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Preface

The present third edition substantially augments the second edition of the book
(Non-equilibrium Evaporation and Condensation Processes. Analytical Solutions,
Springer, 2019) by the author. Non-equilibrium evaporation and condensation
processes play an important role in a number of fundamental and applied prob-
lems. When using laser methods for the processing of materials, it is important to
know the laws of both evaporation (for thermal laser ablation from the target surface)
and condensation (for the interaction with the target of an expanding vapor cloud).
Some accident situations in the energetic industry develop from a sudden contact
of bulks of cold liquid and hot vapor. Shock interaction of two phases produces a
pulse rarefaction wave in vapor accompanied by an abrupt variation of pressure in
vapor and intense condensation. Spacecraft thermal protection design calls for the
modeling of the depressurization of the protection cover of nuclear propulsion units.
To this end, one should be capable of calculating the parameter of intense evapora-
tion of the heat transfer medium as it discharges into vacuum. Solar radiation on a
comet surface causes evaporation of its ice corewith the formation of the atmosphere.
Depending on the distance to the Sun, the intensity of evaporation varies widely and
can be immense. The process of evaporation, which varies abruptly in time, has a
substantial effect on the density of the comet atmosphere and the character of its
motion.

The specific feature of intense phase transitions is the formation of the non-
equilibriumKnudsen layer near the surface. In this setting, the standard gas-dynamic
description within the Knudsen layer becomes illegitimate: the phenomenological
parameters of the gas, as determined by statistical averaging rules, cease to have their
macroscopic sense. Under non-equilibrium conditions, the joining conditions of the
condensed and gaseous phases turn out to be much more involved than those adopted
in the equilibrium approximation. From the consistent consideration of molecular-
kinetic effects on the phase boundary, one can get important nontrivial information
about the thermodynamic state of vapor under phase transitions.

An important problem of safety assurance in nuclear power plants is the calcula-
tion of the process of discharge of the heat transfermedium through pipeline ruptures.
This can be accompanied by the explosive boiling of superheated liquid resulting
in the substantial restructuring of the flow structure. The explosive boiling regime
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is manifested most vividly when the liquid attains the limit thermodynamic temper-
ature (the spinodal temperature). This is accompanied by homogeneous nucleation
(fluctuation generation of vapor bubbles in the mother phase).

Despite the fluctuation character of nucleation and the short lifetime of vapor
bubbles, the phenomenon of gaseous (vapor) bubbles in liquid has many manifes-
tations: underwater acoustics, sonoluminescence, ultrasonic diagnosis, reduction of
friction by surface nanobubbles, and bubble boiling. In applications pertaining to
the physics of boiling, it is required to know the dependence of the growth rate of
a vapor bubble on a number of parameters: thermophysical properties of liquid and
vapor, capillary, viscous, and inertial forces, and molecular-kinetic laws on the phase
boundary.

Modern progress in microelectronics and nanotechnologies calls for further anal-
ysis of the behavior of the phase boundary in microscopic objects, and in particular,
the behavior of the liquid–gas boundary. Here, of great value is the study of the joint
action of intermolecular and surface forces, which control the motion of evaporating
microscopically thin films.

The cooling of heated surfaces by droplet jets is widely spread in various engi-
neering applications: energy industry,metallurgy, cryogenics, space engineering, and
firefighting. The progress in this area is hindered by the insufficient comprehension
of all the phenomena accompanying the impingement of a jet on a surface. The key
problem here is the study of the interaction of liquid droplets with a rigid surface.

The problem of vapor condensation in a transverse flow past a horizontal cylinder
(in contrast to the “classical” case of stationary steamon a vertical plate) ismuchmore
involved, which requires a comprehensive analysis, including the correct considera-
tion of all forces acting on a falling condensate film.With film condensation of vapor,
even a small portion of noncondensable gas can significantly reduce the intensity of
heat- and mass transfers. Due to the loss of vapor due to condensation, the velocity
of the steam–gas flow decreases downstream, while the concentration of the noncon-
densable gas increases. Therefore, the negative effect of noncondensable gas can be
quite substantial, even though its initial content could be small. In contrast to the
case of pure vapor condensation, it is necessary to calculate the local characteristics
of the heat- and mass transfer.

Bubble boiling, which is an integral part of various techniques, is an extremely
effective method for cooling solid surfaces exposed to high-intensity thermal effects
(structural elements of thermonuclear fusion plants, high-power lasers, physical
targets, etc.). The very strong dependence of the heat flux density on the wall over-
heating makes it possible to divert energy flows of huge density at a relatively small
temperature difference. The unique combination of the resistance to “strong” and the
instability to “weak” external influences provides a fundamental obstacle to creating
a consistent theory of bubble boiling. Special attention should be paid to the debat-
able issue of the influence of thermophysical characteristics of a heat-transmitting
wall on the characteristics of bubble boiling.

