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Editorial Introduction
This volume contains the proceedings of the International Workshop on Operator
Theory and Applications (IWOTA) which was held at the University of Connecti-
cut, Storrs, USA, July 24–27, 2005. This was the sixteenth IWOTA; in fact, the
workshop was held biannually since 1981, and annually in recent years (starting
in 2002) rotating among ten countries on three continents. Here is the list of the
fifteen workshops:

IWOTA’1981: Santa Monica, California, USA (J.W. Helton, Chair)
IWOTA’1983: Rehovot, Israel (H. Dym, Chair)
IWOTA’1985: Amsterdam, The Netherlands (M.A. Kaashoek, Chair)
IWOTA’1987: Mesa, Arizona, USA (L. Rodman, Chair)
IWOTA’1989: Rotterdam, The Netherlands (H. Bart, Chair)
IWOTA’1991: Sapporo, Hokkaido, Japan (T. Ando, Chair)
IWOTA’1993: Vienna, Austria (H. Langer, Chair)
IWOTA’1995: Regensburg, Germany (R. Mennicken, Chair)
IWOTA’1996: Bloomington, Indiana, USA (H. Bercovici, C. Foias, Co-chairs)
IWOTA’1998: Groningen, The Netherlands (A. Dijksma, Chair)
IWOTA’2000: Faro, Portugal (A.F. dos Santos, Chair)
IWOTA’2002: Blacksburg, Virginia, USA (J. Ball, Chair)
IWOTA’2003: Cagliari, Italy (S. Seatzu, C. van der Mee, Co-Chairs)
IWOTA’2004: Newcastle upon Tyne, UK (M.A. Dritschel, Chair)
IWOTA’2005: Storrs, Connecticut, USA (V. Olshevsky, Chair)

The aim of the 2005 IWOTA was to review recent advances in operator theory
and its applications to several areas including mathematical systems theory and
control theory.

Among the main topics of the workshop was the study of structured matrices,
their applications, and their role in the design of fast and numerically reliable algo-
rithms. This topic had already received a considerable attention at IWOTA’2002
and IWOTA’2003 when the main focus was mostly on the structures of Toeplitz,
Hankel and Pick types. In the year 2005 the interest shifted towards matrices with
quasiseparable structure.

The IWOTA’2005 was made possible through the generous financial support
of National Science Foundation (award : 0536873) as well as thanks to the funds of
the College of Arts and Sciences and of the Research Foundation of the University
of Connecticut. All this support is acknowledged with a gratitude.

Joseph Ball, Yuli Eidelman, William Helton,
Vadim Olshevsky, and James Rovnyak (Editors)
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Inverse Problems for First-Order Discrete
Systems

Daniel Alpay and Israel Gohberg

Abstract. We study inverse problems associated to first-order discrete systems
in the rational case. We show in particular that every rational function strictly
positive on the unit circle is the spectral function of such a system. Formulas
for the coefficients of the system are given in terms of realizations of the
spectral function or in terms of a realization of a spectral factor. The inverse
problems associated to the scattering function and to the reflection coefficient
function are also studied. An important role in the arguments is played by
the state space method. We obtain formulas which are very similar to the
formulas we have obtained earlier in the continuous case in our study of
inverse problems associated to canonical differential expressions.

Mathematics Subject Classification (2000). Primary: 34A55, 49N45, 70G30;
Secondary: 93B15, 47B35.

Keywords. Inverse problems, spectral function, scattering function, Schur pa-
rameters, state space method.

1. Introduction

Here we continue to study first-order discrete systems. We defined the character-
istic spectral functions associated to a first-order discrete in [7] and studied the
corresponding inverse problems in [8] for scalar systems. In the matrix-valued case,
see [3], a system of equations of the form

Xn(z) =
(

Ip αn

βn Ip

)∗(
zIp 0
0 Ip

)
Xn−1(z), n = 1, 2, . . . , (1.1)

is called a canonical discrete first-order one-sided system. The sequence of matrices
(αn, βn) is not arbitrary, but has the following property: there exists a sequence ∆

Daniel Alpay wishes to thank the Earl Katz family for endowing the chair which supported his
research.



2 D. Alpay and I. Gohberg

of strictly positive block diagonal matrices in C2p×2p such that(
Ip αn

βn Ip

)
J∆n

(
Ip αn

βn Ip

)∗
= J∆n−1, n = 1, 2, . . . , (1.2)

where

J =
(

Ip 0
0 −Ip

)
.

The sequence is then called ∆-admissible. In the scalar case (that is, when p = 1)
condition (1.2) forces αn = β∗

n (see [3]). Still for p = 1 these systems arise as the
discretization of the telegrapher equation; see [7] for a discussion and references.
An a posteriori motivation for the study of such systems is the fact that we obtain
formulas very close to the ones we proved in the continuous case in our study
of inverse problems associated to canonical differential expressions. To be more
precise we need to present our setting in greater details. We first gather the main
results from [3] needed in the sequel. Let

Z =
(

zIp 0
0 Ip

)
and Fn =

(
0 β∗

n

α∗
n 0

)
, n = 1, 2, . . ..

Under the hypothesis
∞∑

n=1

(‖αn‖+ ‖βn‖) <∞, (1.3)

the infinite product

Y (z) =

⎛⎝ �∞∏
n=1

(I2p + Z−nFnZn)

⎞⎠ (1.4)

converges absolutely and uniformly on the unit circle, and the functions

Xn(z) = Zn
(
(I2p + Z−nFnZn) · · · (I2p + Z−1F1Z)

)
Y (z)−1, n = 1, 2, . . . ,

define the unique C2p×2p-valued solution to the system (1.1) with the property
that

lim
n→∞

(
z−nIp 0

0 Ip

)
Xn(z) = I2p, |z| = 1. (1.5)

See [3, Section 2.1]. This solution is called the fundamental solution of the first-
order discrete system (1.1). The function Y (z)−1 is called the asymptotic equiva-
lence matrix function; see [3, Section 2.2]. Under the supplementary hypothesis

lim
n−→∞∆n > 0 (1.6)

the function Y (z) allows to define the characteristic spectral functions of the sys-
tem (1.1). We note that when (1.6) is not in force the situation seems to be much
more involved, and leads to degenerate cases. Furthermore, conditions such as
(1.2) and (1.6) seem to be specific of the discrete case; no counterpart of these
conditions is needed in the continuous case.
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Let

lim
n→∞∆n =

(
δ1 0
0 δ2

)
. (1.7)

The function
W (z) = ((Y21 + Y22)(1/z))−1

δ−1
2 ((Y21 + Y22)(1/z))−∗

= ((Y11 + Y12)(1/z))−1
δ−1
1 ((Y11 + Y12)(1/z))−∗

is called the spectral function. The Weyl function is the uniquely defined function
N(z) analytic in the closed unit disk such that N(0) = iIp and

W (z) = Im N(z), |z| = 1.

