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Agriculture is one of the primary determinants of a healthy economy both at the micro- as 
well as macro level. The global population dynamics in the face of climate change as well 
as challenges posed by various abiotic and biotic stresses influence crop productivity. The 
scientific community is expected to be ahead of times, to provide a solution to such issues 
and more often than not, by envisioning the challenges that lie ahead. In this regard, plant 
biologists hold a larger role to overcome these challenges by discovering novel methods. 
The development of high yielding and tolerant cultivars through continuous selection and 
breeding along with latest technologies pertaining to cultivation, harvesting, and extension 
are a significant improvement. However, the advent of –omic approaches have heralded a 
golden era for crop improvement. The functional clues from model systems have paved the 
way for plant biologists to engineer stress tolerance through an integrated approach involv-
ing genetic manipulation, gene editing, and breeding.

The availability of crop genomes in public domains, and understanding of functional 
genomic approaches, has enabled the identification of function of plant gene(s) and gene 
families in relation to the whole genome(s). The role of gene(s) in the regulation of the 
plant phenotype/behavior under various physiological or developmental conditions can be 
established with the tools of genomics and functional genomics. The functional genomics 
approach has enabled plant biologists to develop a systematic approach where interplay of 
one or more genes in regulating the phenotype can be deciphered. The identification of 
critical trait-determining protein(s) will lead to the development of road maps of complete 
regulatory and metabolic pathways involved in physiological and developmental processes.

Plants have a highly evolved surveillance system to enable them to overcome the chal-
lenges posed by various stress factors. Plants utilize a highly efficient signaling system 
through several sensory and transducing components as well as effector molecules to bring 
about a response. Signals are perceived by receptors, followed by a transduction process 
that amplifies the signals via generation of second messengers (such as Ca2+, lipids, cNMP, 
etc.). The final response is regulated through the effector molecules. Signaling responses 
are either fast (occur within seconds to minute) or slow (may take minutes to hours). They 
occur as direct physiological changes or through the regulation of gene and protein expres-
sion. Although both prokaryotes and eukaryotes exhibit a high degree of conservation in 
several component pathways, plants and animals do exhibit unique or distinct signaling 
components. The complex interplay and coordination between one or more signaling path-
ways occurs through crosstalk/overlap and/or specificity in generation of final response.

Preface
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Signaling pathways are also considered the neuronal circuitry of a cell, primarily 
responsible for sensing, communicating, and maintaining homeostasis of biological 
processes. There are several regulatory controls in signaling pathways which turn the 
cellular processes “on or off,” thus, acting as molecular switches. Protein phosphorylation–
dephosphorylation, a post-translation modification, is a well-studied molecular switch. 
This reversible process is catalyzed by two important enzymes, Kinases and Phosphatases. 
Phosphorylation is the covalent attachment of a phosphate group to the target protein 
that causes conformational alterations in the protein resulting in modulation of either 
activity or function. Kinases phosphorylate substrate proteins while phosphatases 
dephosphorylate a phosphorylated protein, thereby, forming a molecular switch to trig-
ger the activation or inactivation of diverse cellular processes. Protein kinases transfer 
the terminal phosphate groups from nucleoside triphosphates such as ATPs to the 
hydroxyl group or nucleophilic centers of other functional groups belonging to specific 
phosphosites in a protein. In the living organisms, nine amino acids (tyrosine, serine, 
threonine, cysteine, arginine, lysine, aspartate, glutamate, and histidine) are reported to 
be phosphorylated. However, three amino acids, i.e. serine (Ser), threonine (Thr), and 
tyrosine (Tyr) were found to be majorly phosphorylated in eukaryotic cells and have pro-
found implications in the signaling pathways. In eukaryotes, protein kinases are subdi-
vided into two major classes, i.e. Ser/Thr and Tyr kinases. In addition, there are certain 
kinases which can phosphorylate both Ser/Thre as well as Tyr residues and are known as 
dual specificity protein kinases (DsPTKs). Based on the “kinome” analysis of plants and 
animals, it has been observed that in comparison to animals, plants have almost no typi-
cal Tyr kinase, but, a large repertoire of Ser/Thr kinases.

