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Prélogo

Este constituye el primero de dos volimenes de un libro de texto' que deriva de
un curso (Matemdticas 160) ofrecido en el California Institute of Technology du-
rante los ultimos 25 afios. Proporciona una introduccién a la Teoria analitica de ni-
meros apropiada para estudiantes de Licenciatura con cierto conocimiento del Cdlculo
superior, pero que carecen de todo conocimiento de Teoria de numeros. En realidad,
gran parte del libro no requiere Cdlculo alguno y puede ser estudiado con provecho
por los estudiantes de Escuelas superiores sofisticadas.

La Teoria de niumeros es tan basta y rica que un curso no puede hacer justicia a
todas sus partes. Problemas que han fascinado a generaciones de matemdticos afi-
cionados y profesionales se discuten junto con algunas de las técnicas para resol-
verlos. ’

Una de las metas de este curso consiste en nutrir el interés intrinseco que todos
los estudiantes jovenes de matemdticas parecen tener por la Teoria de numeros y
abrirles algunas puertas a la literatura periddica corriente. Ha resultado grato com-
probar que muchos de los estudiantes que han seguido este curso durante los 25 afios
pasados son matemdticos profesionales, y alguno ha aportado contribuciones notables
por si mismo a la Teoria de nimeros. Este libro va dedicado a todos ellos.

1 El segundo volumen estd a punto de aparecer en la Springer-Verlag Series Graduate Texts in
Mathematics bajo el titulo de Modular Functions and Dirichlet Series in Number Teory (En el
momento de efectuar la traduccién ya ha hecho su aparicion. N. d. t.)
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Introduccién histdrica

La teoria de ntimeros es la rama de la Matematica que trata de las propiedades
de la totalidad de los numeros,

142, 3,4,5, v

llamados numeros naturales, o enteros positivos.

Los enteros positivos constituyen, sin duda alguna, la primera creacién mate-
matica del hombre. Es realmente dificil imaginar los seres humanos sin la habilidad
de contar, aunque ésta se hallase reducida a estrechos limites. La Historia nos dice
que ya en los afios 5700 A.C. los antiguos sumerios disponian de un calendario,
luego debian haber desarrollado ya alguna forma de Aritmética.

En los afios 2500 A.C. los sumerios desarrollaron un sistema de numeracion
utilizando 60 como base. Este pasé a los babilonios que desarrollaron una gran
habilidad calculadora. Se han encontrado tablillas de arcilla babilénicas que con-
tienen tablas matematicas elaboradas, y que se datan en 2000 A.C.

Cuando las antiguas civilizaciones alcanzaron un nivel que les dejaba tiempo
libre para pensar sobre las cosas, algunos pueblos empezaron a especular acerca
de la naturaleza y propiedades de los numeros. Esta curiosidad se desarrollé en
un cierto misticismo-numérico o «Numerologia», y atin hoy nimeros como 3, 7, 11
y 13 se consideran portadores de buena o mala suerte.

Los numeros se utilizaron para fijar los recuerdos y celebrarlos y para las tran-
sacciones comeciales unos 5000 afios antes de que se pensase en estudiarlos en si
mismos de forma sistemitica. La primera orientacién cientifica al estudio de
los enteros, es decir, el origen de la Teoria de los niimeros, se atribuye generalmente
a los griegos. Alla por los afios 600 A.C., Pitdgoras y sus discipulos efectuaron

1
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un estudio bastante completo de los enteros. Fueron los primeros en clasificar los
enteros de diversas formas:

Ntmeros pares: 2, 4, 6, 8, 10, 12, 14, 16, ...

Numeros impares: , 3,5 7,9, 11, 13, 15, ...

Numeros primos: 2,3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71 73 179, 83, 89, 97, ...

Ntmeros compuestos: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, ...

Un numero primo es un numero mayor que 1 cuyos Unicos divisores son 1 y
¢l mismo. Los numeros que no son primos se llaman compuestos, excepto el ni-
mero 1 que no se considera ni primo ni compuesto.

Los pitagéricos relacionaron ademas los numeroscon la Geometria. Introdujeron
la idea de numeros poligonales: nimeros triangulares, nimeros cuadraticos, nu-
meros pentagonales, etc. La razdn de esta nomenclatura geométrica aparece clara
cuando los numeros se representan por medio de puntos colocados en forma de
tridngulos, cuadrados, pentagonos, etc., tal como se indica en la figura 1.1.