Exotic non-equilibrium effects accompany the boiling of liquid helium in the
state of superfluidity, which is a macroscopic quantum state. Of fundamental interest
here is the analysis of thermodynamic principles of superfluid helium from two
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alternative positions: the macroscopic approach, which is based on the two-fluid
model, and the microscopic analysis, which depends on the quantum-mechanical
model of quasi-particles.

Of special interest is also the physical concept of pseudoboiling, which describes
the laws of heat exchange in the range of supercritical pressures of a single-phase
liquid. The model of pseudoboiling enables one to calculate the heat exchange with
turbulent flow in a channel ofmediumwith highly variable thermophysical properties.

Gas bubbles that rise in a stationary liquid under the action of the gravity force
can have shapes of a sphere, an ellipsoid of rotation flattened in the direction of the
pop-up, and a spherical cap. Depending on the volume of the bubble, the trajectory
of its motion can be straight, zigzag, or helical. The unusual shape and trajectory of
gas bubbles have been the subject of a huge number of studies starting with Leonardo
da Vinci. Experimental studies of rising bubbles cover the last 120 years. The only
exact solution to the problem of rising bubbles in a liquid volume was obtained
by Hadamard and Rybczynski in the case of very small bubbles. At present, the
dependence of the rise velocity on the size of moderate and large gas bubbles is
described by semi-empirical and empirical relations.

Helium at supercritical pressures is used as a coolant for cryogenic
superconductivity-based objects. Pulsations of flow rate and temperature may
develop in a flow of supercritical helium under certain combinations of regime
parameters. Due to the strong dependence of the thermophysical properties of super-
critical helium on the temperature during its flow in the channels, a thermohydraulic
instability of the “density wave” type can occur. The theoretical analysis of this
specific instability requires a physical model which is fundamentally different from
the standard method of small oscillations.

In the case of a turbulent flow in channels of two-phase flows, the effect of
dispersed inclusions (bubbles, droplets, etc.) on the thermal hydrodynamics of the
continuous phase plays an important role. To correctly account for this effect, it is
necessary to conduct a theoretical study of the process of bubble and droplet breakup
as they interact with the turbulent continuous medium.

The present book is solely concerned with analytical approaches to the statement
and solution of problems of this kind. The analytical approach is capable of providing
a solution to the mathematical model of a physical problem in the form of compact
formulas, expansions into series, and integrals over a complete family of eigenfunc-
tions of a certain operator. The study involves the application of the availablemethods
and the discovery of new methods of solutions of a given mathematical model of a
real process, given as a differential or integral equation or a system of differential or
integro-differential equations. The resulting analytical relation provides an adequate
description (even for a simplified model) of the essence of a physical phenomenon.
From analytical solutions, one is capable to understand and represent in a transparent
form the principal laws, especially in the study of a new phenomenon or a process.
This is why analytical methods are always employed in the first stage of mathemat-
ical modeling. Analytical solutions are also used as test models for the validation of
results of numerical solutions.
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In Chap. 1, the molecular-kinetic theory is looked upon as a link between
the microscopic and macroscopic levels of the description of the structure of the
material. Historical aspects of the creation by Ludwig Eduard Boltzmann of his
seminal equation are discussed; we also dwell upon the discussions following this
discovery. We give a precise solution to the Boltzmann equation in the case of
space-homogeneous relaxation. Applied problems of intense phase transition are
discussed. The problem of specifying boundary conditions on the phase interface
of the condensed and gaseous phases is discussed. Methods of kinetic analysis of
evaporation and condensation processes are discussed.

Chapter 2 is concerned with the non-equilibrium effects on the phase interface.
We give the conservation equations of molecular flows of mass, momentum, and
energy, and describe the classical problem of evaporation into a vacuum. Actual
and extrapolated boundary conditions are analyzed for the gas-dynamic equations
in the external domain. It is shown that in the non-equilibrium Knudsen layer (adja-
cent to the phase boundary), the velocity distribution function of molecules can be
conventionally split into two parts. We also discuss the problem of determination
of the accommodation coefficients of mass, momentum, and energy. We present the
fundamentals of the linear kinetic theory. Approximate kinetic models of the strong
evaporation problem are described.

Chapter 3 is devoted to the approximate kinetic analysis of strong evaporation. On
basis of the mixing model, we give analytical solutions for temperatures, pressures,
andmass velocities of vapor andmatch themwith the available numerical and analyt-
ical solutions. The mechanism of reflection of molecules from the condensed-phase
surface is analyzed. The effect of the condensation coefficient on the conservation
equations of molecular flows of mass, momentum, and energy, and also on the ther-
modynamic state of the resulting vapor is studied. “Thermal conductivity in target–
intensive evaporation” conjugate problem is calculated. The asymptotic behavior of
the solutions in terms of the key parameters of the systems is obtained and analyzed
from the physical viewpoint. The conjugate problem for the hyperbolic heat conduc-
tion equation was considered. The integral Laplace transform was applied to find an
analytical solution of the hyperbolic heat conduction equation in the general case
when the temperature and the heat flux on the body surface are arbitrary time func-
tions. A general solution to the problem is constructed using the concept of the
relative HTC. A two-zone approximation of the solution was given, using which
the following characteristic parameters of the conjugate problem were identified: the
delay time, the height of the hyperbolic shelf, and the hyperbolic and parabolic zones
of the evaporation process.