Protein kinases are the key components of the signaling pathway and are primarily 
responsible for phosphorylating the target proteins that could be a metabolic enzyme, 
cytoskeletal protein, transporters/channels or a transcription factor. Protein kinases also 
act as components of signaling cascade, such as MAP kinase cascade in transducing the 
signal downstream. Many of these kinases also act as nodal points to converge or diverge 
one or multiple signaling pathways and also responsible for generating specificity and over-
lap/crosstalk in the signaling pathways. Their ability to act as an integrator or modulator of 
signaling pathway(s) and fine-tune the final output or response in the stimulus–response-
coupling process is well appreciated.

This book on “Protein Kinases and Stress Signaling in plants: Functional Genomic 
Perspective” comprises of 22 chapters contributed by several well-known plant biologists 
working in the field of “Protein kinases and stress signaling” with a special emphasis on 
“Functional Genomics aspect.” It presents a state-of-the-art and timely contribution of 
knowledge to develop a better and holistic understanding of stress perception, its signal 
transduction and finally generation of responses against one or multiple stress signals.

The first chapter focuses on the role of Two-component system (TCS) in plant stress 
signaling. It is a predominant form of signaling involved in bacteria (prokaryote) relying on 
histidine and aspartate-based phosphotransfer to response regulators, which ultimately 
regulate the stress response. Interestingly, TCS is absent in animal and fungi but is observed 
in hormonal (cytokinin and ethylene) and stress signaling in plant systems. Plant TCS is a 
multistep system comprising of three partners: histidine kinases (HKs) that act as recep-
tors, histidine containing phosphotransfer proteins (HPTs) that serve as shuttle proteins 
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and response regulators (RRs) that act as output proteins. A comparative account of this 
circuitry among the monocot and dicot plant species is discussed in detail.

Plant genomes encode a large number of Ser/Thr receptor like kinases known as 
Receptor-like protein kinases (RLKs) that regulate a diverse array of signaling processes. 
Arabidopsis is reported to encode ~610 RLKs. Lectin receptor like kinases (LecRLKs), a 
subclass of RLKs, are not reported in humans and yeast. They are plant-specific and are 
involved in the regulation of diverse cues such as biotic and abiotic stresses, hormonal, 
symbiosis as well as plant growth and development. Chapter 2 describes the cellular func-
tions of LecRLKs and their implication in development of stress-tolerant crops.

In photosynthetic organisms, light perception generally involves various photoreceptors, 
i.e. Phytochromes (PHYs; red and far-red light sensing), Cryptochromes (CRYs; blue light 
sensing), Phytotropins (PHOTs; blue light sensing), Rhodopsins (blue to red light sensing), 
and UVR8 (UV-B light sensing). Some photoreceptors coupled with kinases (Histidine or 
Ser/Thr) are termed “photo-activated kinases (PAPKs).” These photoreceptors possess light 
sensing domains coupled with effector domains, which are responsible for a variety of 
physiological functions. Chapter 3 elaborates the role of PAPKs in green algae under abi-
otic stresses including varying light conditions.

Glycogen Synthase Kinase 3 (GSK3) known as SHAGGY in Drosophila is a non-receptor 
Ser/Thr protein kinase that is highly conserved in all eukaryotes. Originally known to be a 
key regulator in glycogen metabolism, it has been implicated in multiple signaling path-
ways and conditions like inflammation, Type II diabetes, cancer, Alzheimer’s disease, and 
bipolar disorder. Chapter 4 gives a detailed account of GSK3-like kinases in plants in the 
context of their versatility as well as physiological and biochemical relevance in cellular 
signaling. AMPK (5′ AMP-activated protein kinase) or SNF1 (Sucrose Non-Fermenting 1) 
Ser/Thr protein kinases are involved in the maintenance of cellular energy homeostasis in 
animals and yeast whereas plants have the homologs of AMPK and SNF1 protein kinases, 
known as SNF1-related kinases (SnRKs). These are classified into three subclasses, i.e. 
SnRK1, SnRK2, and SnRK3. Chapter 5 presents the role of SnRK1 and TOR (Target Of 
Rapamycin; another Ser/Thr kinase involved in energy and growth homeostasis) in balanc-
ing growth and defense signaling. The TOR-SnRK1-regulated growth-defense trade-offs 
and stress mitigation as well as the potential for the utilization of these pathways for crop 
improvement are discussed. Chapter 6 elaborates the pivotal role of SnRK2 in the early 
events of ABA signaling from the perspective of functional genomics. Chapter 7 details the 
role of several lipid-activated kinases in signaling pathways in plants regulating myriad 
physiological and developmental processes.