Associated to N is the reproducing kernel space of functions with reproducing ker-
nel N(z)−N(w)∗

z−w∗ and denoted by L(N). The function W (z) is the spectral function
of the unitary operator U defined in L(N) by

(U − αI)−1f(z) =
f(z)− f(α)

z − α
, |α| �= 1.

See [11].

From (1.5) follows that there exists a C2p×p-valued solution Bn(z) to (1.1) with
the following properties:
(a)

(
Ip −Ip

)
B0(z) = 0, and

(b)
(
0 Ip

)
Bn(z) = Ip + o(n), |z| = 1.

It then holds that (
Ip 0

)
Bn(z) = znS(z) + o(n)

where
S(z) = (Y11(z) + Y12(z))(Y21(z) + Y22(z))−1. (1.8)

The function (1.8) is called the scattering matrix function associated to the discrete
system. The scattering matrix function has the following properties: it is in the
Wiener algebra Wp×p (see the end of the section for the definition), admits a
Wiener–Hopf factorization and is such that

S(z)∗δ1S(z) = δ2, |z| = 1. (1.9)

See [3, Section 2.3]. The inverse scattering problem considered in this paper is
defined as follows: given a function S(z) which admits a Wiener–Hopf factorization
and satisfies moreover the condition (1.9) for some matrices δ1 and δ2, is S(z) the
scattering function of a first-order discrete system?

Some preliminary notation and remarks are needed to define the reflection coeffi-
cient function. First, for

M =
(

M11 M12

M21 M22

)
∈ C2p×2p and X ∈ Cp×p

we define the linear fractional transformation TM (X):

TM (X) = (M11X + M12)(M21X + M22)−1.
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Recall that the semi-group property

TΘ1Θ2(X) = TΘ1(TΘ2(X))

holds when the three matrices TΘ2(X), TΘ1(TΘ2)(X) and TΘ1Θ2(X) are well de-
fined. Next, it follows from (1.2) that the matrices

Cn = ∆1/2
n

(
Ip αn

βn Ip

)∗
∆−1/2

n−1 (1.10)

are J-unitary: C∗
nJCn = J . Moreover, for every n ∈ N the solution Ψn(z) of the

system

Ψn(z) = Ψn−1(z)C∗
n

(
zIp 0
0 Ip

)
, n = 1, 2, . . . and Ψ0(z) = I2p (1.11)

is a matrix-valued function whose entries are polynomials of degree at most n and
which is J-inner:

J −Θ(z)JΘ(z)∗
{
≤ 0, |z| < 1,

= 0, |z| = 1.
(1.12)

The reflection coefficient function is defined to be

R(z) = lim
n→∞TΨn(z)(0).

We proved in [3, Section 2.4] that R(z) belongs to the Wiener algebra Wp×p
+ and

takes strictly contractive values on the unit circle. We also proved in [3, Section
2.4] that

R(z) =
1
z
Y21(z)∗(Y22(z))−∗ =

1
z
(Y11(1/z))−1Y12(1/z), |z| = 1,

and that the reflection coefficient function and the Weyl function are related by
the formula

N(z) = i(Ip − zR(z))(Ip + zR(z))−1. (1.13)

This paper presents the solution of the inverse spectral problem in the rational case.
We also briefly discuss how to recover the system using the scattering function or
the reflection coefficient function. In the paper [8], where we considered the scalar
case, a key role was played by the description of the solutions of an underlying
Nehari problem which are unitary and admit a Wiener–Hopf factorization. The
point of view in the present paper is different. A key tool is a certain uniqueness
result in the factorization of J-inner polynomial functions (see Theorem 2.4).

We would like to mention that the formulas we obtain in Theorems 4.2 and 4.3
(that is, when one is given a minimal realization of the spectral function or a min-
imal realization of a spectral factor, respectively) are very similar to the formulas
which we obtained earlier in the continuous case, in our study of inverse problems
associated to canonical differential expressions with rational spectral data; see in
particular formulas (4.7) and (4.12), which are the counterparts of [6, (3.1) p. 9]
and [6, Theorem 3.5 p. 9], respectively.
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The paper consists of five sections besides the introduction and its outline is as
follows. In the second section we review part of the theory of certain finite di-
mensional reproducing kernel Hilbert spaces (called H(Θ) spaces) which will be
needed in the sequel. The inverse spectral problem is studied in Section 3 and the
inverse scattering problem in Section 4. In the fifth and last section we consider
the inverse problem associated to the reflection coefficient function.

We note that another kind of discrete systems have been studied in [18].

We will denote by D the open unit disk and by T the unit circle. The Wiener
algebra of Fourier series

∑
� z�w� with absolutely summable coefficients:∑

�

|w�| < ∞

will be denoted by W . By W+ (resp. W−) we denote the sub-algebra of elements
of W for which w� = 0 for � < 0 (resp. � > 0). We denote by Wp×p (resp. Wp×p

+ ,
resp.Wp×p

− ) the algebra of matrices with entries in W (resp. in W+, resp. in W−).

Finally, we denote by CJ the space C2p endowed with the indefinite inner product

〈f, g〉CJ = g∗Jf, f, g ∈ C2p. (1.14)

2. Reproducing kernel Hilbert spaces

First recall that a Hilbert space H of Ck-valued functions defined on a set Ω is
called a reproducing kernel Hilbert space if there is a Ck×k-valued function K(z, w)
defined on Ω× Ω and with the following properties:

(i) For every w ∈ Ω and every c ∈ Ck the function z �→ K(z, w)c belongs to H.
(ii) It holds that

〈f(z), K(z, w)c〉H = c∗f(w).
The function K(z, w) is called the reproducing kernel of the space; it is positive
in the sense that for every � ∈ N∗ and every w1, . . . , w� ∈ Ω the block matrix
with ij block entry K(wi, wj) is non-negative. Conversely, to any positive function
corresponds a uniquely defined reproducing kernel Hilbert space with reproducing
kernel the given positive function; see [9], [19], [1].

