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Foreword

This book is the sixth in a series of lectures of the Séminaire Poincaré, which is
directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up-to-date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincaré
Seminar is held twice a year at the Institut Henri Poincaré in Paris, with contri-
butions prepared in advance. Particular care is devoted to the pedagogical nature
of the presentations so as to fulfill the goal of being readable by a large audience
of scientists.

This volume contains the ninth such Seminar, held in 2006. It is devoted to
Relativity and Experiment.

This book starts with a detailed introduction to general relativity by T.
Damour. It includes a review of what may lie beyond by string theorist I. An-
toniadis, and collects up-to-date essays on the experimental tests of this theory.
General relativity is now a theory well confirmed by detailed experiments, includ-
ing the precise timing of the double pulsar J0737-3039 explained by M. Kramer,
member of the team which discovered it in 2003, and satellite missions such as
Gravity Probe B described by J. Mester. The search for detecting gravitational
waves is also very much under way as reviewed by J.Y. Vinet.

We hope that the continued publication of this series will serve the community
of physicists and mathematicians at professional or graduate student level.

We thank the Commissariat à l’Énergie Atomique (Division des Sciences
de la Matière) and the Daniel Iagolnitzer Foundation for sponsoring the Seminar.
Special thanks are due to Chantal Delongeas for the preparation of the manuscript.

Thibault Damour
Bertrand Duplantier

Vincent Rivasseau
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General Relativity Today∗

Thibault Damour

Abstract. After recalling the conceptual foundations and the basic structure
of general relativity, we review some of its main modern developments (apart
from cosmology): (i) the post-Newtonian limit and weak-field tests in the
solar system, (ii) strong gravitational fields and black holes, (iii) strong-field
and radiative tests in binary pulsar observations, (iv) gravitational waves, (v)
general relativity and quantum theory.

1. Introduction

The theory of general relativity was developed by Einstein in work that extended
from 1907 to 1915. The starting point for Einstein’s thinking was the composition
of a review article in 1907 on what we today call the theory of special relativity.
Recall that the latter theory sprang from a new kinematics governing length and
time measurements that was proposed by Einstein in June of 1905 [1], [2], following
important pioneering work by Lorentz and Poincaré. The theory of special relativ-
ity essentially poses a new fundamental framework (in place of the one posed by
Galileo, Descartes, and Newton) for the formulation of physical laws: this frame-
work being the chrono-geometric space-time structure of Poincaré and Minkowski.
After 1905, it therefore seemed a natural task to formulate, reformulate, or mod-
ify the then known physical laws so that they fit within the framework of special
relativity. For Newton’s law of gravitation, this task was begun (before Einstein
had even supplied his conceptual crystallization in 1905) by Lorentz (1900) and
Poincaré (1905), and was pursued in the period from 1910 to 1915 by Max Abra-
ham, Gunnar Nordström and Gustav Mie (with these latter researchers developing
scalar relativistic theories of gravitation).

Meanwhile, in 1907, Einstein became aware that gravitational interactions
possessed particular characteristics that suggested the necessity of generalizing
the framework and structure of the 1905 theory of relativity. After many years of
intense intellectual effort, Einstein succeeded in constructing a generalized theory

∗Translated from the French by Eric Novak.



2 T. Damour

of relativity (or general relativity) that proposed a profound modification of the
chrono-geometric structure of the space-time of special relativity. In 1915, in place
of a simple, neutral arena, given a priori, independently of all material content,
space-time became a physical “field” (identified with the gravitational field). In
other words, it was now a dynamical entity, both influencing and influenced by
the distribution of mass-energy that it contains.

This radically new conception of the structure of space-time remained for a
long while on the margins of the development of physics. Twentieth century physics
discovered a great number of new physical laws and phenomena while working with
the space-time of special relativity as its fundamental framework, as well as im-
posing the respect of its symmetries (namely the Lorentz-Poincaré group). On the
other hand, the theory of general relativity seemed for a long time to be a the-
ory that was both poorly confirmed by experiment and without connection to the
extraordinary progress springing from application of quantum theory (along with
special relativity) to high-energy physics. This marginalization of general relativ-
ity no longer obtains. Today, general relativity has become one of the essential
players in cutting-edge science. Numerous high-precision experimental tests have
confirmed, in detail, the pertinence of this theory. General relativity has become
the favored tool for the description of the macroscopic universe, covering every-
thing from the big bang to black holes, including the solar system, neutron stars,
pulsars, and gravitational waves. Moreover, the search for a consistent description
of fundamental physics in its entirety has led to the exploration of theories that
unify, within a general quantum framework, the description of matter and all its
interactions (including gravity). These theories, which are still under construction
and are provisionally known as string theories, contain general relativity in a cen-
tral way but suggest that the fundamental structure of space-time-matter is even
richer than is suggested separately by quantum theory and general relativity.

