d−F ◦ δ+

F ◦ ψ′(tΔ+
F ) ◦ ψ(tΔ+

F)

− 2 Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ d+

F ◦ δ−F ◦ ψ′(tΔ−
F ) ◦ ψ(tΔ−

F )

+ 2 Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ δ−F ◦ d+

F ◦ ψ′(tΔ+
F ) ◦ ψ(tΔ+

F )

− 2 Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ δ+

F ◦ d−F ◦ ψ′(tΔ−
F ) ◦ ψ(tΔ−

F ) .

On the other hand, since the function x �→ ψ′(x2) is in A, we have

Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ d∓F ◦ δ±F ◦ ψ′(tΔ±

F ) ◦ ψ(tΔ±
F)

= Tr d∓F ◦
∫

O

φ∗
t · f(g) Λ(g) ◦ ψ′(tΔ±

F ) ◦ ψ(tΔ±
F) ◦ δ±F

= Trψ(tΔ±
F) ◦ δ±F ◦ d∓F ◦

∫
O

φ∗
g · f(g) Λ(g) ◦ ψ′(tΔ±

F)

= Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ ψ′(tΔ±

F ) ◦ ψ(tΔ±
F ) ◦ δ±F ◦ d∓F

= Tr
∫

O

φ∗
g · f(g) Λ(g) ◦ δ±F ◦ d∓F ◦ ψ′(tΔ±

F ) ◦ ψ(tΔ±
F) ,

where we have used the well-known fact that, if A is a trace class operator and
B is bounded, then AB and BA are trace class operators with the same trace.
Therefore d

dt Trs Pt = 0 as desired. �
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6.5. The global action on the leafwise complex

Let G be the holonomy groupoid of F . Since the leaves of Lie foliations have trivial
holonomy groups, we have

G ≡ {(x, y) ∈ M ×M | x and y lie in the same leaf of F} .

This is a C∞ submanifold of M ×M which contains the diagonal ΔM . Let dF be
the distance function of the leaves of F . For each r > 0, the r-penumbra of ΔM in
G is defined by

PenG(ΔM , r) = {(x, y) ∈ G | dF(x, y) < r} .

Observe that a subset of G has compact closure if and only if it is contained
in some penumbra of ΔM . The product of two elements (x1, y1), (x2, y2) ∈ G is
defined when y1 = x2, and it is equal to (x1, y2). The space of units of G is
ΔM ≡ M . The source and target projections s, r : G → M are the restrictions of
the first and second factor projections M ×M → M ; thus

r−1(x) = Lx × {x} , s−1(x) = {x} × Lx

for each x ∈ M .
Let S denote the C∞ vector bundle

s∗
∧

TF∗ ⊗ r∗
∧

TF
over G; thus

S(x,y) ≡
∧

TxF∗ ⊗
∧

TyF ≡ Hom(
∧

TyF∗,
∧

TxF∗)

for each (x, y) ∈ G. Let ωF be the volume form of the leaves of F (we assume
that F is oriented). Recall that C∞

c (S) is an algebra with the convolution product
given by

(k1 · k2)(x, y) =
∫

Lx

k1(x, z) ◦ k2(z, y)ωF(z)

for k1, k2 ∈ C∞
c (S) and (x, y) ∈ G. Recall also that the global action of C∞

c (S) in
Ω(F) is defined by

(k · α)(x) =
∫

Lx

k(x, y)α(y)ωF (y)

for k ∈ C∞
c (S), α ∈ Ω(F) and x ∈ M .

Consider the lift to M̃ of the bundle-like metric of M , and its restriction to
the leaves of F̃ . Let UΩ(F̃) ⊂ Ω(F̃) be the subcomplex of differential forms α
whose covariant derivatives ∇rα of arbitrary order r are uniformly bounded; this
is a Fréchet space with the metric induced by the seminorms

‖‖α‖‖r = sup{∇rα(x̃) | x̃ ∈ M̃} .

Observe that π∗(Ω(F)) ⊂ UΩ(F̃).
The holonomy groupoid G̃ of F̃ satisfies the same properties as G, except

that, in G̃, the penumbras of the diagonal Δ
M̃

have compact closure if and only
M̃ is compact.
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The map π×π : M̃×M̃ → M×M restricts to a covering map G̃ → G, whose
group of deck transformations is isomorphic to Aut(π): for each σ ∈ Aut(π), the
corresponding element in Aut(G̃ → G) is the restriction σ × σ : G̃ → G̃.