Chapter 4 proposes a semi-empirical model of strong evaporation based on
the linear kinetic theory. Extrapolated jumps of density and temperature on the
condensed-phase surface are obtained by summing the linear and quadratic compo-
nents. The expressions for the linear jumps are taken from the linear kinetic theory of
evaporation. The nonlinear terms are calculated from the relations for a rarefaction
shock wave with due account of the corrections for the acceleration of the egressing
flow of gas. Analytical dependences of the vapor parameters in the gas-dynamic
region on the Mach number, the condensation coefficient, and the number of degrees
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of freedomof gasmolecules are put forward. For a kinetic shock evaporationwave, its
model is proposed based on the composition of classical results of the linear kinetic
evaporation theory and the theory of gas-dynamic shock rarefaction wave. A kinetic
shock wave is shown to be stable based on the second law of thermodynamics. It is
proved that themaximumentropyprinciple,which follows fromPrigogine’s theorem,
is satisfied during transonic evaporation. A highly unstable solution of the inverse
problem of intense evaporation is obtained. It is shown that the solution of the intense
evaporation problem is conservative with respect to the method of approximation of
the distribution function.

In Chap. 5, the approximate kinetic analysis of strong condensation is devel-
oped. The “mixing model” is used to calculate regimes of subsonic and supersonic
condensation. Peculiarities of supersonic condensation with increasedMach number
are studied: inversion of the solution, bifurcation of the solution, transition to two-
valued solutions, and the limit Mach number, for which a solution exists. The effect
of the condensation coefficient on the conservation equations for mass, the normal
component of themomentum, and the energy ofmolecular flows is studied. The “con-
densation lock” phenomenon due to the reduced permeability of the condensed-phase
surface is examined.

In Chap. 6, the mixing model is used for the analysis of linear kinetic problems of
phase transition. The asymmetry of evaporation and condensation, which occurs for
intensive processes, remains even for the case of linear approximation. The expres-
sions for pressure and temperature jumps are obtained for the evaporation problem:
these results almost coincide with those of the classical linear theory. The depen-
dence of the vapor pressure on its temperature is shown as having a minimum near
the margin between the anomalous and normal regimes of condensation. The results
are extended to the case of diffusion reflection ofmolecules from the phase boundary.

Chapter 7 is concerned with the spherically symmetric growth of a vapor bubble
in an infinite volume of a uniformly superheated liquid. We consider the influence of
each effect within the framework of the limiting schemes. A detailed analysis of the
energetic thermal scheme of a bubble is carried out. As the next step, we come to the
“binary” schemes of growth that describe the simultaneous effect of two factors on
the growth of a bubble. The evaporation–condensation coefficient was estimated by
comparing the theoretical solution with experimental data on the growth of a vapor
bubble under reduced gravity conditions. The growth mechanism of bubbles formed
as a result of the homogeneous bubble nucleation is studied.

Chapter 8 is concerned with the study of the growth of a vapor bubble in the case
when the superheating enthalpy exceeds the phase transition heat is considered. The
Plesset–Zwick formula was extended to the region of strong superheating. It was
that when the Stefan number exceeds 1 there arises a feature of the mechanism of
heat input from the liquid to the vapor leading to the effect of pressure blocking in
the vapor phase. To calculate the Stefan number in the metastable region, we use
the scaling law of change in the isobar heat capacity. The problem of the effect of
the experimental conditions on the effervescence of the butane drop is solved. An
algorithm was proposed for constructing an approximate analytical solution for the
range of Stefan numbers greater than unity.
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Chapter 9 provides an evaporating meniscus on the interface of three phases.
An approximate solution method is presented capable of finding the influence of
the kinetic molecular effects on the geometric parameter of the meniscus and on
the heat transfer intensity. The method depends substantially on the change of
the boundary-value problem for the fourth-order differential equation (describing
the thermo-hydrodynamics of the meniscus) by the Cauchy problem for a second-
order equation. Analytical expressions for the evaporating meniscus parameters are
obtained from the analysis of the interaction of the intermolecular, capillary, and
viscous forces, and the study of the kinetic molecular effects. The latter effects are
shown to depend substantially on the evaporation–condensation coefficient.

Chapter 10 is concernedwith the kinetic effects for a spheroidal state. The question
on the influence of the kinetic molecular effects on the drop equilibrium conditions
is considered for the first time. Results of the linear kinetic theory of evaporation are
used to evaluate the kinetic pressure difference due to the non-equilibrium conditions
of the evaporation process. It is shown that, depending on the value of the evapora-
tion/condensation coefficient, the kinetic pressure with respect to a drop may have
either repulsing or attracting character. The analytical dependence for the thickness
of the vapor film for a wide range of evaporation/condensation coefficients is found.