Triangulares: &
. .& é&

1 28
Cuadraticos: -
4
« 1
1 4 9 16 25 36 49

N a @ @

Figura I.1
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Otra conexién con la Geometria procede del famoso teorema de Pitagoras que

establece que en todo tridngulo rectingulo el cuadrado de la longitud de la hipo-
tenusa es igual a la suma de los cuadrados de las longitudes de los catetos (ver figu-

y x2+y2=22

Figura 1.2

ra 1.2). Los pitagdricos se interesaron por los tridngulos rectingulos cuyos lados eran
enteros, como los de la figura 1.3. Tales tridngulos se conocen como tridngulos
pitagdricos. La correspondiente terna de nimeros (x, y,z) que representan las
longitudes de los lados se llama terna pitagdrica.

Se ha encontrado una tablilla babilénica, datada alrededor de 1700 A.C., que
contiene una lista extensa de ternas pitagoricas, algunos de cuyos niimeros son
bastante grandes. Los pitagdricos fueron los primeros en proporcionar un método
para determinar infinidades de ternas. En notacién moderna podemos describirlo
como sigue: Sea » un numero impar mayor que 1, y sea

x=n y=3in*-1), z=4in*+1.

La terna que resulta (x, y, z) constituye siempre una terna pitagérica con z = y -+ 1.
He aqui algunos ejemplos:

x 3 5 7 9 11 13 15 17 19

y 4 12 24 40 60 84 112 144 180

z 5 13 25 41 61 85 113 145 181

Ademas de éstas existen otras ternas pitagoricas; por ejemplo:

x 8 12 16 20

y 15 35 63 99

z 17 37 65 101

En estos ejemplos tenemos z = y + 2. Platén (430-349 A.C.) justificé un método
para determinar todas estas ternas; en notacion moderna viene dado por las
férmulas =
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x = 4n, y =4n* — 1, z=4n® + 1.

Alrededor de 300 A.C. ocurrid, en la historia de la Matem4tica, un suceso
realmente importante. La aparicion de los Elementos de Euclides, una coleccion
de 13 libros, transformé las matematicas de la Numerologia en una ciencia deductiva.
Euclides fue el primero en presentar hechos matematicos junto con demostraciones
rigurosas de tales hechos.

32 +42 =52 s 52 4122 = 13?

Figura 1.3

Tres de tales libros-se hallan dedicados a la Teoria de nimeros (Libros VII, IX y X).
En el libro IX Euclides demostré que existe una infinidad de nimeros primos. Esta
demostracion todavia se ensefia hoy en-nuestras aulas. En el libro X dio un método
para obtener todas las ternas pitagéricas si bien no demuestra que este método,
realmente, las da todas. El método se puede establecer sumariamente por las
formulas

x = ta® —b?), y=2ab, z=ta®+ b3,

en donde ¢, a, y b, son enteros positivos arbitrarios tales que a > b, a y b carecen
de factores primos comunes, y uno de ellos, @ 6 b, es par y el otro impar.

Ademas Euclides aporté una importante contribucién a otro problema plan-
teado por los pitagéricos —el de buscar todos los nimeros perfectos. El nimero 6
fue llamado ntimero perfecto puesto que 6 =1+ 2 + 3, que es la suma de sus
divisores propios (esto es, la suma de todos los divisores menores que 6). Otro
ejemplo de numero perfecto es 28 puesto que 28 =1 +2+4+7+ 14,y 1, 2,
4,7,y 14 son los divisores de 28 menores que 28. Los griegos se referian a los di-
visores propios de un numero llaméandolos sus «partes». Los nimeros 6 y 28 se
llamaron perfectos porque eran iguales a la suma de todas sus partes.

En el libro IX Euclides da todos los niimeros perfectos pares. Demuestra que
un numero par es perfecto si tiene la forma

20127 — 1),

en donde p y 2?2 — 1 son primos.
Dos mil afios mas tarde, Euler demostrd el remproco del teorema de Euclides.

Esto es, cada niimero perfecto par debe ser del tipo descrito por Euclides. Por
ejemplo, para 6 y 28 tenemos
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6=22"122-1)=2-3 y 28=22"'23_1)=4.7,

Los cinco primeros nimeros pares perfectos son

6,28,496,8128 'y 33 550 336.