2. Special Relativity

We begin our exposition of the theory of general relativity by recalling the chrono-
geometric structure of space-time in the theory of special relativity. The structure
of Poincaré-Minkowski space-time is given by a generalization of the Euclidean
geometric structure of ordinary space. The latter structure is summarized by the
formula L2 = (∆x)2 +(∆y)2 +(∆z)2 (a consequence of the Pythagorean theorem),
expressing the square of the distance L between two points in space as a sum of
the squares of the differences of the (orthonormal) coordinates x, y, z that label
the points. The symmetry group of Euclidean geometry is the group of coordinate
transformations (x, y, z)→ (x′, y′, z′) that leave the quadratic form L2 = (∆x)2 +
(∆y)2 + (∆z)2 invariant. (This group is generated by translations, rotations, and
“reversals” such as the transformation given by reflection in a mirror, for example:
x′ = −x, y′ = y, z′ = z.)
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The Poincaré-Minkowski space-time is defined as the ensemble of events (ide-
alizations of what happens at a particular point in space, at a particular moment in
time), together with the notion of a (squared) interval S2 defined between any two
events. An event is fixed by four coordinates, x, y, z, and t, where (x, y, z) are the
spatial coordinates of the point in space where the event in question “occurs,” and
where t fixes the instant when this event “occurs.” Another event will be described
(within the same reference frame) by four different coordinates, let us say x+ ∆x,
y+ ∆y, z+ ∆z, and t+ ∆t. The points in space where these two events occur are
separated by a distance L given by the formula above, L2 = (∆x)2+(∆y)2+(∆z)2.
The moments in time when these two events occur are separated by a time interval
T given by T = ∆t. The squared interval S2 between these two events is given as
a function of these quantities, by definition, through the following generalization
of the Pythagorean theorem:

S2 = L2 − c2 T 2 = (∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2 , (1)

where c denotes the speed of light (or, more precisely, the maximum speed of signal
propagation).

Equation (1) defines the chrono-geometry of Poincaré-Minkowski space-time.
The symmetry group of this chrono-geometry is the group of coordinate transfor-
mations (x, y, z, t)→ (x′, y′, z′, t′) that leave the quadratic form (1) of the interval
S invariant. We will show that this group is made up of linear transformations and
that it is generated by translations in space and time, spatial rotations, “boosts”
(meaning special Lorentz transformations), and reversals of space and time.

It is useful to replace the time coordinate t by the “light-time” x0 ≡ ct, and
to collectively denote the coordinates as xµ ≡ (x0, xi) where the Greek indices
µ, ν, . . . = 0, 1, 2, 3, and the Roman indices i, j, . . . = 1, 2, 3 (with x1 = x, x2 = y,
and x3 = z). Equation (1) is then written

S2 = ηµν ∆xµ ∆xν , (2)

where we have used the Einstein summation convention1 and where ηµν is a diago-
nal matrix whose only non-zero elements are η00 = −1 and η11 = η22 = η33 = +1.
The symmetry group of Poincaré-Minkowski space-time is therefore the ensemble
of Lorentz-Poincaré transformations,

x′µ = Λµν x
ν + aµ , (3)

where ηαβ Λαµ Λβν = ηµν .
The chrono-geometry of Poincaré-Minkowski space-time can be visualized

by representing, around each point x in space-time, the locus of points that are
separated from the point x by a unit (squared) interval, in other words the ensemble
of points x′ such that S2

xx′ = ηµν(x′µ − xµ)(x′ν − xν) = +1. This locus is a one-
sheeted (unit) hyperboloid.

If we were within an ordinary Euclidean space, the ensemble of points x′

would trace out a (unit) sphere centered on x, and the “field” of these spheres

1Every repeated index is supposed to be summed over all of its possible values.
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centered on each point x would allow one to completely characterize the Euclidean
geometry of the space. Similarly, in the case of Poincaré-Minkowski space-time, the
“field” of unit hyperboloids centered on each point x is a visual characterization
of the geometry of this space-time. See Figure 1. This figure gives an idea of
the symmetry group of Poincaré-Minkowski space-time, and renders the rigid and
homogeneous nature of its geometry particularly clear.

Figure 1. Geometry of the “rigid” space-time of the theory of
special relativity. This geometry is visualized by representing,
around each point x in space-time, the locus of points separated
from the point x by a unit (squared) interval. The space-time
shown here has only three dimensions: one time dimension (rep-
resented vertically), x0 = ct, and two spatial dimensions (rep-
resented horizontally), x, y. We have also shown the ‘space-time
line’, or ‘world-line’, (moving from the bottom to the top of the
“space-time block,” or from the past towards the future) repre-
senting the history of a particle’s motion.