Chapter 11 provides vapor condensation upon the transversal flow around a
cylinder. The analytical solutions for the limiting heat-exchange laws, which corre-
spond to the effect of only one factor, are obtained under the assumption that there
is no effect of the remaining factors. The results of the solution are presented as
relative (with respect to the case of steady-state vapor) heat-exchange laws. The
qualitative analysis of the effect of mode parameters on heat transfer upon conden-
sation is carried out. The analysis of the limiting heat-exchange laws demonstrates
their mutual interdependence, which impedes the isolation of simple asymptotics of
the problem under consideration with respect to individual parameters. The mecha-
nistic model of condensation from a vapor–gas mixture is considered. We propose
an iteration-free procedure of the solution of the main equation of the mechanistic
model, fromwhich parametrical analysis with arbitrary different mass contents of the
inert gas can be carried out. For high gas contents, the mechanistic model is shown
to be unphysical, which is manifested in the inversion of the diffusion component
of the heat flow (the diffusion paradox) and vanishing of the total heat flow (the
condensation lock paradox). We develop a modified mechanistic model of conden-
sation from a vapor–gas mixture based on the introduction of the effective heat of
phase transition.

Chapter 12 describes the principal constituents of the general problem of the
boiling phenomenon: conditions for the inception of boiling, formation of nucleation
sites, and boiling regimes. Growth laws of a vapor bubble in a bulk of liquid and on a
rigid surface are described. Amicrolayer of liquid under a vapor bubble, amacrolayer
under vapor conglomerates, and dry spots on the heat surfaces are studied. A brief
description of heat-exchange models for nucleate boiling is given; these models
are based on the bubble dynamics and integral characteristics of the process. Special
attention is given to a debating problemon the effect of thermophysical characteristics
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of a heat-transmitting wall. An approximate model for the periodic conjugate heat-
exchange problem for boiling is given. The calculation results of the conjugation
factor for boiling and transition boiling regimes are given.

Chapter 13 describes the superfluidity phenomenon due to the formation of “par-
ticle condensate” in one quantum state. Here, we consider specific peculiarities of
heat exchange with film boiling of superfluid helium (He-II) related to molecular-
kinetic effects on the phase boundary. The analysis of thermodynamic principles of
He-II in the framework of the two-fluidmodel is carried out.Amethod of construction
of thermodynamics from the first principles is considered. The use of the quantum-
mechanical conception of quasi-particles enables us to prove the equivalence of the
macroscopic and microscopic levels of He-II thermodynamics analysis.

Chapter 14 describes the heat transfer problem under a turbulent flow in a coolant
channel in the zone of supercritical pressures. The modified surface renewal model
was developed capable of calculating the effect of variable thermophysical properties
on the friction and heat exchange. The approximation solution is shown as being
legitimate in describing the general case of variation of thermophysical properties.
The model was validated on problems with available solutions: flow in a turbulent
boundary layer of a viscous compressible gas, a permeable wall past incompressible
fluid, etc. The law of heat transfer for the turbulent flow in the channel in the zone
of supercritical pressures was calculated.

In Chap. 15, the derivation of the problem of gas bubble rise in a liquid at rest
under the action of the gravity force is given. We present a model of bubble rise for
the region free from the effect of viscosity (moderately large and large bubbles). In
the model based on the “base underpressure” concept, a bubble is assumed to be
composed of two parts. The analysis of the “traditional” and “capillary” asymptotics
of the dependence of the rise velocity on the equivalent radius is given. A general
analytical solution of the problem is put forward, which holds for the “inviscid
range” of the bubble rise velocity. The problem of the rise of the Taylor bubble in a
round tube is considered. An analytical solution of the problem is obtained based on
the collocation method and the asymptotical analysis of the solution to the Laplace
equation. The method employed was validated on an example of the solution of the
corresponding flat problem. As a result, a correct approximate solution of the rise
problem of a Taylor bubble in a round tube is presented.

Chapter 16 describes the problem of the dynamics of gas bubbles in a liquid
under various conditions. Based on the analysis of the Laplace equation for the
velocity potential in an ideal fluid, a generalized Rayleigh equation is proposed for
the dynamics of a bubble in a circular pipe. The spherical and cylindrical asymptotics
are analyzed. An exact analytical solution of the bubble collapse problem in a tube
is obtained. A critical analysis of the problem of homogeneous nucleation of vapor
bubbles in an unlimited volume of liquid is given. A quantum-mechanical model
of homogeneous nucleation is proposed. The problem of bubble size in a turbulent
fluid flow is considered. A description of the Kolmogorov–Hinze model of bubble
breakup, which is based on the balance of capillary and inertial forces, is given. The
modified Kolmogorov–Hinze model eliminating the above paradox is presented.
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The main idea of the modified model is the consideration of the balance of the forces
acting on the bubble of liquid pulsations caused by the gravitational of bubble rise.