Los ntimeros perfectos son, realmente, muy raros. En el momento actual (1980)
s6lo se conocen 24 numeros perfectos. Corresponden a los siguientes valores de p
en la formula de Euclides:

2,3,5,7,13,17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11213, 19937.

Los niimeros de la forma 2? — 1, en donde p es primo, se conocen con el nom-
bre de mimeros de Mersenne y se designan por M, en honor de Mersenne, que los
estudié en 1644. Se sabe que M, es primo para los 24 primos dados en la lista an-
terior y compuesto para todos los demés valores de p < 257, excepto quizas para

p = 157,167, 193, 199, 227, 229;

para éstos no se sabe si M, es primo o compuesto.

No se conoce ninglin numero perfecto impar, tampoco se sabe si existen. Pero
si existen deben ser muy grandes; de hecho, mayores que 10%° (ver Hagis [29]).

Ahora volvemos a una breve descripciéon histérica de la Teoria de nimeros
desde el tiempo de Euclides.

Después de Euclides, 300 A.C., no se efectuaron avances significativos en Teoria
de numeros hasta aproximadamente 250 D.C. en que otro matemdtico griego,
Diofanto de Alejandria, publicéd 13 libros, de los que se han conservado seis. Esta
es la primera obra griega en la que se realiza un uso sistematico de los simbolos
algebraicos. Si bien dicha notacion algebraica parece torpe frente a la usual
de hoy dia, Diofanto fue habil para resolver ecuaciones algebraicas con dos o tres
incégnitas. Muchos de estos problemas se originaron en la Teoria de numeros
y a él le parecid natural buscar soluciones enteras para las ecuaciones. Las ecua-
ciones que deben ser resueltas por medio de valores enteros de las incognitas se
llaman hoy ecuaciones diofdnticas, y el estudio de tales ecuaciones recibe el nombre
de Andlisis diofdntico. La ecuacion x? + y® = z2 relativas a las ternas pitagoricas
constituye un ejemplo de ecuacidn diofantica.

Tras Diofanto no se realizaron muchos progresos en Teoria de numeros hasta
el siglo diecisiete, si bien existe evidencia de que el tema empezaba a florecer en
el Lejano Oriente —especialmente en la India— en el periodo entre 500 D.C. y
1200 D.C.
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En el siglo diecisiete el tema renacié en la Europa Oeste, en gran manera gra-
cias a los esfuerzos de un matematico francés, Pierre de Fermat (1601-1665), que
se conoce generalmente como el padre de la Teoria moderna de ntimeros. Gran
parte de la inspiracion de Fermat deriva de los trabajos de Diofanto. Fue el pri-
mero en descubrir propiedades realmente profundas de los enteros. Fermat demos-
tré los siguientes teoremas sorprendentes:

Todo entero o es un niimero triangular o una suma de 2 o 3 nimeros triangulares;
todo entero o es cuadrdtico o es una suma de 2, 3 o 4 cuadrdticos; todo entero es
pentagonal o es una suma de 2, 3, 4 6 5 niimeros pentagonales, y asi sucesivamente.

Fermat descubrié también que todo nimero primo de la forma 4n + 1 tal como
5, 13, 17, 29, 37, 41, etc., es una suma de dos cuadrados. Por ejemplo,

5=12 4+ 22, 13 = 2% + 32, 17 = 1% + 42, 29 =22 4 52,
37=12+6% 41 =4>+ 5%

Poco tiempo después de Fermat, los nombres de Euler (1707-1783), Lagrange
(1763-1813), Legendre (1752-1833), Gauss (1777-1855), y Dirichlet (1805-1859) re-
sultaron prominentes en el posterior desarrollo de la teoria. El primer libro de Teoria
de numeros fue publicado por Legendre en 1798. Tres afios mas tarde Gauss pu-
blicé Disquisitiones Arithmeticae, un libro que transformaba la materia en una
ciencia sistematica y bella. Sin embargo utilizaba gran cantidad de contribuciones
de otras ramas de la Matematica, asi como de otras ciencias. El mismo Gauss
consideraba este libro sobre Teoria de numeros su mejor obra.