Finite dimensional reproducing kernel spaces with reproducing kernel of the form

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

1− zw∗

have been studied in [2] and [4]. They correspond to rational functions which are
J-unitary on the unit circle (but they may have singularities on the unit circle). In
this work, a special role is played by the class P (J) of C2p×2p-valued polynomial
functions Θ which are J-inner (see (1.12) for the definition).

For Θ ∈ P (J) the function KΘ(z, w) defined above is positive (in the sense of
reproducing kernels) in C. We denote by H(Θ) the associated reproducing kernel
Hilbert space and gather in the next theorem the main features of these spaces
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which will be used in the sequel. In the statement, deg Θ denotes the McMillan
degree of Θ and H2,J denotes the Krĕın space of pairs of functions

(
f(z)
g(z)

)
with f

and g in the Hardy space Hp
2 and indefinite inner product[(

f(z)
g(z)

)
,

(
f(z)
g(z)

)]
H2,J

=
〈(

f(z)
g(z)

)
, J

(
f(z)
g(z)

)〉
H2p

2

.

Furthermore, R0 denotes the backward shift operator

R0f(z) =
f(z)− f(0)

z
.

Theorem 2.1. Let Θ ∈ P (J).
(i) We have that R0H(Θ) ⊂ H(Θ).
(ii) dim H(Θ) = deg Θ.

(iii) det Θ(z) = cΘzdegΘ for some cΘ ∈ T.

(iv) The space H(Θ) is spanned by the columns of the matrix functions

R�
0Θ(z), � = 1, 2, . . . ,

and in particular the elements of H(Θ) are C2p-valued polynomials.
(v)

H(Θ) = H2,J �ΘH2,J . (2.1)
(vi) The product of any two elements in P (J) is always minimal, and for Θ1 and

Θ2 in P (J) it holds that

H(Θ1Θ2) = H(Θ1)⊕Θ1H(Θ2).

Proof. For the proofs of items (i), (ii) and (iv) and further references and infor-
mation we refer to the papers [2] and [4]. These papers deal with the more general
case of rational functions J-unitary on the unit circle (or the real line). To prove
(iii) we note (see [2]) that Θ is a minimal product of degree one factors in P (J)
and that each one of these elementary factors has determinant equal to z. To prove
(2.1) one checks that the space H2,J�ΘH2,J has reproducing kernel KΘ(z, w). By
uniqueness of the reproducing kernel we have the desired equality. Since (property
(iii))

det Θ1Θ2(z) = cΘ1Θ2z
deg Θ1Θ2

= (det Θ1)(det Θ2)

= cΘ1z
deg Θ1cΘ2z

deg Θ2

= cΘ1cΘ2z
deg Θ1+deg Θ2

we have that
deg Θ1Θ2 = deg Θ1 + deg Θ2.

Thus the product Θ1Θ2 is minimal. Finally from the equality

KΘ1Θ2(z, w) = KΘ1(z, w) + Θ1(z)KΘ2(z, w)Θ1(w)∗
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we see that
H(Θ1Θ2) = H(Θ1) + Θ1H(Θ2).

The sum is direct and orthogonal since the product Θ1Θ2 is minimal, and this
proves (vi). �

In the next theorem we precise the structure of H(Θ) spaces.

Theorem 2.2. Let Θ ∈ P (J). The space H(Θ) has a basis which consists of k ≤ p
chains of the form

f1(z) = u1,

f2(z) = zu1 + u2,

...

fm(z) = zmu1 + zm−1u2 + · · ·+ um,

(2.2)

where u1, . . . , um ∈ C2p.

Proof. The elements of H(Θ) are polynomials (see (iv) of Theorem 2.1) and there-
fore the only eigenvalue of R0 is 0, and the corresponding eigenvectors are vectors
in C2p. Let f1, . . . , fk be the linear independent elements of C2p inH(Θ). The space
spanned by the fj is a strictly positive subspace of H2,J . On constant vectors the
inner product of H2,J coincides with the inner product of CJ (see Definition (1.14))
and so k ≤ p. To conclude we note that each Jordan chain corresponding to an
eigenvector is of the form (2.2). �

In general we can only state that m ≤ deg Θ. Here we are in a more special
situation. The Ψn(z) defined by (1.11) have moreover the following property, which
is important here: deg Ψn = np and the entries of Ψn(z) are scalar polynomials of
degree less or equal to n. Therefore, by Theorem 2.1 the components of the elements
ofH(Ψn) are polynomials of degree less or equal to n−1 and the following theorem
shows that the space H(Ψn) is spanned by p chains of length n.

Theorem 2.3. There exist matrices S0, S1, . . . , Sn−1 such that a basis of H(Ψn) is
given by the columns of F0(z), . . . , , Fn−1(z) where

F0(z) =
(

Ip

S∗
0

)
,

F1(z) = z

(
Ip

S∗
0

)
+
(

0
S∗

1

)
,

...

Fn−1(z) = zn−1

(
Ip

S∗
0

)
+ zn−2

(
0
S∗

1

)
+ · · ·+

(
0

S∗
n−1

)
.

(2.3)
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Proof. By Theorem 2.2, a basis of H(Ψn) is made of k ≤ p chains of the form
(2.2). Since the components of the elements of H(Ψn) are polynomials of degree
less or equal to n− 1, these chains generate a space of dimension less or equal to
kn. On the other hand,

deg Ψn = np = dim H(Ψn).

Therefore, k = p and each chain has length n. The space H(Ψn) contains therefore
p linearly independent vectors f1, f2, . . . , fp ∈ C2p. Set

(
f1 f2 · · · fp

) def.=
(

X1

X2

)
where X1 and X2 are in Cp×p. Since the fj span a strictly positive subspace of
H2,J we have X∗

1X1 > X∗
2X2. Thus X1 is invertible, and we can chose:

F0(z) =
(

Ip

X2X
−1
1

)
∈ H(Ψn).

We set S∗
0 = X2X

−1
1 . The next p elements in a basis of H(Θ) form the columns of

a matrix-function of the form

zF0(z) + V = z

(
Ip

S∗
0

)
+ V, V ∈ C2p×p.