Calcium (Ca2+) has been recognized as one of the key molecules involved in the regula-
tion of diverse biological processes, including the adaptative and defense machinery of an 
organism. It serves as a ubiquitous second messenger in all eukaryotic organisms. Various 
physiological and environmental cues trigger a spatiotemporal increase in intracellular 
Ca2+ concentration also known as “Calcium signature.” This Ca2+ signature is sensed and 
transduced downstream to Ca2+ sensors, kinases/phosphatases and other effector proteins. 
Chapters 8–12 describe the different facets of Ca2+ signaling where different Ca2+ sensors 
are involved in the execution of the signaling process under different conditions in plants. 
Chapters 8 and 9 specifically emphasize the role of Ca2+-dependent protein kinases 
(CDPKs) as “Ca2+ sensor and responder” in plant growth, development, and stress 
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management. The role of one of the most important Ca2+ sensors, calmodulin (CaM) and 
its association with CaM binding kinases under stress conditions, is elaborated in Chapters 
10 and 11. Besides, CDPK and CaM, plants also have another important class of Ca2+ sen-
sors known as Calcineurin B-like protein (CBL), which associate with SnRK3 subclass of 
proteins known as CBL-interacting protein kinase (CIPK). Chapter 12 presents a detailed 
account of CIPKs in regulating diverse stress responses. Chapter 13 uncovers the role of 
Casein Kinase 2, a conserved pleiotropic enzyme involved in a number of developmental 
and stress responses. Chapter 14 presents the role of cyclin-dependent kinases (CDKs) in 
controlling cell division and stress responses in plants in the light of conserved mecha-
nisms of eukaryotic cell division and novel features of cell cycle regulation in plants.

Mitogen-activated protein (MAP) kinase cascade is one of the finest examples of signal-
ing cascades. It comprises of three hierarchical kinases, also known as MAPKKK, MAPKK, 
and MAPK. It regulates myriad biological processes such as growth, cell differentiation, 
cell death, hormonal signaling and stress/defense responses in eukaryotes. Chapters 15–18 
highlight the role of MAPKs in different abiotic and biotic stresses and their complexity. 
Chapter 19 discusses the role of protein kinases in the regulation of responses to abiotic 
and biotic stress stimuli in combination and the development of adaptive or stress toler-
ance mechanisms.

The role of tyrosine phosphorylation in the regulation of a diverse array of physiological 
and developmental processes has been extensively studied in animal systems. This process 
is catalyzed by protein Tyr kinases (PTKs) in animals, whereas the identification and pres-
ence of a typical PTK is still a topic of debate in plants. However, Tyr phosphorylation has 
been reported on the basis of several proteomic and functional analyses, for the obligatory 
regulation of multiple cellular responses in plants. In Chapter 20, the role of protein Tyr 
phosphorylation and the presence of noncanonical protein Tyr kinases in plants under 
stress is discussed. Chapter 21 discusses the kinase-mediated regulation of potassium (K+) 
homeostasis, particularly, under salinity and drought stress, from the functional genomics 
perspective. This assumes importance due to the essentiality of K+ macronutrient for the 
smooth functioning of cellular processes as well as plant growth and development 
under stress.

The last chapter (Chapter 22) summarizes the role of various kinases involved in the 
peroxisomal functions including stress management. Peroxisomes are indispensable for 
the functioning of lipid metabolism, generation of reactive oxygen/nitrogen/sulfur species 
and detoxification, and synthesis of vitamins and hormones. The regulation of peroxisome 
biogenesis and functions through the post-translational modifications (PTM), particularly, 
protein phosphorylation, needs more attention.

A detailed mechanistic understanding of several signal transduction components, espe-
cially kinases, will help attain the ultimate goal of developing useful tools to generate crop 
varieties. This can be achieved by genetic manipulation or genome engineering through 
gene editing methodologies of key kinases involved in stress signaling pathways, which 
ultimately leads to augmentation of stress tolerance in crop plants without compromising 
on crop productivity.