The essential idea in Einstein’s article of June 1905 was to impose the group of
transformations (3) as a symmetry group of the fundamental laws of physics (“the
principle of relativity”). This point of view proved to be extraordinarily fruitful,
since it led to the discovery of new laws and the prediction of new phenomena.
Let us mention some of these for the record: the relativistic dynamics of classical
particles, the dilation of lifetimes for relativistic particles, the relation E = mc2

between energy and inertial mass, Dirac’s relativistic theory of quantum spin 1
2

particles, the prediction of antimatter, the classification of particles by rest mass
and spin, the relation between spin and statistics, and the CPT theorem.

After these recollections on special relativity, let us discuss the special feature
of gravity which, in 1907, suggested to Einstein the need for a profound general-
ization of the chrono-geometric structure of space-time.
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3. The Principle of Equivalence

Einstein’s point of departure was a striking experimental fact: all bodies in an
external gravitational field fall with the same acceleration. This fact was pointed
out by Galileo in 1638. Through a remarkable combination of logical reasoning,
thought experiments, and real experiments performed on inclined planes,2 Galileo
was in fact the first to conceive of what we today call the “universality of free-fall”
or the “weak principle of equivalence.” Let us cite the conclusion that Galileo drew
from a hypothetical argument where he varied the ratio between the densities of the
freely falling bodies under consideration and the resistance of the medium through
which they fall: “Having observed this I came to the conclusion that in a medium
totally devoid of resistance all bodies would fall with the same speed” [3]. This
universality of free-fall was verified with more precision by Newton’s experiments
with pendulums, and was incorporated by him into his theory of gravitation (1687)
in the form of the identification of the inertial mass mi (appearing in the funda-
mental law of dynamics F = mi a) with the gravitational mass mg (appearing in
the gravitational force, Fg = Gmgm

′
g/r

2):

mi = mg . (4)

At the end of the nineteenth century, Baron Roland von Eötvös verified the
equivalence (4) between mi and mg with a precision on the order of 10−9, and
Einstein was aware of this high-precision verification. (At present, the equivalence
between mi and mg has been verified at the level of 10−12 [4].) The point that
struck Einstein was that, given the precision with which mi = mg was verified,
and given the equivalence between inertial mass and energy discovered by Einstein
in September of 1905 [2] (E = mi c

2), one must conclude that all of the various
forms of energy that contribute to the inertial mass of a body (rest mass of the
elementary constituents, various binding energies, internal kinetic energy, etc.)
do contribute in a strictly identical way to the gravitational mass of this body,
meaning both to its capacity for reacting to an external gravitational field and to
its capacity to create a gravitational field.

In 1907, Einstein realized that the equivalence between mi and mg implicitly
contained a deeper equivalence between inertia and gravitation that had important
consequences for the notion of an inertial reference frame (which was a fundamen-
tal concept in the theory of special relativity). In an ingenious thought experiment,
Einstein imagined the behavior of rigid bodies and reference clocks within a freely
falling elevator. Because of the universality of free-fall, all of the objects in such a
“freely falling local reference frame” would appear not to be accelerating with re-
spect to it. Thus, with respect to such a reference frame, the exterior gravitational
field is “erased” (or “effaced”). Einstein therefore postulated what he called the
“principle of equivalence” between gravitation and inertia. This principle has two

2The experiment with falling bodies said to be performed from atop the Leaning Tower of Pisa
is a myth, although it aptly summarizes the essence of Galilean innovation.
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parts, that Einstein used in turns. The first part says that, for any external gravi-
tational field whatsoever, it is possible to locally “erase” the gravitational field by
using an appropriate freely falling local reference frame and that, because of this,
the non-gravitational physical laws apply within this local reference frame just as
they would in an inertial reference frame (free of gravity) in special relativity. The
second part of Einstein’s equivalence principle says that, by starting from an iner-
tial reference frame in special relativity (in the absence of any “true” gravitational
field), one can create an apparent gravitational field in a local reference frame, if
this reference frame is accelerated (be it in a straight line or through a rotation).

4. Gravitation and Space-Time Chrono-Geometry

Einstein was able (through an extraordinary intellectual journey that lasted eight
years) to construct a new theory of gravitation, based on a rich generalization of
the 1905 theory of relativity, starting just from the equivalence principle described
above. The first step in this journey consisted in understanding that the princi-
ple of equivalence would suggest a profound modification of the chrono-geometric
structure of Poincaré-Minkowski space-time recalled in Equation (1) above.