By subtracting a multiple of F0(z) to this function we obtain F1(z). The rest of
the argument is proved by induction in the same way: if we know at rank � that
F�(z) is of the asserted form, then the next p elements in a basis of H(Θ) form a
matrix-function of the form zF�(z) + V . Removing a multiple of F0(z) from this
function we obtain F�+1(z). �

The following uniqueness theorem will be used in the solution of the inverse spec-
tral problem; see the proof of Theorem 4.1:

Theorem 2.4. Let (αn, βn) and (α′
n, β′

n) be two admissible sequences with associated
sequences of diagonal matrices ∆n and ∆′

n respectively, normalized by ∆0 = ∆′
0 =

I2p. Let Cn be given by (1.10) and let C′
n be defined in a similar way, with (α′

n, β′
n)

and ∆′
n. Assume that

C∗
1

(
zIp 0
0 Ip

)
· · ·C∗

m

(
zIp 0
0 Ip

)
U = (C′

1)
∗
(

zIp 0
0 Ip

)
· · · (C′

m)∗
(

zIp 0
0 Ip

)
U ′

def.= Θ(z),

where U and U ′ are J-unitary constants. Then U = U ′ and C� = C′
� for � =

1, . . .m.
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Proof. We denote by the superscript ′ all the quantities related to the C′
n and we

set ∆n = diag (d1,n, d2,n). Equation (1.2) can be rewritten as:

d1,n − αnd2,nα∗
n = d1,n−1, (2.4)

d1,nβ∗
n = αnd2,n (2.5)

d2,n − βnd1,nβ∗
n = d2,n−1. (2.6)

We set

θn(z) = C∗
n

(
zIp 0
0 Ip

)
, (2.7)

so that Θ(z) = θ1(z) · · · θm(z).

By Theorem 2.1 (item (vi)) we have:

H(Θ) = H(θ1)⊕ θ1H(θ2)⊕ θ1θ2H(θ3)⊕ · · ·
= H(θ′1)⊕ θ′1H(θ′2)⊕ θ′1θ

′
2H(θ′3)⊕ · · · .

By Theorem 2.3, the constant functions of H(Θ) span both the spaces H(θ1) and
H(θ′1). Thus,

H(θ1) = H(θ′1).

These two spaces have the same reproducing kernel and we get

Kθ1(z, w) = Kθ′
1
(z, w).

Since

Kθ1(z, w) =
J − C∗

1

(
zw∗Ip 0

0 −Ip

)
C1

1− zw∗

=
J − C∗

1

(
(zw∗ − 1 + 1)Ip 0

0 −Ip

)
C1

1− zw∗

=
J − C∗

1JC1

1− zw∗ + C∗
1

(
Ip 0
0 0

)
C1

=
(

Ip

β1

)
d1,1

(
Ip β∗

1

)
,

(2.8)

we get (
Ip

β1

)
d1,1

(
Ip β∗

1

)
=
(

Ip

β′
1

)
d′1,1

(
Ip (β′

1)
∗) .

It follows that d1,1 = d′1,1 and β1 = β′
1. From the normalization ∆0 = ∆′

0 = I2p

and equations (2.4)–(2.6) it follows that d2,1 = d′2,1 and α1 = α′
1.

By induction we see that

H(θn) = H(θ′n), n = 2, 3, . . ..
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But, in a way similar to (2.8),

Kθn(z, w) =
J − C∗

n

(
zw∗Ip 0

0 −Ip

)
Cn

1− zw∗ = ∆−1/2
n−1

(
Ip

βn

)
d1,n

(
Ip β∗

n

)
∆−1/2

n−1 ,

and it follows from ∆n−1 = ∆′
n−1 (induction hypothesis at rank n−1) that βn = β′

n

and dn,1 = d′n,1. Equations (2.4)–(2.6) imply then that αn = α′
n and dn,2 = d′n,2,

and finally that U = U ′. �

Theorem 2.5. Let X(z) be analytic and contractive in the open unit disk and let
R(z) = lim

n→∞TΨn(z)(X(z)). Let R(z) = R0 + R1z + · · · be the Taylor expansion of

R(z) at the origin. Then, the space H(Ψn) is spanned by the functions (2.3) with
the coefficients R0, R1, . . . , Rn−1.

Proof. Let A0, A1, . . . be matrices such that H(Ψn) is spanned by the columns of
the functions

F0(z) =
(

Ip

A∗
0

)
,

F1(z) = z

(
Ip

A∗
0

)
+
(

0
A∗

1

)
,

...

Fn−1(z) = zn−1

(
Ip

A∗
0

)
+ zn−2

(
0

A∗
1

)
+ · · ·+

(
0

A∗
n−1

)
.

Since H(Ψn) = H2,J �ΨnH2,J (see Theorem 2.1) we have that(
Ip −A0

)
Ψn(0) = 0(

Ip −A0

)
Ψ′

n(0) +
(
0 −A1

)
Ψn(0) = 0

...

(2.9)

The first equation leads to TΨn(z)(0) = A0. Letting n→∞ we have

A0 = R(0) = R0.

The second equation will lead in a similar way to R′(0) = A1. More generally,
equations (2.9) lead to(

Ip −(A0 + A1 + · · ·+ An−1z
n−1)

)
Ψn(z) = O(zn). (2.10)

Set

Ψn(z) =
(

αn(z) βn(z)
γn(z) δn(z)

)
.

Equation (2.10) implies that

βn(z)− (A0 + A1 + · · ·+ An−1z
n−1)δn(z) = O(zn).
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From the J-innerness of Ψn(z) the matrix-function δn(z) is analytic and invertible
in D, with ‖δn(z)−1‖ ≤ 1; see [13]. Hence,

TΨn(z)(0) = (A0 + A1 + · · ·+ An−1z
n−1) + O(zn)

and hence the result. �

3. Realization theory

As is well known a rational function W (z) analytic at the origin can be written in
the form

W (z) = D + zC(I − zA)−1B

where D = W (0) and where A, B and C are matrices of appropriate sizes. The
realization is called minimal when the size of A is minimal; see [10]. Assume
moreover that W (z) is analytic on the unit circle. Then A has no spectrum on the
unit circle and the entries of W (z) are in the Wiener algebra W ; indeed, let P0

denote the Riesz projection corresponding to the spectrum of A outside the closed
unit disk:

P0 = I − 1
2πi

∫
T

(ζI −A)−1dζ.