En los ultimos doscientos aflos, o sea desde los tiempos de Gauss, ha existido
un desarrollo intensq de la materia en muchas direcciones. Es imposible dar en
pocas paginas una clara exposicion de los tipos de problemas que se estudian en
la Teoria de numeros. El campo es muy vasto y algunas de sus partes requieren
un profundo conocimiento de mateméticas superiores. A pesar de todo, existen
muchos problemas de Teoria de nuimeros que resulta muy facil enunciarlos. Al-
gunos de ellos se refieren a numeros primos, y dedicamos el resto de esta intro-
duccion a tales problemas.

En las paginas anteriores hemos dado la lista de los primos menores que 100.
Una tabla que daba la lista de todos los nimeros primos menores que 10 millones
fue publicada en 1914 por un matematico americano, D. N. Lehmer [43]. Existen
exactamente 664 579 primos menores que 10 millones, o aproximadamente 6 £ %.
Mas recientemente D. H. Lehmer (el hijo de D. N. Lehmer) calculd el total de pri-
mos menores que 10 mil millones; hay exactamente 455 052 512 de tales primos, o
sea aproximadamente 4 3 9/ si bien no se conocen todos estos primos individual-
mente (ver Lehmer [41]).

Un examen detallado de una tabla de primos pone de manifiesto que se hallan
distribuidos de forma muy irregular. Las tablas muestran grandes espacios entre
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primos. Por ejemplo, el primo 370 261 va seguido de 111 compuestos. No existe
primo alguno entre 20 831 323 y 20 831 533. Es facil demostrar que entre nimeros
primos se pueden presentar eventualmente espacios arbitrariamente grandes.

Por otro lado, las tablas muestran que se presentan reiteradamente primos
consecutivos tales como 3 y 5, o 101 y 103. Los primos que, como éstos, difieren
so6lo en dos unidades se conocen como primos gemelos. Hay unos 1000 pares gemelos
por debajo de 100 000 y unos 8000 por debajo de 100C 000. El par més grande
conocido hoy por hoy (ver Williams y Zarnke [76]) es 76-313 —1 y 76-31%° + |,
Muchos matematicos creen que existe una infinidad de estos pares, pero ninguno
ha sido capaz de demostrarlo.

Una de las razones de la irregularidad en la distribucién de primos es que no
existe ninguna foérmula simple que produzca todos los niimeros primos. Algunas
féormulas proporcionan muchos primos. Por ejemplo, la expresion

x? —x + 41
da un primo para x =0, 1, 2, .. ., 40, mientras que
x2 — 79x + 1601

da un primo para x =0, 1,2, ...,79. Sin embargo, ninguna de tales formulas
simples puede dar un primo para todo x, aunque se utilicen cubos y potencias
superiores. De hecho, en 1752 Goldbach probd que ningin polinomio en x con
coeficientes enteros puede ser primo para todo x, e incluso para x suficientemente
grande.

Algunos polinomios representan infinidad de primos. Por ejemplo, cuando x,
recorre los enteros 0, 1,2, 3, ..., el polinomio lineal

2x + 1

da todos los numeros impares por lo tanto una infinidad de primos. También,
cada uno de los polinomios
4x + 1 y 4x + 3

representa una infinidad de primos. En un trabajo famoso [15] publicado en 1837,
Dirichlet demostrd que, si @ y b son enteros positivos carentes de factores comunes,

el polinomio
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ax +b

da una infinidad de primos cuando x recorre todos los enteros positivos. Este re-
sultado se conoce como teorema de Dirichlet sobre la existencia de primos en una
progresion aritmética dada.

Para demostrar el teorema, Dirichet salié fuera del reino de los enteros e in-
trodujo instrumentos de Analisis tales como los limites y la continuidad. Por este
motivo puso los fundamentos de una nueva rama de la Matematica llamada Teoria
analitica de nimeros, en la cual se utilizan ideas y métodos del Analisis real y com-
plejo para resolver problemas sobre enteros.

No se sabe si existe un polinomio cuadratico ax® + bx + ¢ con a # 0 que
representa una infinidad de primos. Sin embargo, Dirichley [16] utilizé sus pode-
rosos métodos analiticos para-demostrar que, si @, 2b, y ¢ carecian de factores
primos comunes, el polinomio cuadréatico en dos variables

ax? + 2bxy + cy?

representa una infinidad de primos cuando x e y recorren los enteros positivos.