Let S̃ denote the C∞ vector bundle

s̃∗
∧

T F̃∗ ⊗ r̃∗
∧

T F̃

over G̃, and let C∞
Δ (S̃) ⊂ C∞(S̃) denote the subspace of sections supported in

some penumbra of Δ
M̃

. As above, this set becomes an algebra with the convolution
product, and there is a global action of C∞

Δ (S̃) in UΩ(F̃).
Any k ∈ C∞(S) lifts via π × π to a section k̃ ∈ C∞(S̃). Since π restricts to

diffeomorphisms of the leaves of F̃ to the leaves of F , it follows that k̃ ∈ C∞
Δ (S̃)

if k ∈ C∞
c (S).

Take any ψ ∈ A. For each leaf L of F , denoting by ΔL the Laplacian of L,
the spectral theorem defines a smoothing operator ψ(ΔL) in Ω(L), and the family

{ψ(ΔL) | L is a leaf of F}

is also denoted by ψ(ΔF ). By [26, Proposition 2.10], the Schwartz kernels kL of
the operators ψ(ΔL) can be combined to define a section k ∈ C∞(S), called the
leafwise smoothing kernel or leafwise Schwartz kernel of ψ(ΔF).

Suppose that the Fourier transform ψ̂ of ψ is supported in [−R, R] for some
R > 0. Then, according to the proof of Assertion 1 in [25, page 461], k is supported
in the R-penumbra of ΔM , and thus k ∈ C∞

c (S). Moreover the operator ψ(DF)
in Ω(F), defined by the spectral theorem, equals the operator given by the global
action of k.

Consider also the lift k̃ ∈ C∞
Δ (S̃), whose global action in UΩ(F̃) defines an

operator denoted by ψ(DF̃). It is clear that the diagram

UΩ(F̃)
ψ(DF̃ )−−−−→ UΩ(F̃)

π∗
�⏐⏐ �⏐⏐π∗

Ω(F)
ψ(DF )−−−−→ Ω(F)

(6.5)

commutes.
Any function ψ ∈ A with compactly supported Fourier transform can be

modified as follows to achieve the condition of being supported in [−R, R]. For
each t > 0, let ψt ∈ A be the function defined by ψt(x) = ψ(tx).

Lemma 6.4. If ψ̂ is compactly supported for some ψ ∈ A, then ψ̂t is supported in
[−R, R] for t small enough.

Proof. This holds because ψ̂t(ξ) = 1
t ψ̂( ξ

t ). �
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6.6. Schwartz kernels

Let φ, f , ψ and P be like in Section 6.3 such that ψ̂ is compactly supported. Take
some R > 0 so that supp ψ̂ ⊂ [−R, R]. Let k ∈ C∞

c (S) be the leafwise kernel
of ψ(DF ), and let k̃ ∈ C∞

Δ (S̃) be the lift of k, whose action in Ω(F̃) defines the
operator ψ(DF̃ ) (Section 6.5).

Let φ̃ : M̃ ×O → M̃ be a C∞ lift of φ. Define P̃ : UΩ(F̃) → UΩ(F̃) by

P̃ =
∫

O

φ̃∗
g · f(g) Λ(g) ◦ ψ(DF̃).

The commutativity of the diagram

UΩ(F̃) P̃−−−−→ UΩ(F̃)

π∗
�⏐⏐ �⏐⏐π∗

Ω(F) P−−−−→ Ω(F)

follows from the commutativity of (6.5).
Let ωF̃ be the volume form of the leaves of F̃ , which can be also considered

as a differential form on M that vanishes when some vector is orthogonal to the
leaves. Thus the volume form of M̃ is ω

M̃
= D∗Λ ∧ ωF̃ with the right choice of

orientations. For x̃ ∈ M̃ and α ∈ UΩ(F̃), we have

(P̃α)(x̃) = (
∫

O

φ̃∗
g · f(g) Λ(g) ◦ ψ(DF̃ )α)(x̃)

=
∫

O

φ̃∗
g((ψ(DF̃ )α)(φ̃g(x̃)) · f(g) Λ(g)