Then,

W (z) = D + zC(I − zA)−1B

= D + zCP0(I − zA)−1P0B + zC(I − P0)(I − zA)−1(I − P0)B

= D − zCP0A
−1z−1(I − z−1A−1)−1P0B

+ zC(I − P0)(I − zA)−1(I − P0)B

= D −
∞∑

k=0

z−kCP0A
−k−1P0B

+
∞∑

k=0

zk+1C(I − P0)Ak(I − P0)B.

and thus the coefficients rk in the representation W (z) =
∑

Z
zkrk (with |z| = 1)

can be written as

rk =

{
CAk−1(I − P0)B, k > 0,

Dδk0 − CAk−1P0B, k ≤ 0,
(3.1)

so that ∑
Z

‖rk‖ <∞.

The hypotheses of analyticity at the origin and at infinity are restrictive. In fact
any rational function analytic on the unit circle belongs to the Wiener algebra.
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We now review the relevant theory and follow the analysis in [14]. First recall that
any rational function W (z) analytic on the unit circle can be represented as

W (z) = I + C(zG−A)−1B,

where zG − A is invertible on T; see [14, Theorem 3.1 p. 395]. The separating
projection is defined by

P =
1

2πi

∫
T

G(ζG −A)−1dζ. (3.2)

Next the right equivalence operator E and the associated operator Ω are defined
by

E =
1

2πi

∫
T

(1−ζ−1)(ζG−A)−1dζ and Ω =
1

2πi

∫
T

(ζ−ζ−1)(ζG−A)−1 . (3.3)

See [14, Equations (2.2)–(2.4) p. 389]. Then, (see [14, p. 398])

rk =

⎧⎪⎨⎪⎩
−CEΩk(I − P )B, k = 1, 2, . . . ,

I − CE(I − P )B, k = 0,

CEΩ−k−1PB, k = −1,−2, . . . .

The block entries of T−1
n are now given as follows. Let A× = A− BC and define

P×, E× and Ω× in a way analog to P, E and Ω, that is:

P× =
1

2πi

∫
T

G(ζG −A×)−1dζ, (3.4)

E× =
1

2πi

∫
T

(1− ζ−1)(ζG−A×)−1dζ, (3.5)

and

Ω× =
1

2πi

∫
T

(ζ − ζ−1)(ζG −A×)−1. (3.6)

Define moreover

Q =
1

2πi

∫
T

(ζG −A)−1dζ, (3.7)

Vn = (I −Q)E×(I − P×)

+ (I −Q)E×(Ω×)n+1P× + QE×(Ω×)n+1(I − P×) + QE×P×,
(3.8)

and

r×k =

⎧⎪⎨⎪⎩
CE×(Ω×)k(I − P×)B, k = 1, 2, . . . , n,

I + CE×(I − P×)B, k = 0,

−CE×(Ω×)−kP×B, k = −1, . . . ,−n,

and

k
(n)
kj = CE×(Ω×)k+1(I − P×)V −1

n (I −Q)E×(Ω×)jP×B

− CE×(Ω×)n−kP×V −1
n QE×(Ω×)n−j(I − P×)B.
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Then, T−1
n =

(
γ

(n)
kj

)
k,j=1,...,n

with

γ
(n)
kj = r×k−j + k

(n)
kj . (3.9)

See [14, Theorem 8.2 p. 422].

4. Inverse spectral problem

We focus on the rational case and consider three cases:
1. The weight function is general: it is rational and strictly positive on T.
2. We assume that the weight function is analytic at the origin and at infinity.

Then we get concrete formulas.
3. We start from a spectral factor.

The uniqueness theorem (Theorem 2.4) is used in the proof of the following theo-
rem.

Theorem 4.1. Let W (z) be a rational function without poles on the unit circle and
which takes strictly positive values there, and which is normalized by

1
2π

∫ 2π

0

W (eit)dt = Ip. (4.1)

Then, W (z) is the spectral function of a uniquely determined first-order discrete
system normalized by ∆0 = I2p. The associated first-order discrete system is com-
puted as follows: let

W (z) = I + C(zG−A)−1B

be a realization of W (z) which is regular on T. Then,

αn = CE× {(Ω×)n(I − P×) + (Ω×)n+1(I − P×)V −1
n (I −Q)E×P×

−P×V −1
n QE×(Ω×)n(I − P×)

}
B

×
{
I + CE×(I − P×)B + CE×Ω×(I − P×)V −1

n E×P×P×B

−CE×(Ω×)nP×V −1
n QE×(Ω×)n(I − P×)B

}−1
,

βn = CE×
{
(Ω×)(n−1)P× + Ω×(I − P×)V −1

n (I −Q)(Ω×)nP×

−P×V −1
n QE×(I − P×)

}
B

×
{
I + CE×(I − P×)B

+ CE×(Ω×)(n+1)(I − P×)V −1
n (I −Q)(Ω×)nP×B

−CE×P×V −1
n QE×(I − P×)B

}−1
,

(4.2)

with associated sequence of diagonal matrices given by

∆n =
(

d1,n 0
0 d2,n

)
(4.3)
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where
d1,n = I + CE×(I − P×)B + CE×(Ω×)(n+1)(I − P×)V −1

n (I −Q)(Ω×)nP×B

− CE×P×V −1
n QE×(I − P×)B,

d2,n = I + CE×(I − P×)B + CE×Ω×(I − P×)V −1
n E×P×P×B

− CE×(Ω×)nP×V −1
n QE×(Ω×)n(I − P×)B

for n = 1, 2, . . .. In these expressions, the quantities P, E, Ω and Q are given by
(3.2), (3.3) and (3.7) respectively and P×, E×, Q× and Vn are given by (3.4), (3.5),
(3.6) and (3.8) respectively.

Proof. We first prove the uniqueness of the associated first-order discrete system.
Fix n > 0. For every q > 0 we have (recall that Ψn is defined by (1.11) and θn by
(2.7))

Ψn+q(z) = Ψn(z)θn+1(z) · · · θn+q(z),
and in particular

R(z) = lim
q→∞ TΨn(z)(Tθn+1(z)···θn+q(z)(0)).

By Montel’s theorem, the limit

Rn(z) = lim
q→∞ Tθn+1(z)···θn+q(z)(0)

exists (via maybe a subsequence). The limit is analytic and contractive in the open
unit disk. Thus

R(z) = TΨn(z)(Rn(z)).
By Theorem 2.5, the space H(Ψn) is built from the first n coefficients of the Taylor
expansion of R(z) at the origin.

Assume that there are two first-order discrete systems (normalized by ∆0 = I2p)
and with same spectral function W (z). By formula (1.13) these two systems have
the same reflection coefficient function R(z). Denoting by a superscript ′ the second
one, we get H(Ψn) = H(Ψ′

n) for every n ≥ 0. By Theorem 2.4 it follows that the
two systems are equal.