In Chap. 17, we study how the heat-exchange characteristics depend on the
droplets dispersed in a turbulent steam flow in a channel. The process of droplet
breakup is investigated on the basis of a semi-empirical resonance model. A final
relation for the maximum stable droplet diameter is obtained. The classical Prandtl
turbulence model was used to study the effect of droplets on the heat exchange. An
analytical solution of the energy equationwith thermal effluents caused by the droplet
evaporation is obtained. The relative law of heat transfer is calculated, allowing one to
determine the quantitative measure of the effect of the droplets on the heat exchange
with a dispersed flow. The asymptotic variants of the analytical solution thus obtained
are analyzed.

In Chap. 18, the derivation of the thermal–hydraulic “density wave”-type insta-
bility occurring in flows of supercritical helium in channels is given. It is shown
that this instability is described by three dimensionless quantities: the extension
parameter, the pressure parameter, and the homochronicity parameter. We consider
two problems described by two parameters and distinguished by the type of pres-
sure losses over the channel length. The Maple computer algebra software system
was used to derive the exact analytical solutions determining the stability boundary,
the frequency of developed perturbations, and the characteristics of growth incre-
ment and damping decrement. The asymptotical behavior of the analytical solution
is studied and its approximations are constructed. It is shown that with increasing
extension parameter the system crosses in succession new stability boundaries, as
a result, high-frequency exponentially increasing perturbations of more and more
increasing frequency come into play.

Chapter 19 presents the results of an experimental investigation of heat transfer
in a pebble bed for flows of single-phase boiling liquid. The experiments involved
the measurements of the temperature of a heated wall, as well as of the temperature
distribution over the channel cross section at the outlet from the pebble bed. Use
was made of a method of processing of experimental data, which enables one to
determine the turbulent thermal conductivity without differentiation of the experi-
mentally obtained temperature profile. The solution of unsteady-state heat equation,
obtained for the conditions of the initial thermal segment, is used for this purpose.
The experimental data for single-phase flow are described using the mathematical
model of the process with two free parameters (the temperature on the boundary of
the flowcore and the turbulent thermal conductivity) and then processed by numerical
optimization methods.

Appendix A considers the problem of heat transfer under film boiling. We obtain
analytical solutions capable of taking into account the effects of vapor superheat in a
filmand the influence of the convection on the effective values of thermal conductivity
and heat of phase transition of superheated vapor. Universal calculation formulas are
presented describing the dependence of these values on the Stefan number for the
cases of linear and parabolic distributions of velocities in the vapor film.

Appendix B analyzes the physical relation of the hydrodynamic model of pool
boiling crisis and the development of instability for evaporation from the interphase
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boundary (the Landau instability). It is shown that in both cases, the resulting depen-
dences for the limit heat flow are identical in both cases and differ only by a numerical
coefficient. An analogy with the development of the Kelvin–Helmholtz instability is
given. Calculations of the critical heat flow at liquid boiling in a pipe under condi-
tions of a turbulent flow in a channel are performed. It is found that the use of the
centrifugal acceleration in Kutateladze’s formula provides a satisfactory agreement
with the experimental data.
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Chapter 1
Introduction to the Problem

Abbreviations
BC Boundary condition
KL Knudsen layer

Symbols
f Distribution function
I Collision integral
n Unit vector
t Time
r Distance between particles
u Argument
v Molecular velocity
w Volume element
x Spatial coordinate

Greek Letter Symbols
µ Argument
φ Fourier transform of a distribution function

1.1 Kinetic Molecular Theory

Statisticalmechanics (at present, the statistical physics), which is considered as a new
trend in theoretical physics and is based on the description of involved systems with
an infinite number of molecules, was created byMaxwell, Boltzmann, andGibbs. An
important constituent of statistical mechanics is the kinetic molecular theory, which
resides on the Boltzmann integral-differential equation. In 1872, Ludwig Boltzmann
published his epoch-making paper [1], in which, on the basis of his Boltzmann equa-
tion, he described the statistical distribution of the molecules of gas. The equilibrium
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2 1 Introduction to the Problem

distribution function of molecules with respect to velocities, as derived by Maxwell
in 1860, is a particular solution to the Boltzmann equation in the case of statis-
tical equilibrium in the absence of external forces. The famous H-theorem, which
theoretically justifies that the gas growth irreversibly in time, was formulated in [1].

Metaphysically, the kinetic molecular theory promoted the decisive choice
between two alternative methods of describing the structure of matter: the continual
and discrete ones. The continual approach operates with continuous medium and
by no means is concerned with the detailed inner structure of matter. The system of
Navier–Stokes equations is considered as its specific tool in the application to liquids.
The discrete approach traditionally originates from the antique atomistic structure
of matter. By the end of the nineteenth century, it was already generally adopted in
chemistry. However, in the time of Boltzmann no final decision in theoretical physics
wasmade. It may be said that Boltzmann’s theory played a crucial role in the solution
of this central problem: the description of the structure and properties of a substance
should be based on the discrete kinetic approach.