To illustrate, let Xα, α = 0, 1, 2, 3, be the space-time coordinates in a local,
freely-falling reference frame (or locally inertial reference frame). In such a ref-
erence frame, the laws of special relativity apply. In particular, the infinitesimal
space-time interval ds2 = dL2 − c2 dT 2 between two neighboring events within
such a reference frame Xα, X ′α = Xα + dXα (close to the center of this reference
frame) takes the form

ds2 = dL2 − c2 dT 2 = ηαβ dX
α dXβ , (5)

where we recall that the repeated indices α and β are summed over all of their
values (α, β = 0, 1, 2, 3). We also know that in special relativity the local energy
and momentum densities and fluxes are collected into the ten components of the
energy-momentum tensor Tαβ. (For example, the energy density per unit volume
is equal to T 00, in the reference frame described by coordinates Xα = (X0, X i),
i = 1, 2, 3.) The conservation of energy and momentum translates into the equation
∂β T

αβ = 0, where ∂β = ∂/∂ Xβ.
The theory of special relativity tells us that we can change our locally iner-

tial reference frame (while remaining in the neighborhood of a space-time point
where one has “erased” gravity) through a Lorentz transformation, X ′α = Λαβ X

β.
Under such a transformation, the infinitesimal interval ds2, Equation (5), remains
invariant and the ten components of the (symmetric) tensor Tαβ are transformed
according to T ′αβ = Λαγ Λβδ T

γδ. On the other hand, when we pass from a locally
inertial reference frame (with coordinates Xα) to an extended non-inertial refer-
ence frame (with coordinates xµ; µ = 0, 1, 2, 3), the transformation connecting the
Xα to the xµ is no longer a linear transformation (like the Lorentz transforma-
tion) but becomes a non-linear transformation Xα = Xα(xµ) that can take any
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form whatsoever. Because of this, the value of the infinitesimal interval ds2, when
expressed in a general, extended reference frame, will take a more complicated
form than the very simple one given by Equation (5) that it had in a reference
frame that was locally in free-fall. In fact, by differentiating the non-linear func-
tions Xα = Xα(xµ) we obtain the relation dXα = ∂Xα/∂xµ dxµ. By substituting
this relation into (5) we then obtain

ds2 = gµν(xλ) dxµ dxν , (6)

where the indices µ, ν are summed over 0, 1, 2, 3 and where the ten functions
gµν(x) (symmetric over the indices µ and ν) of the four variables xλ are de-
fined, point by point (meaning that for each point xλ we consider a reference
frame that is locally freely falling at x, with local coordinates Xα

x ) by gµν(x) =
ηαβ ∂X

α
x (x)/∂xµ ∂Xβ

x (x)/∂xν . Because of the nonlinearity of the functions Xα(x),
the functions gµν(x) generally depend in a nontrivial way on the coordinates xλ.

The local chrono-geometry of space-time thus appears to be given, not by the
simple Minkowskian metric (2), with constant coefficients ηµν , but by a quadratic
metric of a much more general type, Equation (6), with coefficients gµν(x) that
vary from point to point. Such general metric spaces had been introduced and
studied by Gauss and Riemann in the nineteenth century (in the case where the
quadratic form (6) is positive definite). They carry the name Riemannian spaces
or curved spaces. (In the case of interest for Einstein’s theory, where the quadratic
form (6) is not positive definite, one speaks of a pseudo-Riemannian metric.)

We do not have the space here to explain in detail the various geometric
structures in a Riemannian space that are derivable from the data of the infini-
tesimal interval (6). Let us note simply that given Equation (6), which gives the
distance ds between two infinitesimally separated points, we are able, through
integration along a curve, to define the length of an arbitrary curve connecting
two widely separated points A and B: LAB =

∫ B
A ds. One can then define the

“straightest possible line” between two given points A and B to be the shortest
line, in other words the curve that minimizes (or, more generally, extremizes) the
integrated distance LAB. These straightest possible lines are called geodesic curves.
To give a simple example, the geodesics of a spherical surface (like the surface of
the Earth) are the great circles (with radius equal to the radius of the sphere).
If one mathematically writes the condition for a curve, as given by its parametric
representation xµ = xµ(s), where s is the length along the curve, to extremize
the total length LAB one finds that xµ(s) must satisfy the following second-order
differential equation:

d2 xλ

ds2
+ Γλµν(x)

dxµ

ds

dxν

ds
= 0 , (7)

where the quantities Γλµν , known as the Christoffel coefficients or connection co-
efficients, are calculated, at each point x, from the metric components gµν(x) by
the equation

Γλµν ≡
1
2
gλσ(∂µ gνσ + ∂ν gµσ − ∂σ gµν) , (8)