Fermat creia que la férmula 22* + 1 daria siempre un primo paran =0, 1,2, ...
Estos numeros se llaman numeros de Fermat y se designan por F,. Los cinco pri-
meros son:

F0=3, F1=5, F2=17, F3=257 y F4=65537,

y todos ellos son primos. Sin embargo, en 1732 Euler hallé que F; es compuesto;
de hecho

Fs =232 4+ 1 = (641)(6 700 417).

Estos numeros son de interés también en Geometria plana. Gauss demostré que,
si F, es un primo, por ejemplo F, = p, entonces se puede construir un poligono
regular de p lados con regla y compas.

Mas alla de F; no se han hallado otros primos de Fermat. En efecto, para 5<n< 16,
cada numero de Fermat F, es compuesto. Ademads, se sabe que F, es compuesto
para los siguientes valores aislados de n:

n = 18,19,21, 23,25, 26,27, 30, 32, 36, 38, 39,42, 52, 55, 58,63, 73, 77,
81,117, 125, 144, 150, 207, 226, 228, 260, 267, 268, 284, 316, 452,
y 1945.
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El mayor numero de Fermat compuesto, Fq,;, tiene mas de 1052 digitos, un nu-
mero mayor que el nimero de letras de los listines telefénicos de Los Angeles
y New York juntos (ver Robinson [59] y Wrathall [77]).

Ya hemos mencionado anteriormente que no existe ninguna férmula simple
que dé todos los primos. En conexién con este hecho, mencionemos un resultado
descubierto en 1947 por un matematico americano, W. H. Mills [50]. Demostro
que existe algun numero 4, mayor que 1 pero no entero tal que

[4%7] es primo para todo x =1 2,3, ...

Aqui [4%7] significa ¢l mayor entero < A%, Por desgracia se desconoce a qué es
igual A.

Los resultados anteriores ilustran la irregularidad de la distribucién de los nu-
meros primos. Sin embargo, si se examinan grandes bloques de primos se encuentra
que su distribucion media parece bastante regular. Si bien no se terminan los
numeros primos, se presentan cada vez mas espaciados, en media, a medida que
se avanza en la tabla. La cuestion del enrarecimiento en la distribucién fue mo-
tivo de muchas especulaciones en el siglo diecinueve. Para estudiar esta distribu-
cién, consideramos una funcién, designada por z(x), que cuenta el numero de
primos < x. Luego

7t(x) = al nimero de primos p que verifican 2 < p< x.

A continuacion se da una breve tabla de esta funcién y su comparacién con x/log x,
en donde log x es el logaritmo neperiano de x.

x 7(x) x/log x 7(x) / 10: .
10 4 43 093
102 25 21,7 1,15
103 168 144.9 1,16
10* 1229 1086 1,11
10° 9592 8 686 1,10
108 78 498 72 464 1,08
107 664 579 621118 1,07
108 5761455 5434780 1,06
10° 50847 534 48 309 180 1,05

10° 455052 512 434294 482 1,048

Examinando una tabla como ésta para x < 108, Gauss [24] y Legendre [40]
propusieron independientemente que, para x grande, el cociente
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o) / lo; x

era proximo a 1 y conjeturaron que este cociente tendia a 1 cuando x tendia a oo.
Tanto Gauss como Legendre intentaron demostrar esta afirmacién pero no tuvieron
éxito. El problema de determinar la veracidad o falsedad de esta conjetura atrajo
la atencion de matematicos eminentes durante cerca de 100 afios.

En 1851 el matematico ruso Chebyshev [9] dio un paso importante al demos-
trar que si dicho cociente tenia limite, este limite debia ser 1. Sin embargo no fue
capaz de demostrar que el cociente tenia limite.

En 1859 Riemann [58] atacé el problema con métodos analiticos, utilizando
una férmula descubierta por Euler en 1737 que relaciona los nimeros primos con
la funcidn

1
n

(=3

para s real > 1. Riemann consideré valores complejos de s y dio un método inge-
nioso para conectar la distribucion de los primos con las propiedades de la funcién
C(s). Las matematicas necesarias para justificar todos los detalles de este método
no habian sido desarrolladas completamente y Riemann no fue capaz de resolver
completamente el problema anterior antes de su muerte en 1866.