The time period at the end of the nineteenth century is noticeable in European
science by notorious philosophical discussions between the leading natural scientist.
Wilhelm Ostwald, the author of “energy theory” in the natural philosophy consid-
ered energy as the only reality, while matter is only a form of its manifestation.
Being skeptical about the atomic–molecular view, Ostwald interpreted all natural
phenomena as various forms of energy transformation and thus brought the laws of
thermodynamics to the level of philosophic generalizations. Ernst Mach, a positivist
philosopher and the founder of the theory of shock waves in gas dynamics, was
a great opponent of atomism. Since at his times, atoms were unobservable, Mach
considered the “atomistic theory” of matter as a working hypothesis for explaining
physical and chemical phenomena.

Disagreeing with the “energists” (Ostwald) and “phenomenologists” (Mach),
Boltzmann, nevertheless tried to find in their approaches a positive component and
sometimes spoke almost in the spirit ofMax’s positivism. In his paper [2], hewrote: “I
felt that the controversy about whether matter or energy was the truly existent consti-
tuted a relapse into the old metaphysics which people thought had been overcome,
an offence against the insight that all theoretical concepts are mental pictures”.

Irrespective of the fact that Boltzmann’s theory depends on the simple kinetic
molecularmodel (whichnowseemsquite transparent), it looked fairly challenging for
many physicists 150 years ago. The principal moment of the theory is the following
postulate: all phenomena in gases can be completely described in terms of inter-
actions of elementary particles: atoms and molecules. Consideration of the motion
and interaction of such particles had enabled to put forward a general conception
combining the first and the second laws of thermodynamics. The crux of Boltz-
mann’s perceptions can be expressed in a somewhat simplified form as follows [3]:
atoms andmolecules do really exist as elements in the outside world, and hence there
is no need to artificially “generate” them from hypothetical equations. The study of
the interaction of molecules on the basis of the kinetic molecular theory provides
comprehensive information about gas behavior.
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It is also worth pointing out that until themid-1950s, theoretical physics contained
the “caloric theory”, which looked quite good from the application point of view. This
theory was capable of adequately describing a number of facts, but was incapable of
correctly describing transitions of various forms of energy into each other. It was the
kinetic molecular theory that made it possible to ultimately and correctly solve the
problem of the description of the heat phenomenon. So, from the metaphysical point
of view, the kinetic molecular theory is an antithesis to both the “energetic” and the
“phenomenological” approaches.

Boltzmann introduced into science the concept of the “statistical entropy”, which
later played a crucial role in the development of quantum theory [4]. When Planck
was deriving his well-known formula on the spectral density of radiation, he first
wrote it down from empirical considerations. Later, Planck obtained this formula
by theoretical considerations with the help of the statistical concept of entropy. In
extending this concept for the radiation of a black body, he required the conjecture
of discrete portions of energy. As a result, Planck had arrived at the definition of
an elementary quantum of energy with a fixed frequency. This being so, quantum
theory in its modern form could not in principle be formulated without an appeal
to statistical entropy [5]. A few years after Einstein, Planck introduced the concept
of a quantum of light. The Bose–Einstein statistics and the Fermi–Dirac statistics
both have their roots in Boltzmann’s statistical method. Finally, the second law of
thermodynamics (an increase of the entropy for a closed system) is obtained as an
equivalent of the H-theorem.

The Boltzmann equation, which was obtained, strictly speaking, for rarefied
gases, proved applicable also to the problem of the description of a dense medium.
Succeeding generations of scientists investigated in this way plasmas andmixtures of
gases (simple and polyatomic ones), and molecules were being considered as small
solid balls. It is worth observing here that the kinetic molecular theory was a link
between the microscopic and macroscopic levels of the description of matter. The
solution to the Boltzmann equation by Chapman–Enskog’s method of successive
approximations (expansion in terms of a small parameter near the equilibrium) had
enabled one to directly calculate the heat conduction and the viscosity coefficients
of gases.

For many years, due to its very involved structure, the Boltzmann equation had
been looked upon as a mathematical abstraction. It suffices here to mention that the
Boltzmann equation involves a fivefold integral collision integral and that in it the
distribution function varies in the seven-dimensional space: time, three coordinates,
and tree velocities. From the applied point of view, the need for solving theBoltzmann
equation was at first unclear. Various continual-based approximations proved quite
successful for near-equilibrium situations.

However, in the 1950s, with the appearance of high-altitude aviation and the
launch of the first artificial satellite, it became eventually clear that the descrip-
tion of motion in the upper atmosphere is only possible in the framework of the
kinetic molecular theory. The Boltzmann equation also proved to be indispensable
in vacuum-engineering applications and in the study of the motion of gases under
low-pressure conditions. Later it seemed opportune to developmethods of the kinetic
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molecular theory in far-from-equilibrium situations (that is, for processes of high
intensity).

It appeared later that the Boltzmann equation can give much more than it was
expected 100 years ago. The Boltzmann equation proved capable of describing
involved nonlinear far-from-equilibrium new type phenomena. It is worth noting that
such phenomena were formulated originally from pure theoretical considerations as
a result of the solution of some problems for the Boltzmann equation.