We now turn to the existence of such a system. The function W (z) is rational and
has no poles on the unit circle. It belongs therefore to the Wiener algebra Wp×p.
We set W (eit) =

∑
Z

rje
ijt (note that r0 = Ip in view of the normalization (4.1)).

The block matrices Tn are strictly positive and it follows from [12] that the pair

αn = γ
(n)
n0 (γ(n)

00 )−1 and βn = γ
(n)
0n (γ(n)

nn )−1, n = 1, 2, 3 . . . , (4.4)

form an admissible sequence, with associated sequence of diagonal matrices given
by

∆n =

(
γ

(n)
nn 0
0 γ

(n)
00

)
, n = 0, 1, 2, . . .. (4.5)

The normalization (4.1) implies that ∆0 = I2p. We now proceed in a number of
steps:
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STEP 1: The limits limn→∞ γ
(n)
00 and limn→∞ γ

(n)
nn exist and are strictly positive.

Set ∆n = diag (d1,n, d2,n). We have γ
(n)
00 = d1,n and γ

(n)
nn = d2,n. Formula (3.9)

implies that the limits exist. Formulas (2.4)–(2.6) imply that γ
(n)
00 and γ

(n)
nn are

non-decreasing sequences of positive matrices, and so their limits are invertible
since ∆0 > 0.

Alternatively, one can prove STEP 1 as follows: That the first limit exits follows
from the projection method (see [17]). The invertibility of limn→∞ γ

(n)
00 is proved

in [16, p. 123]. The second limit is reduced to the first one by considering W (1/z).
See the end of the proof of Theorem 1.8 in [3] for more information.

Thus (1.6) is in force. From (1.7) we have

lim
n→∞ γ

(n)
00 = δ1 and lim

n→∞ γ(n)
nn = δ2.

STEP 2: Condition (1.3) is in force.

This follows from the explicit formulas (3.9) for γ
(n)
0n and γ

(n)
nn .

As proved in [3] it follows from STEP 2 that the first-order discrete system (1.1)
has a unique solution Xn(z) such that (1.5) holds:

lim
n→∞

(
z−nIp 0

o Ip

)
Xn(z) =

(
Ip 0
0 Ip

)
, |z| = 1.

We set (see [12, p. 80])

An(z) =
n∑

�=0

z�γ
(n)
�0 , Cn(z) =

n∑
�=0

z�γ
(n)
�n ,

A◦
n(z) = 2Ip −

n∑
�=0

p�(z)γ(n)
�0 , C◦

n(z) =
n∑

�=0

p�(z)γ(n)
�n ,

where p�(z) = z�r0 + 2
∑�

s=1 z�−sr∗s .

STEP 3: It holds that
lim

n→∞An(z)∗ = δ2(Y21(z) + Y22(z)),

lim
n→∞ z−nCn(z)∗ = δ1(Y11(z) + Y12(z)), |z| = 1.

(4.6)

Indeed, set

Θn(z) =
(

zCn(z) An(z)
zC◦

n(z) −A◦
n(z)

)
.

We have (see [12, Theorem 13.2 p. 127])

Θn(z)∆−1
n = Θn−1(z)∆−1

n−1

(
Ip αn

βn Ip

)(
zIp 0
0 Ip

)
, n = 1, 2, . . ..
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It follows that the matrix-functions

Xn(z) = ∆−1
n

(
z−1Ip 0

0 Ip

)
Θn(z)∗ = ∆−1

n

(
Cn(z)∗ C◦

n(z)∗

An(z)∗ −A◦
n(z)∗

)
satisfy the recursion

Xn(z) =
(

Ip αn

βn Ip

)∗(
zIp 0
0 Ip

)
Xn−1(z), n = 1, 2, . . ..

Since, as already noticed, ∆0 = I2p, we have:

∆−1
n

(
Cn(z)∗ C◦

n(z)∗

An(z)∗ −A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2

= Mn(z),

where we recall that Mn(z) is the solution of (1.1) subject to the initial condition
M0(z) = I2p. Hence, with Y (z) defined by (1.4),

Mn(z) = Xn(z)Y (z) = ∆−1
n

(
Cn(z)∗ C◦

n(z)∗

An(z) −A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2
,

where Xn(z) is the solution to (1.1) subject to the asymptotic (1.5). Recalling
(1.7) we obtain:

lim
n→∞

(
z−nIp 0

0 Ip

)
Xn(z)Y (z)

=
(

δ−1
1 0
0 δ−1

2

)( lim
n→∞ z−nCn(z)∗ lim

n→∞ z−nC◦
n(z)∗

lim
n→∞An(z) − lim

n→∞A◦
n(z)∗

)(
Ip Ip

Ip −Ip

)
1
2
.

Hence,(
δ1 0
0 δ2

)
Y (z)

(
Ip Ip

Ip −Ip

)
=

(
lim

n→∞ z−nCn(z)∗ lim
n→∞ z−nC◦

n(z)∗

lim
n→∞An(z) − lim

n→∞A◦
n(z)∗

)
.

In particular we have (4.6).

STEP 4: W (z) is the spectral function of the first-order discrete system associated
to the pair (4.7).

By [12, Theorem 10.4 p. 116], we have for |z| = 1

W (z) = lim
n→∞An(z)−∗γ(n)

00 An(z)−1

= lim
n→∞Cn(z)−∗γ(n)

nn Cn(z)−1.

and thus, still on the unit circle

W (1/z) = lim
n→∞An(z)−∗γ(n)

00 An(z)−1

= lim
n→∞Cn(z)−∗γ(n)

nn Cn(z)−1.
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Hence, by the preceding two steps,

W (1/z) = (Y21(z) + Y22(z))−1δ−1
1 δ1δ

−1
1 (Y21(z) + Y22(z))−∗

= (Y21(z) + Y22(z))−1δ−1
1 (Y21(z) + Y22(z))−∗

= (Y11(z) + Y12(z))−1δ−1
2 δ2δ

−1
2 (Y11(z) + Y12(z))−∗

= (Y11(z) + Y12(z))−1δ−1
2 (Y11(z) + Y12(z))−∗

and hence the result. �

In [3] we called admissible sequences of the form (4.4)–(4.5) Szegö admissible
sequences.

In the next theorem we assume that the weight function is analytic at the origin
and at infinity. This allows us to use formulas from [15].