Treinta afios mas tarde se establecieron las herramientas analiticas necesarias
y en 1896 J. Hadamard [28] y C. J. de la Vallée Poussin [71] demostraron, inde-
pendientemente y casi simutineamente, que

lim n(x)log x _

X~ o0 X

1.

Este resultado notable se llama el teorema del nimero primo, y su demostracion
constituyé uno de los éxitos mas completos de la Teoria analitica de numeros.

En 1949, dos matematicos contemporaneos, Atle Selberg [62] y Paul Erdos [19]
causaron sensacion en el mundo matematico al descubrir una demostracion ele-
mental del teorema del nimero primo. Su demostracion, si bien es muy intrincada
no utiliza ni {(s) ni la teoria de las funciones complejas y, en principio, es acce-
sible a todo el que se halle familiarizado con el Calculo elemental.

Uno de los problemas mas famosos relativos a niimeros primos lo constituye
la llamada conjetura de Goldbach. En 1742, Goldbach [26] escribié a Euler sugi-
riéndole que cada numero par > 4 es una suma de dos primos. Por ejemplo,
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4=2+2 6=3+3 8=3+5
10=3+7T=5+5 12=5+7

Esta conjetura esta sin decidir hasta hoy, si bien en los ultimos afios se han efec-
tuado ciertos progresos que indican que probablemente es verdadera. ;Por qué los
matematicos piensan actualmente que probablemente es verdadera si no han sido
capaces de demostrarla? Ante todo, la conjetura ha sido comprobada por computa-
cién efectiva para todo numero par menor que 33 X 10%. Se ha establecido que
cada niimero par mayor que 6 y menor que 33 X 108 es, en efecto, no s6lo la suma
de dos primos impares sino la suma de dos primos impares distintos (ver Shen [66]).
Pero en Teoria de nimeros la comprobacion de unos pocos centenares de casos no
constituye evidencia suficiente para convencer a los matematicos de que algo es
probablemente verdadero. Por ejemplo, todos los primos impares se dividen en
dos categorias, los de la forma 4n 4 1 y los de la forma 4n + 3. Sea ,(x) la no-
tacion de todos los primos # x que son de la forma 4n + 1, y sea 75(x) la de los
numeros que son de la forma 4n 4 3. Sabemos que existe una infinidad de primos
de ambos tipos. Por computacidn se establecio que 7, (x) 5 m4(x) para todo x <26 861.
Pero en 1957, J. Leech [39] establecié que para x = 26 861 se verificaba ,(x) =
= 1473 y my(x) = 1472, luego la desigualdad se invertia. En 1914, Littlewood [49]
demostré que con una frecuencia infinita esta desigualdad se invertia de sentido.
Esto es, existe una infinidad de x para los que 7;(x) < 75(x) y también una in-
finidad de x para los que ms(x) < 7,(x). Las conjeturas relativas a los numeros
primos pueden ser errdneas a pesar de haber sido comprobadas por el calculo de
centenares de casos. ,

Por consiguiente, el hecho de que la conjetura de Goldbach se haya verificado
para todos los numeros pares menores que 33 X 108 constituye unicamente un
poco de evidencia a su favor.

Otra forma que tienen los matematicos para evidenciar la veracidad de una
conjetura particular consiste en demostrar otros teoremas que son algo parecidos
a la conjetura. Por ejemplo, en 1930 el matematico ruso Schnirelmann [61] de-
mostré que existe un M tal que cada », a partir de un lugar, es una suma de M o
menos primos:

n=p +p,+-+pum (para n suficientemente grande)

Si supiésemos que M es igual a 2 para todo n par, habriamas demostrado la conje-
tura de Goldbach para n suficientemente grande. En 1956 el matematico chino
Yin Wen-Lin [78] demostré que M < 18. Esto es, cada numero »n, a partir de un
lugar, es suma de 18 o menos primos. El resultado de Schnirelmann se consi-
dera un paso de gigante con vistas a demostrar la conjetura de Goldbach. Es el
primer progreso real efectuado en este problema en casi 200 afios.
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Un planteamiento mas preciso a la solucién del problema de Goldbach fue
establecido en 1937 por otro matematico ruso, I. M. Vinogradov [73], el cual de-
mostré que, a partir de un lugar, todo numero impar es la suma de tres primos:

n=p, +p,+ p3 (n impar, n suficientemente grande).