1.2 Discussing the Boltzmann Equation

The kinetic molecular theory depends chiefly on Boltzmann’s H-theorem, which
underlies the thermodynamics of irreversible processes. According to this theorem,
themean logarithmof the distribution function (theH-function) for an isolated system
decreases monotonically in time. By relating the H-function to the statistical weight,
Boltzmann showed that the state of heat equilibrium in a system will be the most
probable. Considering as an example a perfect monatomic gas, he showed the H-
function as being proportional to the entropy and derived a formula relating the
entropy to the probability of a macroscopic state (Boltzmann’s formula).

Boltzmann’s formula directly yields the statistical interpretation of the second
law of thermodynamics based on the generalized definition of the entropy. This
relation unites in fact classical Carnot–Clausius thermodynamics and the kinetic
molecular theory of matter. It is the probabilistic interpretation of the second law of
thermodynamics that manages to reconcile the property reversibility of mechanical
phenomena with the irreversible character of thermal processes. However, at first
this most important location provision of statistical thermodynamics was vigorously
opposed by fundamentalist scientists.

The first objections against the new Boltzmann’s theory had appeared already
in 1872 right after the appearance of the paper [1]. With some simplification, these
objections can be phrased as follows [3].

• why do the reversible laws of mechanics (the Liouville equation) allow the
irreversible evolution of a system (Boltzmann’s H-theorem)?

• does the Boltzmann equation contradict classical dynamics?
• why does the symmetry of the Boltzmann equation not agree with that of the

Liouville equation?

The Liouville equation, which is of primary importance for classical dynamics,
features the fundamental symmetry property: the reversion of velocity leads to the
same result as that for time. In contrast to this, the Boltzmann equation, which
describes the evolution of the distribution function, does not have the symmetry
property. The reason for this is the invariance of the collision integral in theBoltzmann
equation with respect to the reversion of velocity: Boltzmann’s theory does not
distinguish between the collisions reversed in the positive or negative directions
of time (that is, “in the past or in the future”).
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This remarkable property of the Boltzmann equation had led Poincaré to the
conclusion that the trend in the entropy growth contradicts the fundamental laws
of classical mechanics. Indeed, according to the well-known Poincaré recurrence
theorem (1890) [3], after some finite time interval, any system should return to a
state which is arbitrarily close to the initial one. This means that to each possible
increase of the entropy (when leaving the initial state), there should correspond a
decrease of the entropy (when returning to the initial state).

In 1896, Zermelo, a pupil of Planck, derived the following corollary to thePoincaré
recurrence theorem: no single-valued continuous and differentiable state function (in
particular, the entropy) may increase monotonically in time. It turns out that irre-
versible processes in classical dynamics are impossible in principle when excluding
the singular initial states. Boltzmann, when raising objections to Zermelo, pointed
out the statistical basis of the kinetic molecular theory, which operates with prob-
abilistic quantities. For a statistical system, which is composed of a huge number
of molecules, the recurrence time should be astronomically large and hence has
negligible probability.

So, the Poincaré recurrence theorem remains valid, but in the context of a gas
system it acquires the abstract sense: in reality, only irreversible processes with finite
probability are realized. In 1918 Caratheodory claimed that the proof of the Poincaré
recurrence theorem is insufficient, for it does not make use of Lebesgue’s (1902)
concept of a “measure of a set point”. In reply to Zermelo’s criticism, Boltzmann
wrote: “AlreadyClausius,Maxwell and others have shown that the laws of gases have
statistical character. Very frequently and with the best possible clarity I have been
emphasizing that Maxwell’s law of distribution of velocities of gas molecules is not
the law of conventional mechanics, but rather a probabilistic law. In this connection,
I also pointed out that from the viewpoint of molecular theory the second law is
only a probability law…”. In 1895, in reply to Kelvin’s strong criticism, Boltzmann
wrote: “My theorem on the minimum (or the H-theorem) and the second law of
thermodynamics are only probabilistic assertions”.

The discussion on the H-theorem was concluded by Boltzmann in his last life-
time publication [6]: “Even though these objections are very potent in explaining
theorems of kinetic theory of gases, they by no means disprove the simple theo-
rems of probability …The state of thermal equilibrium differs only in that that to
it there correspond the most frequent distributions of vis viva between mechanical
elements, whereas other states are rare, exceptional. Only by this reason, an isolated
gas quantum which is in a state different from thermal equilibrium will go over into
thermal equilibrium and will permanently stay there…”.

In 1876 Loschmidt put forward the following fundamental objection to the kinetic
molecular theory: the time-symmetric dynamic equations exclude in principle any
irreversible process. Indeed, reverse collisions of molecules “mitigate” the conse-
quences of direct collisions, and hence in theory the system should return to the
initial state. Hence, following its decrease, the H-function (or the inverse entropy)
must again increase fromafinite value to the initial value. Correspondingly, following
its growth the must again decrease. Boltzmann in his polemics with Loschmidt
pointed out the conjecture of “molecular chaos”, underlying his statistical approach.
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According s to this conjecture, in a real situation there is no correlation of any pair
of molecules prior to their collision. In a simplified form, the line of Boltzmann’s
reasoning is as follows.