Because of space constraints and several other limitations, not all aspects of protein 
kinases involved in stress signaling could be discussed here, these may possibly be targeted 
in future endeavors. I firmly believe that this book will meet the needs of a wide spectrum 
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possible because of the significant contributions from several plant biologists and I am 
indebted to all the contributors. I also express my sincere thanks to Dr. Malathi Bheri and 
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Introduction

Living organisms are constantly exposed to environmental changes. Different organisms 
adapt and respond differently to the adverse conditions (Bray 1997; Kozlowski 1997; Sakai 
and Larcher 2012; Bleuven and Landry 2016). One of the key features that distinguish 
plants from animals is that the former are sessile in nature and require more efficiently 
governed genetic regulation to cope with unfavorable environmental conditions. Hence, 
during evolution, plants have developed intricate mechanisms to face these environmental 
challenges to some extent. Plants’ responses toward environmental stresses are multigenic 
and are governed by complex signaling molecules working in an orchestrated manner 
(Nongpiur et al. 2012). Various ‐omics approaches, including genomics, transcriptomics, 
proteomics and metabolomics, have been utilized to understand the signaling machinery 
operative under abiotic stresses. These studies reveal that tolerant plants withstand the 
extremes of environment in an adaptive manner, by re‐adjusting the major signaling and 
metabolic pathways to maintain cellular homeostasis (Ward and Thompson 2012; Ding 
et al. 2013; Soni et al. 2015). The response toward stresses involves complex molecules, 
wisely regulated at distinct checkpoints. Environmental changes are perceived by receptors 
such as histidine kinases (HKs), hormone receptors, G‐protein coupled receptors (GPCR), 
receptor kinases, transporters, antiporters, and tyrosine or serine/threonine kinases 
(Kacperska 2004; Osakabe et al. 2013; Zargar 2018). These activated receptors trigger down-
stream cascade by activating signaling molecules like Ca2+, ROS (reactive oxygen species), 
and other adapter molecules, which ultimately leads to the initiation of a series of post‐
translational protein modification events (Nishida and Gotoh 1993; Lee et al. 2007). These 
modifications can result in the activation of effector proteins, which function directly in 
the alleviation of the effects of the stress. The modifications can also stimulate the 
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regulation of transcription factors, which modulates the expression of stress related genes 
to combat the detrimental effect of the environmental extremes (Jaspers and Kangasjärvi 
2010; Sinha et al. 2011; Zhu 2016). Though a certain level of overlap does exist in the 
responses to different environmental constraints, these responses are usually distinct for 
each environmental stress (Zhu 2001; Fujita et al. 2006). More than one type of stress can 
turn “on” similar set of genes and thus participate in the crosstalk for stress signaling 
(Fujita et al. 2009; Gupta et al. 2016).

The two‐component system (TCS) is known to play a significant role in regulating various 
biological processes in both prokaryotes and eukaryotes, including higher plants. However, 
in eukaryotes, animals do not possess TCS regulatory system. TCS is a signal transduction 
pathway, which primarily evolved for the perception and transduction of extracellular sig-
nals. This signaling mechanism operates by the His‐Asp phosphorelay. As the name sug-
gests, the simplest form of TCS involves two major components for signaling; one membrane 
bound sensory HK and the other ones is its cognate response regulator (RR). Signal is per-
ceived by the HK, which auto‐phosphorylates at a conserved histidine residue and then 
transfers this phosphoryl group to a conserved aspartate residue on the RR, which in turn 
stimulates a response. This kind of TCS, designated as prototypical TCS, has been identified 
only in prokaryotes and has been shown to govern distinct cellular processes such as chemo-
taxis, quorum sensing, and osmotic response (Aizawa et al. 2000; Mitrophanov and Groisman 
2008). Schematic diagram, for how the TCS signaling proceeds, is given in Figure 1.1. 
A more complex form of TCS, designated as the multistep phosphorelay (MSP), is found 
in both prokaryotes and eukaryotes. The MSP possesses an additional shuttle protein to 
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Figure 1.1  Typical structure of TCS signaling machinery. (a) Prototypic TCS signaling machinery 
operating in a bacterial system, where the signal is perceived through a simple histidine kinase 
(HK) and transferred to the response regulator (RR). (b) Hybrid type histidine kinase (HHK) largely 
present in the eukaryotes. In this case, signaling proceeds via His-Asp-His-Asp phosphorelay and 
signal perceived through HHK is transferred to RR via an intermediate histidine containing 
phosphotransfer (HPT) protein. Sources: Aizawa et al. (2000); Mitrophanov and Groisman (2008).