Theorem 4.2. Let W (z) be a rational function analytic at infinity and at the origin,
and without poles on the unit circle. Assume that W (eit) > 0 for t ∈ [0, 2π] and
that the normalization (4.1) is in force. Then, W (z) is the spectral function of a
uniquely determined first-order system. The corresponding associated sequence is
obtained as follows: let

W (z) = D + zC(I − zA)−1B

be a minimal realization of W . Then αn and βn are given by

αn = (D − CA−1B)−1CA−1
(
(I − P0)(A×)−n

∣∣
ker P0

)−1

(I − P0)B,

βn = −D−1C
(
P0(A×)n

∣∣
Im P0

)−1

P0A
−1B,

(4.7)

and the associated sequence of diagonals is given by ∆n = diag(d1,n, d2,n) with

d1,n = D−1 + D−1C(A×)nW−1
n+1P0A

−1BD−1,

d2,n = D−1 + D−1CW−1
n+1P0A

−(n+1)(A×)nBD−1,

where P0 denotes the Riesz projection corresponding to the spectrum of A outside
the closed unit disk,

P0 = I − 1
2πi

∫
T

(zI −A)−1dz, (4.8)

and where Wn is given by

Wn(I − P0 + P0A)−n(I − P0 + P0A
×n). (4.9)

The proof is a special case of the previous theorem. Formulas (4.7) have been
proved in our previous paper [3], and are the discrete analogue of [6, (3.1) p. 9],
where the potential associated to a canonical differential expression was computed
in terms of a minimal realization of the spectral function.

We now turn to the third case, where we start from a spectral factor.
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Theorem 4.3. Let g+(z) be a Cp×p-valued rational function analytic and invertible
in the closed unit disk, and at infinity. Let

W (z) = g+(z)g+(1/z∗)∗,

and assume that the normalization (4.1) is in force. Then W (z) is the spectral
function of a first-order discrete system of type (1.1). Let g+(z) = d+zc(I−za)−1b
be a minimal realization of g+(z) and let X and Y be the solutions of the Stein
equations

X − aXa∗ = bb∗ (4.10)
and

Y − a×∗Y a× = (d−1c)∗(d−1c). (4.11)

Assume that a is invertible (that is, W (z) is analytic at the origin and at infinity).
Then the following formulas hold:

αn = (d− ca−1b)d∗ca−1(a×)n(I + X(Y − (a×)∗nY (a×)n))−1(bd∗ + aXc∗),

βn = (d(d∗−b∗a−∗c∗))−1(cX+db∗a−∗)
(
I+(Y −(a×∗)nY (a×)n)X

)−1 (a×∗)nc∗.
(4.12)

The associated sequence of diagonals is given by ∆n = diag (d1,n, d2,n) where

d1,n = (d(d∗ − c∗a−∗b∗))−1

×
(
I + (−c(a×)n(I + X(Y − (a×)∗nY (a×)n))−1X(a×)∗(n+1)

−d∗a−∗c∗(a×)∗(I + (Y − (a×)∗nY (a×)n)X)

×(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)(n+1)a−∗c∗(d(d∗ − b∗a−∗c∗)−1
)
,

d2,n = (d(d∗ − c∗a−∗b∗))−1

×
(
I − (cX + d∗b∗a−∗)

×(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗

×
(
b(d∗ − b∗a−∗c∗) + ((a×)∗nY (a×)n − Y )a−∗c∗

)
(d(d∗ − c∗a−∗b∗))−1

)
.

Proof. The fact that W (z) is the spectral function of a system (1.1) stems from
Theorem 4.1. We now prove formulas (4.12). In the arguments to obtain a formula
for the Schur coefficients αn and βn in terms of a minimal realization of g+(z) we
make much use of computations from our previous paper [5].

Let g+(z) = d + zc(I − za)−1b be a minimal realization of g+(z). By hypothesis
the matrix a is invertible. Hence, a minimal realization of g+(1/z∗)∗ is given by

g+(1/z∗)∗ = d∗ + b∗(zI − a∗)−1c∗

= d∗ − b∗a−∗c∗ + b∗
(
(zI − a∗)−1 + a−∗) c∗

= d∗ − b∗a−∗c∗ − zb∗(I − a−∗)−1c∗

= d∗ − b∗a−∗c∗ − zb∗a−∗(I − za−∗)−1a−∗c∗,
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and hence the matrices

A =
(

a −bb∗a−∗

0 a−∗

)
, B =

(
b(d∗ − b∗a−∗c∗)

a−∗c∗

)
, C =

(
c −db∗a−∗) , (4.13)

and
D = d(d∗ − b∗a−∗c∗) (4.14)

define a minimal realization W (z) = D+zC(I−zA)−1B of W (z). See [5, Theorem
3.3 p. 155]). Furthermore, the Riesz projection (4.8) is given by

P0 =
(

0 −X
0 I

)
,

where X is the solution of the Stein equation (4.10). We have (see [5, Equation
(3.21) p. 156])

(A×)n =
(

(a×)n 0
Y (a×)n − (a×∗)−nY (a×∗)−n

)
, (4.15)

where Y is the solution to the Stein equation (4.11). Therefore

P0(A×)nP0 =
(

0 X(Y a×n − (a×∗)−nY )X −X(a×∗)−n

0 −(Y a×n − (a×∗)−nY )X + (a×∗)−n

)
,

and hence

(P0(A×)n
∣∣
ImP0

)−1 = (a×∗)n
(
I + (Y − (a×∗)nY a×n)X

)−1
.

We remark that the matrix I + (Y − (a×∗)nY a×n)X is indeed invertible since
X > 0 and since, for every n ≥ 0,

Y − (a×∗)nY a×n ≥ 0.

The formula for βn follows.

To prove the formula for αn we first note that (using (4.15))

(I − P0)(A×)−n(I − P0) =
(

I X
0 0

)(
(a×)−n 0

Y (a×)−n − a×nY (a×)∗n

)(
I X
0 0

)
=
(

(I + X(Y − (a×)∗nY (a×)n)(a×)−n (I + X(Y − (a×)∗nY (a×)n)(a×)−nX
0 0

)
.

Moreover,

D − CA−1B = W (∞) = (d− ca−1b)d∗,

CA−1(I − P0) =
(
ca−1 ca−1X

)
,

and (using the Stein equation (4.10))

(I − P0)B =
(

b(d∗ − b∗a−∗c∗) + Xa−∗c∗

0

)
=
(

bd∗ + aXc∗

0

)
.