Loschmidt’s idea of intermolecular interaction postulates the existence of some
“storage of information” for gas molecules in which they “store” their previous
collisions. In the framework of classical dynamics, the role of such storage should be
played by correlations between molecules. Let us now trace the consequences of a
“time-backward” evolution of a system which is accepted by the Liouville equation.
It turns out that certain molecules (however far they were at the time of velocities
reversion) are “doomed” to meet at a predetermined time instant and be subject to
a predetermined transformation of velocities. But this immediately implies that the
reversion of velocities in time generates a highly organized system,which is antipodal
to the state of molecular chaos.

This being so, Boltzmann’s elegant physical considerations formally disprove
Loschmidt’s rigorous observation. As a result, the kinetic molecular theory had
enabled to justify a passage from classical dynamics to statistical thermodynamics
or, figuratively speaking, “from order to chaos “. Such a passage is most natural in
rarefied gases, which determined the main domain of applicability of the Boltzmann
equation.

Boltzmann’s legacy is extremely broad and very deep in its contents. The philo-
sophical idea of the atomic structure matter weaves through his work in a striking
manner. He uncompromisingly defended this idea fromMach and Ostwald as repre-
sentatives of the phenomenological (or “pure”) description of natural phenomena.
In his polemics with Ostwald, who stated that any attempts of the mechanistic inter-
pretation of energetic laws should be rejected, Boltzmann wrote: “From the fact that
the differential equations of mechanics are left unchanged by reversing the sign of
time without changing anything else, Ostwald concludes that the mechanical view
of the world cannot explain why natural processes already run preferentially in a
definite direction. But such a view appears to me to overlook that mechanical events
are determined not only by differential equations, but also by initial conditions “.
In his numerous speeches and popular talks, Boltzmann always pointed out the real
existence of atoms and molecules: “Thus he, who believes he can free himself from
atomism by differential equations, does not see the wood for the trees… We cannot
doubt that the scheme of the world, that is assumed with it, is in essence and structure
atomistic”.

One should also mention the original Boltzmann’s idea pertaining to the time
nature, which he did not succeed in bringing in the scientific form. A year before
his tragic death, he wrote to the philosopher von Brentano: “I am just now occupied
with determining the number which plays the same role for time as the Loschmidt
number for matter, the number of time-atoms = discrete moments of time, which
make up a second of time”.

The synthesis between classical dynamics and the kinetic molecular theory was
achieved in the 1930s. Bogolyubov [7] gave an elegant derivation of the Boltzmann
equation from the Liouville equation. This derivation, which depends on the “hier-
archy of characteristic times”, takes into account binary collisions of molecules.
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Later, Bogolyubov in collaboration with other researchers developed systematic
methods capable of producing more general equations (which take into account
triple and multiple collisions). These methods were subsequently used as a basis for
the derivation of equations describing dense gases. According to Ruel [8]: “…La vie
de Boltzmann a quelque chose de romantique. Il s’est donné la mort parce qu’il était,
dans un certain sens, un raté. Et pourtant nous le considérons maintenant comme un
des grands savants de son époque, bien plus grand que ceux qui furent ses opposants
scientifiques. Il a vu clair avant les autres, et il a eu raison trop tôt…”.

1.3 Precise Solution to the Boltzmann Equation

Numerous studies show that considerable mathematical difficulties are encountered
trying to solve precisely the Boltzmann equation. Bobylev [9] seems to be the first to
obtain the only known particular precise solution to the Boltzmann equation. Below
we shall briefly enlarge on the results of the pioneering work [9]. In the classical
kinetic theory ofmonatomic gases, the gas state at time t ≥ 0 is characterized by one-
particle distribution function of molecules over spatial coordinates x and velocities v
in the three-dimensional Euclidean space: f (x, v, t). With some simplification, this
function can be looked upon as the number of particles (molecules) per unit volume
of the velocity-configuration phase space at a time t . Its space–time evolution is
described by the Boltzmann equation

∂ f

∂t
+ v

∂ f

∂x
= I [ f, f ]. (1.1)

The right-hand side of (1.1), the collision integral, this is the nonlinear integral
operator, which can be represented as

I [ f, f ] = ∫ dwdng
(
u,

un
u

){
f
(
v′) f (w′) − f (v) f (w)

}
. (1.2)

Here, w is the volume element, n is the unit vector, and |n| = 1, dn is the unit
sphere surface element; the integration is taken over the entire five-dimensional space
of molecular velocities. In (1.2), we used the following notation

u = v − w, u = |u|, g(u,µ) = uσ(u,µ),

v′ = 1/2(v + w + un),w′ = 1/2(v + w − un). (1.3)

We shall assume that the collision of molecules follow the laws of the clas-
sical mechanics of particles, which interact with the pair potential U (r) where r
is the distance between particles. The function σ(u,µ) in (1.3) is the differential
scattering cross section for the angle 0 < θ < π in the center-of-mass system
of colliding molecules, where u > 0,µ = cos θ are the arguments. The quantity