=
∫

O

∫
L̃x̃

φ̃∗
g ◦ k̃(φ̃g(x̃), ỹ)(α(ỹ))ωF̃(ỹ) · f(g) Λ(g)

=
∫

φ(L̃x̃×O)

φ̃∗
g ◦ k̃(φ̃g(x̃), ỹ)(α(ỹ)) · f(g)ω

M̃
(ỹ)

by Corollary 4.8, where g ∈ O is determined by the condition ỹ ∈ φ̃g(L̃x̃), which
means g = D(x̃)−1D(ỹ) by Lemma 4.7. So we can say that P̃ is given by the
Schwartz kernel p̃ defined by

p̃(x̃, ỹ) =

{
φ̃∗

g ◦ k̃(φ̃g(x̃), ỹ) · f(g) if ỹ ∈ φ̃(L̃x̃ ×O)
0 otherwise

(6.6)

for g ∈ O as above. It follows that

p(x, y) =
∑

σ∈Aut(π)

p̃(x̃, σ(ỹ)) , (6.7)

where x̃ ∈ π−1(x), ỹ ∈ π−1(y), and we use identifications Tx̃F̃ ≡ TxF and
Tσ(ỹ)F̃ ≡ TyF given by π∗.
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For each x ∈ M , x̃ ∈ M̃ and r > 0, let BF(x, r) and BF̃ (x̃, r) be the r-balls of
centers x and x̃ in Lx and L̃x̃, respectively. Let O1 be an open subset of G whose
closure is compact and contained in O. By the compactness of M × O1, there is
some R1 > 0 such that

BF(φg(x), R) ⊂ φg(BF(x, R1)) (6.8)

for all x ∈ M and all g ∈ O1. So

BF̃(φ̃g(x̃), R) ⊂ φ̃g(BF̃(x̃, R1)) (6.9)

for all x̃ ∈ M̃ and all g ∈ O1 because π restricts to isometries of the leaves of F̃
to the leaves of F .

Lemma 6.5. Each g ∈ O has a neighborhood O1 as above such that

π : φ̃(BF̃ (x̃, R1)×O1) → M

is injective for any x̃ ∈ M̃ .

Proof. Since M is compact, there exists a compact subset K ⊂ M̃ with π(K) = M .
Notice that, if the statement holds for some x̃ ∈ M̃ , then it also holds for all points
in the Aut(π)-orbit of x̃. So, if the statement fails, there exist sequences x̃i, ỹi ∈ M̃
and σi ∈ Aut(π) such that x̃i ∈ K, σi �= id

M̃
, and

d
M̃

({ỹi, σi(ỹi)}, φ̃g(BF̃ (x̃i, R1))) → 0

as i → ∞; observe that D(x̃i)−1 D(ỹi) → g by Lemma 4.7. Since K is compact,
we can assume that there exists limi x̃i = x̃ ∈ M̃ , where d

M̃
denotes the distance

function of M̃ . Hence ỹi and σi(ỹi) approach φ̃g(BF̃ (x̃, R1)). Since φ̃g(BF̃ (x̃, R1))
has compact closure, it follows that ỹi and σi(ỹi) lie in some compact neighborhood
Q of φ̃g(BF̃ (x̃, R1)) for infinitely many indices i, yielding σi(Q)

⋂
Q �= ∅. So there

is some σ ∈ Aut(π) such that σi = σ for infinitely many indices i. In particular,
σ �= id

M̃
.

On the other hand, since ỹi and σi(ỹi) approach φ̃g(BF̃ (x̃, R1)), which has
compact closure, we can assume that there exist limi ỹi = ỹ and limi σi(ỹi) = σ(ỹ)
in φ̃g(BF̃ (x̃, R1)), which is contained in the leaf φ̃g(L̃x̃) (a fiber of D). So

D(ỹ) = D(σ(ỹ)) = h(σ) ·D(ỹ) ,

yielding h(σ) = e, and thus σ = id
M̃

because h is injective. This contradiction
concludes the proof. �

From now on, assume that φ satisfies (6.8) and the property of the statement
of Lemma 6.5 with some fixed open subset O1 ⊂ O which contains the support of f .

Corollary 6.6. The map π is injective on the support of p̃(x̃, ·) for any x̃ ∈ M̃ .