De hecho, este resultado es verdadero para todo n impar mayor que 3*° (ver Bo-
rodzkin [5]. Hoy constituye la pieza mas importante de evidencia en favor de la
conjetura de Goldbach. Por un lado, es facil demostrar que el teorema de Vino-
gradov es una consecuencia de la afirmacién de Goldbach. Es decir, si la conjetura
de Goldbach es verdadera, entonces la afirmacion de Vinogradov se deduce fAcil-
mente. La conquista mas sobresaliente de Vinogradov fue su habilidad para probar
su resultado sin utilizar la conjetura de Goldbach. Por desgracia, nadie ha sido
capaz de establecerlo en el otro sentido y de demostrar la afirmacién de Goldbach
a partir de la de Vinogradov.

Otra pieza de la evidencia en favor de la conjetura de Goldbach fue estable-
cida en 1948 por el matematico hungaro Rényi [57] que demostré que existe un
numero M tal que cada niimero impar »n suficientemente grande se puede escribir
como suma de un primo con otro nimero que no posee mas de M factores primos:

n=p-+4 A,

en donde 4 no posee mas de M factores primos (n par, n suficientemente grande).
Si supiésemos que M =1 entonces la conjetura de Goldbach seria cierta para
todo 7 suficientemente grande. En 1965 A. A. Buhstab [6] y A. 1. Vinogradov [72]
demostraron que M < 3, y en 1966 Chen Jing-run [10] demostré que M < 2.

Concluimos esta introduccion con una breve mencién de algunos de los pro-
blemas no resueltos concernientes a nimeros primos.

1. (Problema de Goldbach). ¢Existe un niimero par > 2 que no sea suma de dos
primos ?

2. (Existe un nimero par > 2 que no sea la diferencia de dos primos?

(Existe una infinidad de primos gemelos?

(Existe una infinidad de primos de Mersenne, esto es, primos de la forma 2” — 1,

p primo?

. (Existe una infinidad de niimeros compuestos de Mersenne?

(Existe una infinidad de primos de Fermat, esto es, primos de la forma 22" + 1?

(Existe una infinidad de niimeros de Fermat compuestos?

(Existe una infinidad de primos de la forma x* + I, en donde x es un entero?

(Sabemos que existe una infinidad de primos de la forma x* + )2,y de la forma

x4+ 32+ 1, y de la forma x% + y* + 22 + 1).

9. ;Existe una infinidad de primos de la forma x* + k (k dado)?

el

% N oo



Introduccién histérica 13

10. (Existe siempre un primo, por lo menos, entre n* y (n + 1)? para cada entero
n>1?

11. ;Existe siempre un primo, por lo menos, entre n? y n* 4+ n para cadaenteron > 1?

12. ;Existe una infinidad de primos cuyos digitos (en base 10) son todos unos?
(Existen dos ejemplos: 11 y 11111 111 111 111 111 111 111.)

El matematico profesional se siente atraido por la Teoria de niimeros porque
en sus métodos se pueden utilizar todas las armas de la Matematica moderna para
esclarecer sus problemas. Es una realidad que ramas muy importantes de la Ma-
tematica han tenido su origen en la Teoria de niimeros. Por ejemplo, los primeros
intentos para resolver el teorema del nimero primo estimularon el desarrollo de
la teoria de las funciones complejas, especialmente la teoria de las funciones en-
teras. Los intentos para demostrar que la ecuacion diofantica x"+ y" 4 z" no posee
soluciones no triviales si » > 3 (conjetura de Fermat) contribuyeron al desarrollo
de la Teoria algebraica de numeros,una de las dreas méas activas de la investigacion
matematica actual. Si bien la conjetura de Fermat permanece sin decidir, ello pa-
rece poco importante frente a la gran cantidad de teorias matematicas que han sido
creadas como resultado de los trabajos acerca de dicha conjetura. Otro ejemplo
lo constituye la teoria de las particiones que ha constituido un factor importante
en el desarrollo del Anélisis combinatorio y en el estudio de las funciones modulares.