The formula for αn follows.
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We now compute d1,n = γ
(n)
nn . Using [15, p. p. 36] we have

γ(n)
nn = D−1(I + C(A×)nW−1

n+1P0A
−(n+1)BD−1),

where A, B, C and D are given by (4.13)–(4.14) and where Wn is defined by (4.9).
In [5, (4.8) p. 164] we proved that

Wn+1P0A
−(n+1) =

(
0 an+1

0 bn+1

)
(4.16)

where

an+1 = −X(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1),

bn+1 = (I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1).

Using (4.15) we have

(A×)nWn+1P0A
−(n+1) =

(
0 (a×)nan+1

0 hn

)
where

hn = (Y (a×)n − (a×)−∗nY )an+1 + (a×)−∗nbn+1

= (a×)−∗n
{
−((a×)∗nY (a×)n − Y )(I + X(Y − (a×)∗(n+1)Y (a×)(n+1)))−1

×X(a×)∗(n+1)

+ (I + (Y − (a×)∗(n+1)Y (a×)(n+1)X)−1(a×)∗(n+1)
}

= (a×)−∗n
{

(Y − (a×)∗nY (a×)n)(I + X(Y − (a×)∗(n+1)Y (a×)(n+1)))−1X

+(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1
}

(a×)∗(n+1)

= (a×)−∗

× (I + (Y − (a×)∗nY (a×)n)X)(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1).

Since
C(A×)nWn+1P0A

−(n+1)B = (c(a×)nan+1 − d∗a−∗c∗hna−∗c∗,

we get the formula for d1,n.

Finally, we compute the formula for d2,n = γ
(n)
00 . By the formula in [15, p. 36] we

now have
γ

(n)
00 = D−1

{
I + CWn+1P0A

−(n+1)(A×)nBD−1
}

.

By (4.16) and [15, p. 36] we have

CWn+1P0A
−(n+1)

=
(
0 −(cX + db∗a−∗)(I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗(n+1)

)
.
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Hence, using (4.15) we obtain

CWn+1P0A
−(n+1)(A×)B = −(cX + d∗b∗a−∗)

× (I + (Y − (a×)∗(n+1)Y (a×)(n+1))X)−1(a×)∗

×
(
b(d∗ − b∗a−∗c∗) + ((a×)∗nY (a×)n − Y )a−∗c∗

)
and the formula for γ

(n)
00 follows. �

These formulas are the discrete analogs of the formula given in [6, Theorem 3.5 p.9],
where we computed the potential associated to a canonical differential expression
in terms of a minimal realization of a spectral factor of the spectral function.
Connections with the formulas for Nehari admissible sequences given in [3, Section
1.3] will be explored in a separate publication.

5. Connection with the scattering function

The connection between the scattering function and the spectral function allows to
reconstruct the discrete system from the scattering function by building first the
associated spectral function. We are given two strictly positive matrices δ1 and δ2

in Cp×p, and consider a Cp×p-valued rational function S(z) which admits a spectral
factorization S(z) = S−(z)S+(z) and satisfies the following two conditions:

S(z)∗δ1S(z) = δ2, |z| = 1, (5.1)

and
1
2π

∫ 2π

0

S−(eit)δ−1
1 S−(eit)∗dt = Ip. (5.2)

We also assume that the factors S+(z) and S−(z) are normalized by S+(0) =
S−(∞) = Ip. Note that for a given pair (δ1, δ2) there need not exist associated
functions S(z) with the required properties. For instance, in the scalar case we
necessarily have δ1 = δ2 (see [3]) and then S(z) is unitary on the unit circle.

Using (5.1) we define

S−(1/z)δ−1
1 S−(1/z)−∗ = S+(1/z)δ−1

2 S+(1/z)∗ def.= W (z). (5.3)

By Theorem (4.1) the function W (z) is the spectral function of a uniquely defined
first-order discrete system of the form (1.1) with Szegö admissible sequence defined
by (4.4)–(4.5). We know from the proof of Step 1 of Theorem 4.1 that the limits

lim
n→∞ γ

(n)
00 and lim

n→∞ γ(n)
nn

exist and are strictly positive. For the moment being we denote these limits by k1

and k2. Let Y (z) be defined by (1.4). Then (see Section 1)

W (z) = (Y21 + Y22)(1/z)k−1
2 (Y21 + Y22(1/z))−∗

= (Y11 + Y12)(1/z)k−1
1 (Y11 + Y12(1/z))−∗.

(5.4)
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By uniqueness of the spectral factorizations and comparing (5.3) and (5.4) we have

δ1 = k1,

δ2 = k2,

S−(1/z) = (Y11 + Y12)(1/z),

S+(1/z) = ((Y21 + Y22)(1/z))−1.

Hence, the associated scattering function is equal to

(Y11(z) + Y12(z))(Y21(z) + Y22(z))−1 = S−(z)S+(z) = S(z).

This way, we can reconstruct the system associated to the scattering function using
the spectral function.

Theorem 5.1. Let S(z) be a rational matrix-function which admits a spectral fac-
torization and satisfies conditions (5.1) and (5.2) for some pair of strictly positive
matrices δ1 and δ2. Then S(z) is the scattering function of the first-order discrete
system with spectral function

S−(1/z)δ−1
1 S−(1/z)−∗ = S+(1/z)δ−1

2 S+(1/z)∗.

6. Connection with the reflection coefficient function

Let R ∈ Wp×p
+ be a rational function which is strictly contractive in the closed

unit disk. The function

W (z) = (Ip − zR(z))−1(Ip −R(z)R(z)∗)(Ip − zR(z))−∗, |z| = 1, (6.1)

is strictly positive on the unit circle and is the restriction there of the rational
function

W (z) =
1
2i

(N(z)−N(1/z∗)∗) with N(z) = i(Ip − zR(z))(Ip + zR(z))−1.

Hence W (z) is the spectral function of a first-order discrete system. Since R(z)
defined uniquely W (z) we have:

Theorem 6.1. Let R ∈ Wp×p
+ be a rational function which is strictly contractive in

the closed unit disk. Then it is the reflection coefficient function of the first-order
canonical discrete system (1.1) with associated spectral function (6.1).

Indeed, by Theorem 4.1 the function

W (z) =
1
2i

(N(z)−N(1/z∗)∗), |z| = 1,

is the spectral function of a uniquely defined first-order discrete system and R(z)
is uniquely determined by W (z).
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