Existen centenares de problemas no resueltos en Teoria de nimeros. Aparecen
problemas nuevos mas rdpidamente que se resuelven los antiguos, y muchos de los
antiguos llevan siglos sin resolverse. Como dijo una vez el matematico Sierpinski,
«...el progreso de nuestro conocimiento de los nimeros avanza no sélo por lo que
de ellos ya conocemos, sino también porque nos damos cuenta de lo que todavia
de ellos desconocemosy.

Nota. Todo estudiante serio de Teoria de numeros ha de estar familiarizado
con los tres volimenes de la obra de Dickson, History of the Theory of Numbers
[13], y con los seis volimenes de la de Le Veque, Reviews in Number Theory [45].
La History de Dickson proporciona un conocimiento enciclopédico de toda la
literatura de la Teoria de niimeros hasta 1918. Los volumenes de Le Veque repro-
ducen todos los articulos de los voliimenes 1-44 de las Mathematical Reviews (1940-
(1972) que se refieren directamente a cuestiones consideradas cominmente como
parte de la Teoria de niimeros. Estas dos valiosas colecciones proporcionan prac-
ticamente una historia de todos los descubrimientos importantes en Teoria de ni-
meros desde la antigiiedad hasta 1972.






Capitulo 1

El teorema fundamental
de la Aritmética

1.1 INTRODUCCION

En este capitulo se introducen conceptos basicos de la Teoria elemental de ni-
meros tales como la divisibilidad, el madximo comun divisor, y los niimeros primos
y compuestos. Los resultados principales son el teorema 1.2, que establece la
existencia del maximo comun divisor para todo par de enteros, y el teorema 1.10,
(el teorema fundamental de la Aritmética), que demuestra que todo entero mayor
que 1 se puede representar como producto de factores primos de forma tunica
(salvo el orden de los factores). Muchas de las demostraciones utilizan la siguiente
propiedad de los enteros.

El principio de induccion. Si Q es un conjunto de enteros tales que

(@ 1€9,
(b) neQ implica n+1€Q,

entonces

(c) todo entero = 1 pertenece a Q.

Existen, ademés, otras formulaciones de este principio. Por ejemplo, en (a) po-
demos substituir 1 por un entero cualquiera k, siempre que en (c) la desigualdad
> 1 se substituya por > k. Ademas (b) se puede substituir por 1, 2, 3, ...,
n e Q implica (n 4+ 1) e Q.

15
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Suponemos que el lector se halla familiarizado con este principio asi como con
su uso en las demostraciones de teoremas por induccién. Le suponemos también

familiarizado con el siguiente principio que es légicamente equivalente al principio
de induccion.

El principio de buena ordenacién. Si A es un conjunto no vacio de enteros posi-
tivos, entonces A posee un elemento minimo.

De nuevo, este principio posee formulaciones equivalentes. Por ejemplo, «en-
teros positivos» se puede substituir por «enteros > k para un cierto k».

1.2 DIVISIBILIDAD

Notacion. En este capitulo, las letras latinas minusculas a, b, ¢, d, n, etc.,
denotan enteros; pueden ser positivos, negativos, o cero.

Definicion de divisibilidad. Diremos que d divide n y escribiremos d|n si n = cd
para un.c. Diremos también que » es un multiplo de d, que d es un divisor de n,
o que d es un factor de n. Si d no divide a n escribiremos d + n.

La divisibilidad establece una relacion binaria entre enteros con las siguientes
propiedades elementales cuyas demostraciones se dejan como ejercicio para el
lector, (Salvo indicacién expresa, las letras a, b, d, m, n del teorema 1,1 representan
enteros arbitrarios.)

Teorema 1.1 La divisibilidad verifica las siguientes propiedades:

(@) njn (propiedad reflexiva)

(d) dln y nlm implica d|m (propiedad transitiva)

(c) d|n y d|m implica d|(an + bm) (propiedad lineal)

(d) d|n implica ad|an (propiedad de multiplicacién)
() adlan y a # 0 implica d|n (propiedad de simplificacion)
® I1n (1 divide a todos los enteros)
(g) n0 (cada entero divide a cero)
(h) O|n implica n =0 (el cero sélo divide al cero)
() dln y n # 0 implica |d| < |n| (propiedad de comparacion)

() d|n y n|d implica |d| = |n|
(k) d|n y d # 0 implica (n/d)|n.

Nota. Si d|n entonces n/d se llama el divisor conjugado de d.



